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Compressible lattice Boltzmann method with rotating overset grids
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The numerical instability of the lattice Boltzmann method (LBM) at high Mach or high Reynolds number
flow is well identified, and it remains a major barrier to its application in more complex configurations such
as moving geometries. This work combines the compressible lattice Boltzmann model with rotating overset
grids (the so-called Chimera method, sliding mesh, or moving reference frame) for high Mach flows. This paper
proposes to use the compressible hybrid recursive regularized collision model with fictitious forces (or inertial
forces) in a noninertial rotating reference frame. Also, polynomial interpolations are investigated, which allow
fixed inertial and rotating noninertial grids to communicate with each other. We suggest a way to effectively
couple the LBM with the MUSCL-Hancock scheme in the rotating grid, which is needed to account for thermal
effect of compressible flow. As a result, this approach is demonstrated to have an extended Mach stability limit
for the rotating grid. It also demonstrates that this complex LBM scheme can maintain the second-order accuracy
of the classic LBM by appropriately using numerical methods like polynomial interpolations and the MUSCL-
Hancock scheme. Furthermore, the method shows a very good agreement on aerodynamic coefficients compared
to experiments and the conventional finite-volume scheme. This work presents a thorough academic validation
and error analysis of the LBM for simulating moving geometries in high Mach compressible flows.
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I. INTRODUCTION

Over the last three decades, the dawn of the lattice
Boltzmann method (LBM) for computational fluid dynamics
(CFD) has arrived due to its automatic mesh generation and
a low computational cost, leading to high-fidelity simulations
for industrial applications. One of the remaining challenges
is maintaining its stability and accuracy for high Reynolds
and compressible flows, which is now the purpose of ongoing
efforts by the LBM community [1–3].

Yet there still remain a number of open issues to enable
accurate LBM simulations for industrial applications. One of
them is to prove its capability to simulate moving geometries
for high Reynolds and compressible flows. Moving geome-
tries represent crucial configurations in aeronautical industry
such as rotors, turbofans, and different fluid-structure inter-
action problems. However, it involves a complex numerical
setup for which very different approaches can be found in
the literature. The overset grids (the so-called Chimera mesh,
sliding mesh, or moving reference frame) simultaneously use
fixed and moving meshes with different reference axes [4,5].
The immersed boundary method (IBM) allows one to account
for moving geometries by imposing volume forces on moving
boundaries. This method is versatile and remains valid for ar-
bitrary motions, but it suffers from a first-order accuracy [6,7].
The arbitrary Lagrange and Eulerian (ALE) method, based on
morphing or shifting the mesh to move geometries, requires a
large number of interpolations, especially when complex mo-
tions are involved [8,9]. Hence, simulating moving geometries
in compressible flow is still left as a challenging topic in CFD,
not to mention in the LBM.
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Therefore, only limited approaches have been used so far
in LBM to simulate moving geometries for high Mach number
flows. Zhou et al. [10] adopted the lattice Boltzmann flux
solver (LBFS), which solved the finite-volume based Navier-
Stokes equations at each time and space coordinate instead
of the LBM scheme, to simulate a turbomachinery flow. The
authors state that LBFS was adopted to overcome the numer-
ical complexity coming from coupling the Coriolis force with
the LBM in the rotating reference frame. Hejranfar et al. [9]
applied a similar finite-volume based approach instead of the
LBM, referred to as a finite volume lattice Boltzmann solver
(FVLBM). In the context of the LBM, Saadat et al. [11]
coupled the LBM with the ALE method and successfully val-
idated the results up to midrange Mach numbers (Ma < 0.2).
Their ALE method morphed an unstructured mesh to actualize
the pitching movement. Bhadauria et al. [12] conducted a sim-
ilar approach for fluid-structure interactions and demonstrated
its applicability for the same Mach number range (Ma < 0.2).

This work focuses on rotating geometries for high Mach
compressible flows, where rotating motion is considered due
to an overset grid method (the so-called Chimera method,
sliding meshes, or moving reference frame). The overset
method has been academically investigated in the LBM for
athermal flows only, i.e., without considering the heat equa-
tion [4,5,13–15]. Zhang et al. [4] first suggested applying the
Bhatnagar-Gross-Krook LBM model in the rotating overset
grids. Far et al. [13] and Lallemand et al. [14] studied ad-
vanced collision models in the rotating overset grids, such
as the Multiple-Relaxation-Time model and cumulant lattice
Boltzmann model, but only in the low Mach and laminar
flow. Recently Yoo et al. [5] employed the HRR model with
the rotating overset grids in turbulent flow but low Mach
incompressible flow regime. Romani et al. simulated acoustic
noise of a full scale rotor using commercial LBM software
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PowerFLOW, but their compressible flow model and rotating
grids algorithm are not detailed [16].

In this work, the pressure-based HRR model is applied
in a noninertial rotating reference frame. This pressure-based
HRR model successfully proved its ability to simulate turbu-
lent high Mach compressible flows in three dimensions [1,2],
but has not been tested for moving geometries. In the rotating
region, a fictitious force (or so-called inertial force) is consid-
ered at each collision and streaming step of the pressure based
HRR model by using the forcing term of Guo [17]. Also,
since the rotating overset grids use two different meshes si-
multaneously, fixed and rotating grids share their information
through a polynomial interpolation. On top of that, the com-
pressible model introduces a dimensionless temperature θ ,
whose evolution is considered via an entropy equation solved
by a high-order (Monotonic Upstream-centered Scheme for
Conservation Laws) MUSCL-Hancock scheme.

In this context, the first major feature of this work is to
describe how to use the compressible pressure-based HRR
model in noninertial rotating reference frame. Due to this
compressible HRR model, the Mach stability limit of an over-
set noninertial rotating grid is able to be expanded. Also, the
gradient-based quadratic interpolation is investigated in the
context of compressible LBM. Then we suggest the higher-
order MUSCL-Hancock scheme, which is designed to have
reduced coupling error with LBM and optimized in the rotat-
ing grids.

As a result, this work demonstrates this complex LBM
method can retain the second-order accuracy as of the classic
LBM, by properly controlling the error of extra numerical
add-ons, such as the MUSCL-Hancock scheme and polyno-
mial interpolations. Finally, the method shows its robustness
by comparing its aerodynamic coefficients with other ref-
erences. To the authors’ knowledge, this work is the first
approach to validate the LBM on moving geometries at high
Mach numbers, among any type of movement such as oscilla-
tion, translation, and rotation, including any type of numerical
method such as IBM, ALE, and the overset grids.

This article is structured as follows. In Sec. II the algorithm
of rotating overset grids coupled with the compressible LBM
is described. We propose interpretations for the error sources
of rotating overset schemes on the LBM. In Sec. III different
numerical validations are conducted from an empty rotating
domain to 3D rotating solid geometries.

II. NUMERICAL METHOD

A. Discrete forcing term with the pressure-based hybrid
recursive regularized lattice Boltzmann model

The pressure-based HRR LBM is able to simulate high
Mach number flows around near-transonic and supersonic
regimes [1]. This compressible LBM model successfully
proved its capability to simulate compressible flows for
industrial applications such as considering the large eddy sim-
ulation (LES) turbulence model together with a wall model

[1,2]. The overset rotating grids are composed of two different
meshes such as fixed and rotating meshes. In the rotating
region, all physical vectors are defined with respect to the non-
inertial reference axis. Hence, fictitious forces such as inertial
and Coriolis forces need to be considered during the collision
and the streaming step. Here we couple the pressure-based
HRR model with the discrete forcing term Fi to include the
fictitious forces. More details are provided in Appendix C.
The collision and streaming algorithm reads

fi(x + ci�t, tn + �t )

= f eq
i (x, tn) +

(
1 − �t

τ

)
f̃ neq,HRR
i (x, tn)

+ 1

2
Fi(x, tn) + 1

2
�i(x, tn), (1)

where fi refers to discretized distribution functions depending
on space x, time tn and i indicating the velocity discretization
index. Regarding this discretization, the D3Q19 lattice [18],
composed of velocities ci, is considered. τ is the relaxation
time and is related to the fluid viscosity by the relation τ =
μ

ρc2
s
+ �t

2 , where μ is the dynamic viscosity, �t is the time

step, ρ is the density, and cs = 1/
√

3 is the characteristic lat-
tice speed. Fi is the discrete forcing term for fictitious forces,
and �i is a Mach-related correction term, which will be more
detailed hereafter. For an in-depth description and analysis of
the lattice discretization process and relaxation mechanisms,
the reader can refer to Refs. [1,19].

Macroscopic variables, involved in the definitions of func-
tions such as f eq

i , Fi, and �i, are computed as

ρ(x, tn) =
∑

i

fi(x, tn) + ρ(x, tn−1)[1 − θ (x, tn−1)], (2)

ρu(x, tn) =
∑

i

ci fi(x, tn) + �t

2
F(x, tn) + OLBM(�t2), (3)

where θ refers to the dimensionless temperature θ = T/Tref

which is computed from the entropy equation. More details
are provided in Secs. II B and II C. The fictitious force reads

F(x, tn) = −2ρω × u(x, tn) + ρω × (ω × r), (4)

where ω = [ω1 ω2 ω3] is the angular velocity vector of the
rotating mesh and r is the vector of coordinates with respect
to the rotation center. In Eq. (3) the force F(x, tn) includes
the Coriolis force, which is a function of velocity. As a con-
sequence, the computation of the velocity u(x, tn) given by
Eq. (3) is implicit. Hence, it is needed to define the ficti-
tious force F(x, tn) considering this implicit character. There
are different ways to deal with this issue, which handle this
problem by using either algebraic operations or time-splitting
operators [20,21]. The present work algebraically solves the
fictitious force at the current time step. By substituting (3)
into (4), the force is represented as a function of all the known
values as

F(tn) =
⎡
⎣ 1 −�tω3 �tω2

�tω3 1 −�tω1

−�tω2 �tω1 1

⎤
⎦−1[

−2ω ×
∑

i

ci fi(tn) + ρω × (ω × r) + OLBM(�t2)

]
. (5)
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This computed fictitious force is then applied to define
macroscopic velocity in Eq. (3). Furthermore, the calculated
fictitious force has to be imposed during the collision and
streaming step as given by Eq. (1) through the discrete forcing
term Fi. The solution proposed by Guo is used here [17]. To
comply with the pressure-based HRR collision model (1), it
reads

Fi = wi

[
ci − u

c2
s

+ (ci · u)

c4
s

ci

]
· F. (6)

This discrete forcing term can introduce a numerical error
[17], which is known to be of second order O(�x2) [19,22].
This error also depends on the type of discrete forcing scheme
such as such as the forcing terms of Guo [17] and He [23].
Suzuki et al. demonstrated that the Guo forcing term is able
to recover the Navier-Stokes equations more accurately than
the He forcing term, when it comes to spatially varying
forces [25]. In the context of rotating overset schemes, both
forcing terms have been compared, and Guo’s forcing term
showed better performances [5]. Recently Li et al. proposed
the higher-order Guo forcing term, which is claimed to be
optimized for thermal compressible flow, but in this research
we choose the standard second-order Guo forcing term [24].

f eq
i (x, t ) refers to the equilibrium distribution, expanded

here to the third order in ci as in Refs. [1,2]. The macro-
scopic density ρ and nondimensional temperature θ which are
needed to define the equilibrium function follow the defini-
tions of the pressure-based HRR model [1]. The velocity u is
defined including half of the force term as in Eq. (3) [5,17].

f̃ neq,HRR
i (x, t ), the so-called off-equilibrium distribution

function, is reconstructed from a macroscopic tensor denoted
as aneq,HRR

αβ . This step is known as regularization [26,27]. The

definition of the off-equilibrium tensor aneq,HRR
αβ is provided

in Appendix C and Refs. [1,2]. This off-equilibrium tensor
can be computed either from the off-equilibrium distribution
function (aneq,LBM

αβ ) or from the shear stress ∇u computed by

finite differences (aneq,FD
αβ ) [28]. In the HRR model, these two

approaches are hybridized with a parameter σ , defining the
ratio between both ways of computing the nonequilibrium
tensors:

aneq,HRR
αβ = σaneq,LBM

αβ + (1 − σ )aneq,FD
αβ . (7)

Unless otherwise mentioned, σ is set to unity in this work,
meaning that the finite difference part is not used.

The simulation of high Mach number flows with the
standard LBM is known to result in a deviation with the
Navier-Stokes equations referred to as the Galilean invariant
error [29–31]. The body-force term �i is designed to address
this error. This correction term includes the aforementioned
macroscopic values ρ, u, θ and their gradients. In this re-
search, the high Mach error term is considered to be same
formulation as in the inertial frame. The derivation step of
the high Mach error in the noninertial frame is described in
Appendix E. More details about this correction term for the
pressure-based HRR are described in Refs. [1,2].

B. Compressible LBM: θ and independent
Courant-Friedrichs-Lewy number

Apart from the standard athermal LBM, the compress-
ible LBM includes a macroscopic parameter θ , which is the
nondimensional temperature. One interesting point of this
parameter is that it enables the compressible LBM to freely
modify its Courant-Friedrichs-Lewy (CFL) number defined as
[32]

CCFL = |u| + c

�x/�t
= c∗

s (1 + Ma), (8)

where c is the sound speed and c∗ is its dimensionless form
(nondimensionalized by �x/�t). In the conventional ather-
mal LBM, the CFL number is constrained as a linear function
of the Mach number because the dimensionless sound speed
is constant:

c∗
ath =

√
rgasTref

�x/�t
= 1√

3
, (9)

where r is the gas constant. This prevents the athermal LBM
from reaching high Mach number due to the CFL limitation.
However, in the compressible LBM model, the dimensionless
speed of sound c∗ is defined with respect to the dimensionless
temperature θ [Eq. (10)] as

c∗
th =

√
γ rgasT

�x/�t
=

√
rgasTref

�x/�t

√
γ

T

Tref
= 1√

3

√
γ θ, (10)

where γ is the heat capacity ratio. Therefore, the compressible
LBM can reach higher Mach flow without violating the CFL
condition by modifying the parameter θ .

C. The MUSCL-Hancock scheme for entropy equation

As discussed above, the evolution of the dimensionless
temperature θ is solved via the entropy equation, which reads

∂s

∂t
+ uα

∂s

∂α
= − 1

ρT

∂qα

∂α
+ σαβ

ρT

∂uα

∂β
, (11)

where an implicit summation is done over indices α, β ∈
{x, y, z}, and the entropy s is defined as

s = r

γ − 1
ln

(
rgasTrefθ

ργ−1

)
, (12)

where qα = −λ∂T/∂α is the heat flux, λ is the heat con-
ductivity, and σαβ = −aneq,HRR

αβ is the shear stress tensor. The
right-hand-side terms of Eq. (11), namely, the heat flux and
the viscous heating, are discretized using a standard finite-
difference scheme as suggested in [1]. In this section the focus
is put on the way the convective term is computed, and more
precisely the entropy flux uα∂s/∂α using a MUSCL-Hancock
scheme. For this purpose and for the sake of simplicity, diffu-
sive terms will not be written in the equations below.

The entropy equation is nonconservative compared to the
energy equation. However, it is commonly preferred for stabil-
ity purposes since it is a simple advection-diffusion equation.
This entropy equation allows one to predict entropy at the next
time step by using spatial fluxes at the current time step, and
a high-order precision can be preserved using the MUSCL-
Hancock scheme [33,34]. Solving the entropy equation
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(or energy equation) is necessary to consider compressible
flow, but it can yield more dissipation to the numerical scheme
since it is an add-on to the original LBM equation. Hence, we
choose the high-order MUSCL-Hancock scheme to minimize
this dissipation error originating from the coupling between
the LBM and entropy equation. This scheme guarantees the
second- or third-order precision in time by predicting an en-
tropy scalar after half a time step.

Here we would like to underline two characteristics of the
fluxes in the rotating overset grids: they are multidirectional
and coupled with the LBM. First, the rotating overset grids
encounter fluxes in any direction according to rotation an-
gle. This implies that considering the multidirectionality of
the MUSCL-Hancock scheme is crucial for rotating overset
grids. This multidirectionality can be considered by including
diagonal fluxes. In addition, the LBM part is used to com-
pute ρ and u, while the MUSCL-Hancock scheme is used
to compute temperature θ . Depending on the way it receives
velocity information from LBM, the coupling gives different
order of numerical error. Given that coupling with different
equations is required for LBM to simulate multiphysics, the
demonstration here can assist in understanding how to couple
LBM with other equations such as managing their coupling
error and maintaining sufficient accuracy. In this context, we
suggest the third-order unsplit MUSCL-Hancock scheme to
deal with the above two issues. In this work, an original
higher-order MUSCL-Hancock scheme is proposed by ad-
dressing the two points mentioned above. It will be referred
to as MUSCL − 2D − φn+1/2. This scheme is compared with
the MUSCL-Hancock scheme proposed in a previous work
[1], referred to as MUSCL − 1D − φn.

First, the coupling error between LBM and the MUSCL-
Hancock scheme is considered when the spatial fluxes are
evaluated. The entropy scheme proposed by Farag et al. [1]
reads

s(x, t + �t ) − s(x, t )

�t
+ uα (x, t )

F+�α/2(x, t ) − F−�α/2(x, t )

�x

= 0, (13)

where F+�α/2 and F−�α/2 are fluxes at the border of the cell in
the direction α, whose expressions will be provided hereafter.
Note that one systematically has by definition F−�α/2(x, t ) =
F+�α/2(x − eα�x, t ), where eα is the unit vector in the direc-
tion α.

As demonstrated in Appendix A, this can lead to a third-
order accuracy O(�t3) on the entropy equation when uα is
constant. However, the accuracy is degraded to the first-order
O(�t ) when it comes to nonconstant flows. Its low accuracy
can be more severe as the velocity uα varies with time. There-
fore, it is suggested to evaluate the velocity after half a time
step uα (x, t + �t/2) = [uα (x, t + �t ) + uα (x, t )]/2 to com-
pute the fluxes, which yields a second-order accuracy O(�t2)
even for nonconstant flows:

s(x, t + �t ) − s(x, t )

�t
+ uα (x, t + �t/2)

× F+�α/2(x, t ) − F−�α/2(x, t )

�x
= 0. (14)

FIG. 1. Stencil of the MUSCL-Hancock scheme for unsteady
flux: a target point (filled circle), points at the current time step
(dashed line circle), and point after the half time step for unsteady
flow (gray circle). For simplicity, the stencil is described for the
ux > 0 and uy = 0 case.

This newly added point uα (x, t + �t/2) in the time axis is
shown in Fig. 1. More details about its order of accuracy are
provided in Appendix A.

Moreover, the multidirectional scheme is proposed by con-
sidering the diagonal terms while predicting the scalar values
F+�α/2(x, t ) and F−�α/2(x, t ). There are different ways to con-
sider multidirectional fluxes, such as the splitting method [34].
However, the splitting method requires double time loops in
two dimensions and six time loops in three dimensions [34].
Therefore, this work adopts an unsplit method which does
not need multiloops, but uses diagonal entropy and velocity
components instead, which are easily accessible for the case
of Cartesian grids. The midcell flux is defined in this case as

F+�α/2(x, t ) = s(x, t ) + 1

2
�α (x, t )

−
∑

β∈{x,y,z}

uβ

2

�t

�x
�β (x, t ), (15)

where �α refers to the MUSCL-Hancock slope in the direc-
tion α, which is more detailed in Appendix A. Here Eq. (15)
refers to the case where the convection velocity uα > 0. The
slope �α has a five-point stencil when the slope is parallel to
the flow by which the MUSCL-Hancock scheme can recover
the third-order accuracy O(�x3) on the entropy equation (11)
[1,33,34]. On top of that, by adding the slope perpendicular
to the flow, the MUSCL-Hancock scheme can recover the
second-order accuracy O(�x2) on the entropy equation for
nonaligned flows [34]. The extended stencils are described in
Fig. 2.

Then the predicted entropy fluxes of Eq. (15) are sub-
stituted into the entropy equation (14). This yields the
MUSCL − 2D − φn+1/2 scheme, which reads

s(x, t + �t ) = s(x, t ) +
∑

α∈{x,y,z}
uα (x, t + �t/2)

× �t

�x
[F−�α/2(x, t ) − F�α/2(x, t )]

+
{

O(�x3,�t3), if 1D and uα is constant

O(�x2,�t2), otherwise.

(16)
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FIG. 2. Stencil of the multidirectional MUSCL-Hancock
scheme. A target point (filled circle), points for 1D flow (dashed
line circle) and diagonal points for multidirectional flux (solid line
circle).

This scheme guarantees a second-order accuracy O(�x2) for
multidirectional flows, and a third-order accuracy O(�x3) for
constant and unidirectional flows. Details on the accuracy are
provided in Appendix A.

Note that without considering the multidirectionality, the
MUSCL-Hancock scheme predicts the entropy flux by

F̄+�α/2(x, t ) = s(x, t ) +
(

1

2
− uα

2

�t

�x

)
�α (x, t ), (17)

for a convection velocity uα > 0. This unidirectional flux
yields

s(x, t + �t )

= s(x, t ) +
∑

α∈{x,y,z}
uα (x, t + �t/2)

× �t

�x
[F̄−�α/2(x, t ) − F̄�α/2(x, t )]

=

⎧⎪⎨
⎪⎩

O(�x3,�t3), if 1D and uα is constant

O(�x2,�t2), if 1D and uα is nonconstant

O(�x,�t ), otherwise.

(18)

The unidirectional MUSCL-Hancock scheme can still
give a third-order accuracy for constant and unidirectional
flows, but the accuracy goes down to the first order in
multidirectional flows. The accuracy orders of the uni- and
multidimensional MUSCL-Hancock schemes with and with-
out half-time interpolation are summarized in Table I.

D. Interpolation between rotating and fixed grids

In the overset scheme, both fixed and rotating grids exist
simultaneously as exchanging their information at the borders
(see Fig. 3). The border nodes receive the macroscopic values
(ρ, u, aneq

αβ , θ ) from the surrounding nodes in another region,
through a polynomial interpolation (see Fig. 4). The gradient-
based quadratic interpolation is applied for ρ, u and θ , which
has a third-order accuracy in space [5,35]. At the borders,
the distribution functions f eq

i , f neq
i are reconstructed from the

interpolated macroscopic values, and then the collision and
streaming steps are performed. On top of that, the interpolated
macroscopic values are put into the entropy equation at the
boundaries to transport θ . More details about the interpo-
lation algorithm are provided in Appendixes B and D and
Ref. [5].

In terms of the interpolation, this work delivers the sig-
nificance of quadratic interpolation having the third-order
accuracy O(�x3). It is higher than the accuracy of base LBM
O(�x2) so that the interpolation does not ruin physics of
LBM [36]. Moreover, this aspect may imply the possibility
that the quadratic interpolation is optimum for LBM appli-
cations compared to the higher-order interpolation like the
cubic interpolation. Also, to take into account large pressure
gradients of compressible flow, we expand the quadratic in-
terpolation to the pressure variables such as (ρ, θ ), apart from
velocities u.

III. NUMERICAL VALIDATION

In all the cases introduced in this section, the MUSCL −
2D − φn+1/2 scheme is considered for the entropy equation,
unless otherwise stated.

A. Vortex advection

The advection of a vortex is tested over the rotating
overset grids. The purpose of this test case is to identify
how long the vortex structure can be sustained as it flows
through the periodic domain. Inviscid vortex structure can be
conserved as being advected on a single fixed grid in com-
pressible flow [1]. Here the higher-order MUSCL-Hancock
scheme with diagonal terms and the flux after a half time
step is applied (MUSCL − 2D − φn+1/2). The Guo forcing
term is selected to impose the fictitious forces, and the
gradient-based quadratic interpolation is chosen. The vortex is
initialized by

ux = u0 − ε

(
y − y0

R

)
exp

[
− (x − x0)2 + (y − y0)2

2R2

]
,

TABLE I. Accuracy orders in space and time of the different MUSCL-Hancock schemes according to the considered type of flow.

Type of flow MCL − 1D − �n MCL − 1D − φn+1/2 MCL − 2D − φn MCL − 2D − φn+1/2

1D flow, u constant Third order Third order Third order Third order
1D flow, u nonconstant First order Second order First order Second order
3D flow, u constant First order First order Second order Second order
3D flow, u nonconstant First order First order First order Second order
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FIG. 3. Schematic diagram of the overset grids: fixed grid (yel-
low), rotating grid (red), overlapped region (blue), interpolation
border from rotating to fixed grid (solid line), and interpolation
border from the fixed to rotating grid (dashed line). From [5].

uy = ε

(
x − x0

R

)
exp

[
− (x − x0)2 + (y − y0)2

2R2

]
,

ρ = ρ0

[
1 − γ − 1

γ

ε2

2rgasT0

× exp

(
− (x − x0)2 + (y − y0)2

R2

)] 1
γ−1

,

p = p0

ρ
γ

0

ργ . (19)

The vortex advection speed is Ma0 = u0/c = 0.1. The vor-
tex strength is set to ε = 0.15, which represents the local
Mach number at the periphery of the rotating vortex. The
viscosity is set to μ = 10−25 for the inviscid condition. The
ambient initial density is set to ρ0 = 1 and pressure to p0 =
1; γ is set to 1.4 and rgas = 1. More details of the vortex
initialization are described in [37,38]. All the test cases of
this section adopt 10 points in the radius of the vortex (R =
10�x). The number of points in the length of square domain
is 200 (L = 200�x).

Figure 5 shows that vortex structures are well conserved
after five flow-through times TFTT = cMa0t/L, where L is
the channel length. The rotation speed of the overset mesh
is given by Marω = rω/c, where r is the distance between the
rotation center and the corner point of the overset mesh. The
CFL number is C0

CFL = 0.49 based on the advection speed
Ma0. The L2 error is compared with the reference as E =√

�(p−pref )2

N , where the reference is the same vortex advection
simulation on a single fixed grid and N is the number of
mesh nodes. The overset scheme is found to well conserve the

FIG. 4. Schematic diagram of the interpolation between the mov-
ing (red or gray in gray scale) and fixed (yellow or light gray in gray
scale) grids. Left: moving to fixed grid interpolation; right: fixed to
moving grid interpolation. The nodes at the boundary of each grid
receive the data from the other grid (black circle). From [5].

FIG. 5. Cross-sectional pressure profile of advecting vortex over
the rotating overset grids at 5TFTT.

vortex structure, with about 0.001% errors at various rotation
speeds.

Figure 6 shows the maximum mesh rotation speeds for
various values of the CFL number calculated using the con-
vection velocity Ma0 = 0.1, such as C0

CFL = c∗(1 + Ma0). As
previously explained, the dimensionless variable θ is used,
which is a function of time step �t , lattice size �x, and
ambient initial temperature T0. Hence, the CFL number and
θ are adjusted by reducing �t while having constant �x and
T0. As shown in Fig. 6 the stability limit is expanded from
Marω = 0.72 to Marω = 1.55 as reducing the CFL number
from the inlet velocity C0

CFL. At each C0
CFL, the stability limit

is constrained when the CFL number CCFL based on local
velocity [CCFL = c∗(1 + Ma)] reaches its stability limit. On
the other hand, the athermal LBM has a unique maximum
rotating speed as Marω = 0.75 regardless of time step �t ,
where the model is close to its CFL stability limit. At the
given inlet Mach number Ma0, the athermal LBM has unique
CFL number C0

CFL = c∗(1 + Ma0), which cannot be modified
by adjusting the time step because the nondimensional speed
of sound is maintained constant regardless of the time step.
Hence, the stability limit is defined based on only the local
Mach number Ma.

FIG. 6. Stability map of the mesh rotation speed at different CFL
values.
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FIG. 7. Entropy spot flows over empty rotating overset grids.

B. Entropy spot advection

The advection of an entropy spot is then chosen to analyze
the MUSCL-Hancock scheme on the rotating overset grids.
The Gaussian-shaped entropy spot is initially located at the
bottom left corner of the domain and is advected in time in
the diagonal direction towards the top right corner (Fig. 7).

The entropy spot is initialized as

ρ = ρ0

[
1 + ε exp

(
− (x − x0)2 + (y − y0)2

R2

)]
,

T = T0

[
1 − ε exp

(
− (x − x0)2 + (y − y0)2

R2

)]
. (20)

The amplitude of the spot ε is set to 10−3 as in Farag et al.
[1]. The advection velocities expressed as Mach numbers are
Max = 0.1 and May = 0.1. The number of nodes in the length
of domain is varied as Nx = [125, 160, 200, 250], which cor-
responds to the following numbers of nodes in the radius of
entropy spot: Nr = R/�x = [12.5, 16, 20, 25]. Accordingly,
the number of nodes in the length of rotating domain is
Nxr = [100, 128, 160, 200]. The rotation speed of the overset
mesh is Marω = rω/c = [0.20, 0.76], where r is the distance
between the corner of rotating mesh and the rotating center.
The dynamic viscosity is negligible, fixed to μ = 10−10, and
rgas is set to 1.0. The CFL number is set as C0

CFL = 0.2 in terms

of the advection velocity
√

Ma2
x + Ma2

y .

The error coming from the rotating overset scheme is
analyzed by comparing the entropy spot simulation using
rotating overset grids and the same simulation using the same
physical setup on a single fixed grid. Figure 8 shows the
averaged L2 error in entropy after four flow-through times

(TFTT =
√

u2
x + u2

yt/
√

L2
x + L2

y ), where Lx and Ly are the do-

main lengths in the x and y directions. The L2 error is defined

as ES =
√∑

(s−sref )2

N , where s is the entropy value sref is the ref-
erence entropy value and N is the number of points. The two
different MUSCL-Hancock schemes mentioned in Sec. II C

FIG. 8. L2 error on the entropy for different mesh sizes.
MUSCL − 1D − φn: the MUSCL-Hancock scheme without diago-
nal term and a flux calculated at the current time step. MUSCL −
2D − φn+1/2: the MUSCL-Hancock scheme with diagonal term and
a flux calculated after half a time step.

are tested to study their effect on solving the entropy equa-
tion with the overset rotating grids.

Figure 8 shows that the errors are reduced by the
MUSCL − 2D − φn+1/2 compared to the MUSCL − 1D −
φn. Moreover, as the rotation speed is increased, the
MUSCL − 1D − φn scheme goes down to the first-order
accuracy, but MUSCL − 2D − φn+1/2 remains close to the
second-order accuracy. It indicates that considering the diag-
onal flow and unsteadiness in the MUSCL-Hancock scheme
may play more significant role as its rotating speed becomes
larger in the rotating overset grids.

C. Acoustic pulse

The case of an acoustic pulse is then studied to vali-
date the rotating overset scheme with different polynomial
interpolations such as the linear, quadratic, and cubic inter-
polations. Since the conventional athermal LBM is weakly
compressible, previous references adopted a low-order linear
interpolation for pressure, which was sufficient to deal with
moderate pressure gradients [5,39]. However, large pressure
gradients can be encountered in compressible flows, hence
higher-order interpolations on pressure terms are necessary,
in particular the gradient-based quadratic interpolation [5,35].
Its usage for the pressure term is described in Appendix B. A
Gaussian-shaped pulse is initially located in the middle of the
domain and is propagated in time through the field (Fig. 9).

The pulse is initialized as

p =
{
ρ0

[
1 + ε exp

(
− (x − x0)2 + (y − y0)2

R2

)]}γ

. (21)

The initial ambient density is ρ0 = 1, which gives a far-field
pressure close to p0 = 1. The amplitude of the pulse is set to
ε = 0.1; hence a peak value of the pulse at the center is pmax =
1.1. The Gaussian pulse is discretized with R = 10�x. The
dynamic viscosity is negligible, fixed to μ = 10−10. The rota-
tion speed of the overset mesh is set to Marω = rω/c = 0.60.
Time step is �t = 8.47 × 10−3. The number of nodes in the
length of entire domain is Nx = 100 and of the rotating do-
main is Nxr = 50.
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FIG. 9. Acoustic pulse propagated over the empty rotating over-
set grids at t = 0 (left) and t = 5 (right).

Following the previous methodology, the error is analyzed
by comparing the acoustic pulse simulation on the overset
grids with regard to the same simulation on a single fixed grid.
Figure 10 shows the L2-averaged error of pressure according
to time. A time unit is defined by 25�t . It is reduced by
increasing the interpolation order.

The same trend is observed in Fig. 11. It shows that the
spurious error fields of pressure fluctuations | ∂ p

∂t − ∂ pref

∂t | is
reduced near the interpolation border as increasing the order
from linear to quadratic.

Moreover, in this test case, it is demonstrated that there is
a significant improvement between quadratic and linear inter-
polations, but only minor improvement from the quadratic to
cubic interpolations (Fig. 10). That may be because the third-
order accuracy of the quadratic interpolation is large enough
not to deteriorate the second-order accuracy of the basic LBM
scheme. It implies that the quadratic interpolation would be an
optimal compromise to give reasonable performances in the
rotating overset LBM with a low computational cost. These
observations are in agreement with the theoretical study of
Ref. [36] regarding the effect of the quadratic interpolations
in LBM.

D. Shock-vortex interaction

The shock-vortex interaction of Inoue and Hattori [40] is
now investigated in the presence of rotating overset grids. A

FIG. 10. L2-averaged error in pressure as a function of time
using different polynomial interpolations.

FIG. 11. Error field | ∂ p
∂t − ∂ pref

∂t | of the acoustic pulse at t = 4:
linear interpolation (left), quadratic interpolation (right).

vortex passing across a shock wave is simulated over an empty
rotating overset grids. The aim is to study the stability of the
shock structure over the rotating overset grids (Fig. 12).

The shock surface is initialized by [40]

ρR

ρL
= uL

uR
= (γ + 1)Ma2

0

(γ − 1)Ma2
0 + 2

,

pR

pL
= 1 + 2γ

γ + 1

(
Ma2

0 − 1
)
. (22)

The vortex is initialized on the upstream supersonic region
[Fig. 12 (left)] by

ux = uL − √
γ Mamvyc exp

[
1

2

[
1 − (

x2
c + y2

c

)]]
,

uy = √
γ Mamvxc exp

[
1

2

[
1 − (

x2
c + y2

c

)]]
, (23)

ρL =
[

1 − (γ − 1)Ma2
mv

2
exp

[
1 − (

x2
c + y2

c

)]]1/(γ−1)

,

pL = ρ
γ
L ,

where xc = x − x0 and yc = y − y0.
Two different simulation conditions are chosen. One cor-

responds to a Mach number at upstream as Ma0 = 1.2 and
a vortex velocity is Mamv = 0.25, which corresponds to the
test case “C” in Ref. [40]. The second one has an upstream

FIG. 12. A vortex passing through the shock wave simulated
over the rotating overset grids.
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FIG. 13. Radial pressure profile �p at t = 6 (case “C” in Inoue
and Hattori [40]). Blue (black in gray scale) dashed line: overset
LBM at r = 6.0. Light blue (gray in gray scale) dashed line: LBM
from single mesh at r = 6.0. Circular marker: Inoue and Hattori
at r = 6.0. Blue (black in gray scale) solid line: overset LBM at
r = 3.7. Light blue (gray in gray scale) solid line: LBM from single
mesh at r = 3.7. filled circular marker: Inoue and Hattori at r = 3.7.

Mach number as Ma0 = 1.29 and the vortex velocity is set
as Mamv = 0.39, which corresponds to the test case “G” in
Ref. [40]. The vortex velocity Mamv indicates the local veloc-
ity at its perimeter, which is superposed to the Mach number
of the advecting flow. The radius of the vortex is R = 1,
discretized with 40 mesh points. The total number of nodes
in the channel is [1120 × 960]. The Reynolds number is set
as = ρLcR

μ
= 800, where c is the upstream sound speed, ρL

is the upstream density, and R is the radius of vortex. The
vortex is initialized by Eq. (23). The distance from the rotation
center to the tip of the rotating grid is d = 5.656, which
corresponds to 226 nodes. The rotation speed of the overset
mesh is Madω = dω/c = 0.239. The HRR parameter is cho-
sen as σ = 1. A Jameson shock sensor is applied to reduce
numerical oscillation near the shock. More details about using
the sensor in compressible LBM are given in Refs. [1,2]. The
shock sensor coefficient is set as sc = 0.1, and rgas is set as a
unity. The CFL number is set as C0

CFL = 0.22 in terms of the
upstream advection velocity.

The shock-vortex interaction is assessed using two dif-
ferent references, the original reference from Inoue et al.
[40] (cases “C” and “G”) and the pressure-based HRR on a
single fixed grid, which was validated by Farag et al. [1].
Figure 13 displays the radial profile of the normalized pressure
at t = 6R/c, for case “C’; with Ma0 = 1.2 and Mamv = 0.25.
The normalized pressure �p is defined as �p = (p − pR)/pR

where pR is the downstream pressure. The angle θrad , used
to investigate the azimuthal pressure distribution around the
vortex, follows the same definition as in Ref. [40]. In this fig-
ure, the pressure profile is plotted along the radius r from the
vortex center. For r = 6, the pressure profile is well matched
with the reference except for the shock surface near the an-
gle θrad = 2.26. However, this discrepancy is observed even
without the overset mesh [1]. Therefore, this defect may due
to the compressible LBM model itself rather than the overset
grid scheme. For r = 3.7, the pressure profile of the overset
scheme is in agreement with the reference except for the shock

FIG. 14. Isocontours of �p at t = 10.3 (case “G” in Inoue and
Hattori [40]). Left: Inoue and Hattori [40]; middle: compressible
LBM with a single fixed grid; right: compressible LBM with overset
grids. Contour levels are the same as in Ref. [40] with �pmin =
−0.16, �pmax = 0.24, and an increment of 0.0033.

surface near the angle θrad = −2.85. Here the discrepancy of
the overset scheme is larger than that of the fixed grid using
the compressible LBM [1], which indicates that the numerical
error originates from overset scheme.

Figure 14 compares isocontours of �p for the case “G” in
Ref. [40]. The contours are compared with those of Inoue and
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FIG. 15. Overset mesh structure for a 3D rotating sphere. Fixed
mesh: blue; rotating mesh: red.

Hattori [40] and the pressure-based HRR with a single fixed
grid. The figure shows that all three contours overall match
well, which suggests that the overset LBM scheme can be
used to simulate shock waves in rotating regions. However, a
defect of the overset scheme is still observed by a nonphysical
distortion in the coordinates (2,2) in the figure. Further studies
are needed to improve this discrepancy, which may lead to a
better capture of the shock over rotating geometries.

E. 3D rotating sphere

A 3D rotating sphere in a uniform channel flow is studied
at a high Mach number (Fig. 15). The inlet Mach number
is Ma0 = 0.8, which corresponds to a transonic regime. The
rotation ratio a = 0.5Dω/U0 is the nondimensional number,
which represents the rotating speed of sphere, where D is
the diameter of sphere, ω is angular velocity, and U0 is
the inflow velocity. The ratio a is varied as [0,0.6], which
gives a maximum local Mach number near the surface to be
Ma = Ma0 + aU0/c = [0.8, 1.28]. The Reynolds number is
Re = ρU0D

μ
= 300. The initial ambient pressure and density

are p0 = 101325 and ρ0 = 1.2. There are six levels of mesh
refinement, where the finest mesh has a size �x = D/64. Each
mesh refinement level has a 3D cubic shape whose specifica-
tions are described in Table II and Fig. 16. The minimum time
step at the finest mesh region is set as �t = 2.076 × 10−6.

TABLE II. Mesh refinements of the rotating sphere. D indicates
the diameter of the rotating sphere. Fixed regions have a cubic shape.
Rotating regions have a spherical shape. A spherical hole cutting is
done in the innermost fixed region.

Mesh level Length �x

Rotating-6 (red) 3D (diameter) D/64
Fixed-hole cut 2.5D (diameter) –
Fixed-6 (blue) 4D D/64
Fixed-5 (blue) 6D D/32
Fixed-4 (blue) 10D D/16
Fixed-3 (blue) 18D D/8
Fixed-2 (blue) 30D D/4
Fixed-1 (white) 100D D/2

FIG. 16. Mesh refinements of the rotating sphere. Fixed region:
blue or gray in gray scale; rotating region: red or black in gray scale.
Specifications are given in Table II.

Furthermore, the overset rotating mesh has the shape of a
sphere of diameter Dmesh = 3D. The rotating sphere is located
in the middle of the domain so that the distances from each
boundary (inlet, outlet, and surrounding walls) are H = 50D.
The inflow is uniform, and the surrounding boundary walls
are frictionless walls. Characteristic boundary conditions are
imposed to reduce the reflection from the inlet, outlet, and
walls as absorbing layers [2,41]. No-slip boundary conditions
are imposed on the rotating sphere with respect to the rotation
reference axis, which then actualizes the rotating motion of
the sphere. An adiabatic condition ( ∂T

∂n = 0) is applied on
the rotating sphere surface. More details about the boundary
conditions and absorbing layers are described in Refs. [2,41].

Aerodynamic coefficients are studied to validate the rotat-
ing sphere in transonic and supersonic flow regimes (Fig. 17).
The coefficients are compared with the reference using
high-order finite volume WENO schemes solving the Navier-
Stokes equation [42]. Another reference is considered, based
on the empirical regression of various simulations and ex-
periments [43]. Averaged coefficients are computed based on
the far-field integral method, following [44,45]. The aerody-
namic coefficients are defined as CL = Fy/(0.5ρ0U 2

0 A) and
CD = Fx/(0.5ρ0U 2

0 A), where A is the cross-sectional area of
the sphere and Fx and Fy are, respectively, the horizontal and
vertical integrated efforts on the surface of the sphere.

In Fig. 17 (top), the lift coefficients CL show a correct
trend, with an increase proportional to the rotation ratio. In
Fig. 17 (middle) the drag coefficients CD have larger error as
the rotation ratio increases. Yet the error is still less than 10%
even for the largest rotation ratio with a = 0.6, where the max-
imum local speed on the sphere surface becomes supersonic as
Ma = Ma0 + aMa0 = 1.26. In Fig. 17 (bottom), the Strouhal
number St = f D/U0 is measured based on the frequency f of
the trailing vortex behind the sphere. It shows a good trend
according to the rotational ratio. All coefficients have a good
tendency, which well match Ref. [42], except for the station-
ary case a = 0. In this case, flow physics are governed by the
vortex shedding rather than the rotating motion of sphere, so
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FIG. 17. Aerodynamic coefficients of a 3D rotating sphere at
Ma0 = 0.8. Maximum local Mach number on the sphere is Malcl =
Ma0 + a × Ma0.

that it may highly depend on the mesh resolution or the mesh
refinement structure. The finest mesh size considered in the
compressible LBM simulation is �x = D/64, while Nagata
et al. [42] adopted a finer mesh with �x = D/306.5. More-
over, Nagata et al. [42] extended the mesh in the wake region
to capture details of wake physics. Therefore, Ref. [43] is also
considered to support the results at the stationary condition
[Fig. 17 (bottom)].

Vortex structures are visualized in Fig. 18, where iso-
surfaces of the Q criterion are colored with the vorticity
magnitude, to highlight the effect of the different MUSCL-
Hancock schemes (MUSCL − 1D − φn and MUSCL − 2D −
φn+1/2 described in Sec. II C). The stream-wise length of

FIG. 18. Isosurface Q criterion of the rotating sphere colored
by vorticity magnitude at Ma0 = 0.8 and a = 0.3. Left: MUSCL −
1D − φn scheme; right: MUSCL − 2D − φn+1/2 scheme.

the finest mesh region is extended to capture more clearly
the trailing vortex structures. It clearly demonstrates that the
higher-order MUSCL scheme (MUSCL − 2D − φn+1/2) suc-
cessfully captures the downstream rotating vortex structure.
On the contrary, the low-order MUSCL-Hancock scheme
(MUSCL − 1D − φn) is not able to do so, which implies that
the higher-order MUSCL-Hancock scheme is more appropri-
ate to recover the unsteady vortex structure due to its lower
numerical dissipation.

F. Caradonna and Tung rotor

The Caradonna and Tung rotor [46] is tested to validate
the overset rotating scheme for industrial applications in high
Mach compressible flow regimes. This is a two-bladed rotor,
composed of NACA0012 profiles. Its aspect ratio is AR =
R/l = 6, where R is the radius of the rotor and l is the chord
length. The Mach number at the tip of rotor is Mat ip = 0.723.

The Reynolds number is Re = ρ0Utipl
μ

= 3.2 × 106, where ρ0

is the ambient density. The initial ambient density is set to
ρ0 = 1.2, and the initial ambient pressure is p0 = 101325.
The collective pitch angle (or angle of attack in this test case)
is θc = 2◦.

A large eddy simulation (LES) model, more precisely the
Vreman subgrid turbulence model, is applied to consider
turbulent flows [47]. An explicit wall model is used to take
into account the turbulent boundary layer near the rotating
solid walls [48]. The Vreman LES model and explicit wall
model have been chosen since they are validated with the
pressure-based HRR-LBM in the context of high Mach
turbulent flows [2].

The finest mesh close to the rotating walls is �x = l/200,
which leads to y+ ≈ 110 at the tip of the rotor (r/R = 0.96)
and y+ ≈ 90 in the middle of the blade span (r/R = 0.5);
y+ is estimated as y+ = uτ �x

ν
. Seven different mesh refine-

ment levels are considered, as illustrated in Figs. 19, 20 and
Table III. The minimum time step at the finest mesh region is
set as �t = 2.889 × 10−6.
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FIG. 19. The rotating overset grids structure for the Caradonna
and Tung rotor [46]. Fixed mesh (blue), rotating mesh (red), and the
rotor (black). Top: top view; bottom: isometric view.

The computational domain has a cubic shape, and the
far-field boundaries are located at H = 20

l from the center of
rotor. Characteristic pressure boundary conditions are applied
at these boundaries to reduce spurious acoustic reflections
[2,41].

Figures 21–23 compare pressure coefficients with the ref-
erence experiments [46]. They are defined as Cp = (p −
p0/[0.5ρ0(ωr)2], where p0 is the ambient pressure and ω is
the angular velocity of the rotor. The pressure coefficients
are compared to the reference at different spanwise loca-
tions (r/R = 0.5, 0.8, 0.96), and a correct agreement can be
noticed.

FIG. 20. Mesh refinement structure of the Caradonna and Tung
rotor. Left: side view; right: top view. Specifications are given in
Table III.

TABLE III. Mesh refinement levels of the Caradonna and Tung
rotor. l indicates the chord length of the rotor (Fig. 20, left). The outer
boundary has a cubic shape (referred to as “fixed-1” in the table).
All fixed regions have a circular cylindrical shape. Refinement levels
in the rotating region have both cylinder and rectangular shapes. A
cylindrical hole cutting is done in the innermost fixed region.

Mesh level Height Radius �x

Rotating-7 (red) 0.25l 1.55l (length) l/200
Rotating-6 (red) 0.45l 1.85l (length) l/100
Rotating-5 (red) 2.0l 7l l/50
Fixed-hole cut 1.2l 6.7l –
Fixed-5 (blue) 3.75l 7.25l l/50
Fixed-4 (blue) 5.0l 7.75l l/25
Fixed-3 (blue) 7.5l 8.75l l/12.5
Fixed-2 (blue) 11.25l 10l l/6.25
Fixed-1 (white) 40l 40l (length) l/3.125

Figure 24 provides a visualization of the vortex structure,
using isosurfaces of the Q criterion colored by the vortic-
ity magnitude. It exhibits turbulent fluctuations on the rotor
surface and a trailing vortex behind the rotor. Figure 25
demonstrates the effect of the higher-order MUSCL-Hancock
scheme (MUSCL − 2D − φn+1/2). Spurious noise around the
vortex ring is reduced by using the higher-order MUSCL-
Hancock scheme. This implies that the higher-order scheme

FIG. 21. Pressure coefficients at r/R = 0.5 cross section. Top:
upper surface; bottom: lower surface.
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FIG. 22. Pressure coefficients at r/R = 0.8 cross section. Top:
upper surface; bottom: lower surface.

would be more appropriate when acoustic properties need to
be accurately captured.

IV. CONCLUSION

This work validates the rotating overset grids coupled with
the compressible LBM for high Mach compressible flows.
The objective is first to demonstrate that this compressible
LBM with the overset grids is of second-order accuracy, as
for the classic LBM. This is done by controlling the error
level of the compressible overset schemes coming from dif-
ferent sources to be less than or at least equal to the second
order, so that the errors do not spoil the baseline accuracy
of LBM. Subsequently, the rotating scheme shows its robust-
ness by being tested for high Mach configurations such as
the rotating sphere, and a 3D rotor with the wall-modeled
LES.

First, Sec. II A suggests how to apply the compressible
LBM in a noninertial rotating reference frame. The fictitious
forces are properly considered in collision and streaming steps
of the compressible LBM. This leads to an increase of the
maximum rotation velocity of the overset rotating grid (see
Secs. III A and III D).

Next, we investigate how the fixed inertial mesh and ro-
tating noninertial mesh communicate to each other through
a polynomial interpolation, yielding an inevitable numerical
error. This work applies the gradient-based quadratic inter-
polation having a O(�x3) numerical error. We employ this

FIG. 23. Pressure coefficients at r/R = 0.96 cross section. Top:
upper surface; bottom: lower surface.

interpolation not only for velocities, but also for the pres-
sure related variables (ρ, θ ) so that it can take into account
the large pressure gradient of compressible flow. Also, it is
found that the quadratic interpolation has the optimal order
of accuracy and computational cost compared to higher-order

FIG. 24. Isometric view of the isosurface Q criterion colored by
vorticity magnitude from the higher-order MUSCL-Hancock scheme
(MUSCL − 2D − φn+1/2).
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FIG. 25. Top view of the cross-sectional surface colored by vor-
ticity magnitude. Left: MUSCL − 1D − φn; right: MUSCL − 2D −
φn+1/2.

interpolation such as the cubic interpolation (see Secs. II D
and III C).

Moreover, the higher-order MUSCL-Hancock scheme,
which transports temperature in compressible flow, is
designed to reduce the coupling error with LBM in rotating
grids. In this work, exploiting the fact that the rotating region
has multidirectional fluxes and the scheme is coupled with
the LBM via velocity, the numerical error can be reduced by
both considering the diagonal fluxes in the MUSCL-Hancock
scheme and taking the velocity after the half time step from
the LBM. Thus, it proposes a third-order accuracy for constant
and unidirectional flows, and a second-order accuracy even
for nonconstant and multidirectional flows. This contributes
to securing the second-order accuracy of this scheme like
the classic LBM by properly managing the coupling error
between LBM and the MUSCL-Hancock scheme (Secs. II C
and III B).

Then the rotating overset scheme with compressible LBM
demonstrates its capability to simulate rotating solid geome-
tries in high Mach compressible flows by being compared
with experiments and conventional finite volume methods.
It is validated for a rotating sphere in a laminar high Mach
regime (Ma = 0.8) and the Caradonna and Tung rotor test
case using wall-modeled LES at Ma = 0.723 and Re = 3 ×
106 (Secs. III E and III F).

To authors’ knowledge, this is the first demonstration on
moving geometries for high Mach compressible flows by us-
ing LBM, among any type of motion (oscillation, rotation)
and any numerical method (overset grids, ALE, IBM). The
authors expect that this work can be applied to industrial
applications such as rotors or turbofans. Further studies in-
clude an in-depth focus on the boundary conditions to recover
more severe shocks over the rotating geometries, conservative
energy schemes to better consider the flow discontinuity at
the rotating grid borders, and fluid-structure interactions with
compressible flows.
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APPENDIX A: TAYLOR EXPANSION ON
THE MUSCL-HANCOCK SCHEME

In this work the unsplit multidirectional MUSCL-Hancock
scheme is suggested to take into account diagonal fluxes and
unsteadiness in the rotating overset region (MUSCL − 2D −
φn+1/2). Its order of accuracy is detailed here using Taylor ex-
pansions. Also, as a reference, the MUSCL-Hancock scheme
accounting for unidirectional fluxes and not considering un-
steadiness is also studied (MUSCL − 1D − φn). The order
of accuracy is described for two different conditions. One
is the 1D flow with nonconstant velocity. In this condition,
it highlights the effect of calculating the fluxes using the
velocity after half a time step (φn+1/2). The second one is
the multidirectional flow with constant velocity, where the
difference made by adding the diagonal fluxes is scrutinized
(MUSCL − 2D).

1. 1D advection equation with nonconstant velocity

We consider the 1D advection equation with nonconstant
velocity,

∂s

∂t
+ u(x, t )

∂s

∂x
= 0. (A1)

The MUSCL-Hancock scheme using the velocity after half
a time step u(x, t + �t/2) which aims at solving this equa-
tion reads (MUSCL − φn+1/2)

s(x, t + �t ) = s(x, t ) + u(x, t + �t/2)

× �t

�x
[F+1/2(x − �x, t ) − F+1/2(x, t )], (A2)

where F+1/2 is the right intercell flux. When u(x, t ) � 0, it is
defined as

F+1/2(x, t ) = sR(x, t ) + �t

�x

u(x, t )

2
[sL(x, t ) − sR(x, t )],

(A3)

where

sR(x, t ) = s(x, t ) + �(x, t )

2
, (A4)

sL(x, t ) = s(x, t ) − �(x, t )

2
, (A5)

and

�(x, t ) = 1
2 {(1 + η)[s(x, t ) − s(x − �x, t )]

+ (1 − η)[s(x + �x, t ) − s(x, t )]}, (A6)

with

η = 1

3

(
2

�t

�x
u(x, t ) − sgn[u(x, t )]

)
. (A7)
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Here we consider the case u(x, t ) � 0. By expanding the
defined MUSCL-Hancock scheme on space, one has

sL(x, t ) − sR(x, t ) = −�x
∂s

∂x
+ η(x, t )

�x2

2

∂2s

∂x2
+ O(�x3).

(A8)

Then

F+1/2(x, t ) = s(x, t ) +
(

1 − u
�t

�x

)

×
(

�x

2

∂s

∂x
− η(x, t )

�x2

4

∂2s

∂x2

)
+ O(�x3),

(A9)

F+1/2(x − �x, t ) = s(x, t ) −
(

1 + u
�t

�x

)
�x

2

∂s

∂x

+
(

(2 + η)u
�t

�x
− η

)
�x2

4

∂2s

∂x2

+
(

2
∂u

∂x

�t

�x

)
�x2

4

∂s

∂x
+ O(�x3).

(A10)

This gives

F+1/2(x − �x, t ) − F+1/2(x, t )

= −�x
∂s

∂x
+ u

�t

�x

�x2

2

∂2s

∂x2

+
(

2
∂u

∂x

�t

�x
− ∂2u

∂x2
�t

)
�x2

4

∂s

∂x
+ O(�x3). (A11)

The Taylor expansion on the MUSCL scheme (A2) yields the
entropy equation and subsidiary high-order error terms as

∂s

∂t
+ u

∂s

∂x
= − �t

2

∂2s

∂t2
+ u2 �t

2

∂2s

∂x2
+ u

(
2
∂u

∂x

�t

�x

)
�x

4

∂s

∂x

+ 1

2

∂u

∂t

(
− �t

∂s

∂x

)
+ O(�t2). (A12)

Let us derivate this expression by time. It yields

∂2s

∂t2
+ u

∂2s

∂x∂t
+ ∂u

∂t

∂s

∂x
= O(�t ). (A13)

The expression of ∂2s/∂x∂t can be obtained by deriving
Eq. (A12) by space:

∂2s

∂x∂t
+ u

∂2s

∂x2
+ ∂u

∂x

∂s

∂x
= O(�t ). (A14)

One then obtains

∂2s

∂t2
= u2 ∂2s

∂x2
+ u

∂u

∂x

∂s

∂x
− ∂u

∂t

∂s

∂x
+ O(�t ). (A15)

Injecting it in Eq. (A12) yields

∂s

∂t
+ u

∂s

∂x
= O(�t2).

Therefore, the MUSCL − φn+1/2 scheme is second-order ac-
curate for 1D nonconstant flow.

Now let us derive the accuracy of MUSCL − φn, which
adopts velocity at the current time step as in Eq. (A2):

s(x, t + �t ) = s(x, t ) + u(x, t )
�t

�x

× [F+1/2(x − �x, t ) − F+1/2(x, t )]. (A16)

The Taylor expansion on this MUSCL-Hancock scheme
yields

∂s

∂t
+ u

∂s

∂x
= − �t

2

∂2s

∂t2
+ u2 �t

2

∂2s

∂x2
+ u

(
2
∂u

∂x

�t

�x

)
�x

4

∂s

∂x

+ O(�t2). (A17)

Arranging it using the expression (A15) gives

∂s

∂t
+ u

∂s

∂x
= O(�t ). (A18)

Therefore, the MUSCL − φn scheme is first order accurate
for 1D nonconstant flow.

2. Multidirectional advection equation with constant velocity

The multidimensional entropy equation is

∂s

∂t
+

∑
α∈{x,y,z}

uα

∂s

∂α
= 0, (A19)

where an implicit summation is done on α ∈ {x, y, z}.
The MUSCL-Hancock scheme which aims at solving this

equation reads

s(x, t + �t ) = s(x, t ) +
∑

α∈{x,y,z}
uα

�t

�x

× [F+�α/2(x − eα�x, t ) − F+�α/2(x, t )],
(A20)

where F+�α/2 is defined, for uα � 0, as

F+�α/2(x, t ) = s(x, t ) + 1

2
�α (x, t ) −

∑
β∈{x,y,z}

uβ

2

�t

�x
�β (x, t ),

(A21)

where

�α (x, t ) = 1
2 {(1 + ηα )[s(x, t ) − s(x − eα�x, t )

+ (1 − ηα )(s(x + eα�x, t ) − s(x, t )]} (A22)

and

ηα = 1

3

[
2

�t

�x
uα − sgn(uα )

]
. (A23)

A Taylor expansion of this slope when uα � 0 yields

�α (x, t ) = �x
∂s

∂α
− ηα

�x2

2

∂2s

∂α2
+ �x3

6

∂3s

∂α3
+ O(�x4).

(A24)
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Hence, after some math, one has

F+�α/2(x − eα�x, t ) − F+�α/2(x, t )

= −�x
∂s

∂α
+ �x2

2
uβ

�t

�x

∂2s

∂α∂β

+ �x3

12

(
(1 + 3ηα )

∂3s

∂α3
− 3uβ

�t

�x

∂3s

∂α2∂β

− 3uβηβ

�t

�x

∂3s

∂β2∂α

)
+ O(�x4). (A25)

The Taylor expansion of the MUSCL-Hancock scheme (A20)
yields the entropy equation and subsidiary high-order error
terms as

∂s

∂t
+ uα

∂s

∂α

= �t

2

(
−∂2s

∂t2
+ uαuβ

∂2s

∂α∂β

)

+ �t2

12

{
−2

∂3s

∂t3
+ uα

�x2

�t2

[
(1 + 3ηα )

∂3s

∂α3

− 3uβ

�t

�x

∂3s

∂α2∂β
− 3uβηβ

�t

�x

∂3s

∂β2∂α

]}
+ O(�t3).

(A26)

All the time derivative terms can be arranged as in the
previous Appendix A 1. Finally, it leads to

∂s

∂t
+ uα

∂s

∂α
= �t2

12
uα

[
2uβ

∂2

∂α∂β

(
uγ

∂s

∂γ
− uβ

∂s

∂β

)

+ 2uα

�x

�t

∂3s

∂α3
+ uβ

�x

�t

∂2

∂α∂β

(
∂s

∂β
− 3

∂s

∂α

)]
+ O(�t3). (A27)

In 1D constant velocity, the MUSCL − 2D scheme including
the diagonal fluxes reads

∂s

∂t
+ ux

∂s

∂x
= O(�t3). (A28)

In 2D constant velocity, it reads

∂s

∂t
+ ux

∂s

∂x
+ uy

∂s

∂y
= O(�t2). (A29)

Now, the accuracy of MUSCL-Hancock scheme without
the diagonal fluxes, MUSCL − 1D, is investigated for a mul-
tidirectional constant velocity flow. The advection equation is
written as in Eqs. (A19) and (A20). However, the flux now
reads

F+�α/2(x, t ) = s(x, t ) + 1

2
�α (x, t ) − uα

2

�t

�x
�α (x, t ).

(A30)

A Taylor expansion of this scheme leads to

∂s

∂t
+ uα

∂s

∂α
= �t

2

(
− ∂2s

∂t2
+ u2

α

∂2s

∂α2

)

+ �t2

12

(
− 2

∂3s

∂t3
+ uα

�x2

�t2

[
(1 + 3ηα )

∂3s

∂α3

− 3uα

�t

�x

∂3s

∂α3
− 3uαηα

�t

�x

∂3s

∂α3

)]
+ O(�t3).

(A31)

All the time derivative terms can be arranged as in the
previous Appendix A 1. Finally, it leads to

∂s

∂t
+ uα

∂s

∂α
= �t

2

(
− uαuβ

∂2s

∂α∂β
+ u2

α

∂2s

∂α2

)

+ �t2

12

(
− 4uαuβuγ

∂3s

∂α∂β∂γ
+ 3uαu2

β

∂3s

∂β2∂α

+ 3u2
αuβ

∂3s

∂α2∂β
− 2u3

α

∂3s

∂α3

)
+ O(�t3).

(A32)

For a 1D constant velocity, the MUSCL − 1D scheme without
the diagonal fluxes gives a third-order accuracy as

∂s

∂t
+ ux

∂s

∂x
= O(�t3). (A33)

For a 2D constant velocity, it is first-order accurate as

∂s

∂t
+ ux

∂s

∂x
+ uy

∂s

∂y
= O(�t ). (A34)

Here the first-order error term O(�t ) ∼ uxuy
∂2s
∂x∂y behaves like

numerical viscosity and may lead to instability when it has a
negative value [49].

APPENDIX B: THE GRADIENT-BASED
QUADRATIC INTERPOLATION

The gradient-based quadratic interpolation was suggested
and tested in Refs. [5,35,39]. This interpolation was proved
to have the third-order accuracy O(�x3) [35]. The references
used the interpolation only for velocity fields, but this work
expands this interpolation to macroscopic variables such as
density ρ and temperature θ , and we provide here the details
of this implementation.

The polynomial interpolation reads

pi(x̄, ȳ, z̄) = a0 + a1x̄ + a2ȳ + a3z̄ + b1x̄ȳ + b2x̄z̄ + b3ȳz̄

+ c1(1 − x̄2) + c2(1 − ȳ2) + c3(1 − z̄2), (B1)

where x̄ = 2(x−x0 )
h − 1, ȳ = 2(y−y0 )

h − 1, z̄ = 2(z−z0 )
h − 1, h

is the length of uniform Cartesian mesh, and (x0, y0, z0)
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indicates the coordinates of one reference donor node:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

b1

b2

b3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(0, 0, 0)

p(h, 0, 0)

p(h, h, 0)

p(0, h, 0)

p(0, 0, h)

p(h, 0, h)

p(h, h, h)

p(0, h, h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

where eight donor nodes p(x, y, z) are expressed in terms of original coordinates (x, y, z), and

c1 = 1

32

[
1 −1 −1 1 1 −1 −1 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ p
∂x (0, 0, 0)

∂ p
∂x (h, 0, 0)

∂ p
∂x (h, h, 0)

∂ p
∂x (0, h, 0)

∂ p
∂x (0, 0, h)

∂ p
∂x (h, 0, h)

∂ p
∂x (h, h, h)

∂ p
∂x (0, h, h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B3)

c2 = 1

32

[
1 1 −1 −1 1 1 −1 −1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ p
∂y (0, 0, 0)

∂ p
∂y (h, 0, 0)

∂ p
∂y (h, h, 0)

∂ p
∂y (0, h, 0)

∂ p
∂y (0, 0, h)

∂ p
∂y (h, 0, h)

∂ p
∂y (h, h, h)

∂ p
∂y (0, h, h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B4)

c3 = 1

32

[
1 1 1 1 −1 −1 −1 −1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ p
∂z (0, 0, 0)

∂ p
∂z (h, 0, 0)

∂ p
∂z (h, h, 0)

∂ p
∂z (0, h, 0)

∂ p
∂z (0, 0, h)

∂ p
∂z (h, 0, h)

∂ p
∂z (h, h, h)

∂ p
∂z (0, h, h)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B5)

where the gradients are calculated based on a finite difference scheme, which needs to include values outside the donor nodes to
guarantee third-order accuracy of the interpolation. Here we use a central difference scheme such as

∂ p(0, 0, 0)

∂x
= p(h, 0, 0) − p(−h, 0, 0)

2h
+ O(�x2). (B6)
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APPENDIX C: COUPLING THE DISCRETE FORCING
TERM WITH PRESSURE-BASED HRR

Guo’s forcing term is selected to impose the discrete force
[17]. According to the reference, the Bhatnagar-Gross-Krook
(BGK) collision model is coupled with the discrete forcing
term as follows:

fi(x + ci�t, tn + �t )

= fi(x, tn) − �t

τ
[ fi(x, tn) − f eq

i (x, tn)] +
(

1 − �t

2τ

)
Fi

+
(

1 − �t

2τ

)
�i, (C1)

where the equilibrium function f eq
i is third-order equilibrium

function as in Ref. [1]. Fi indicates the discrete forcing term to
impose the fictitious force [17], and �i is the Mach correction
term applied in [1]. Macroscopic values (ρ, u and θ ) to define
the functions f eq

i , Fi, and �i are calculated based on the
definitions of Refs. [1,17]:

ρu(x, tn) =
∑

i

ci fi(x, tn) + �t

2
F(x, tn), (C2)

ρ(x, tn) =
∑

i

fi(x, tn) + ρ(x, tn−1)[1 − θ (x, tn−1)]. (C3)

Equation (C1) is arranged as

fi(x + ci�t, tn + �t )

= f eq
i (x, tn) + f neq

i

− �t

τ

[
fi(x, tn) − f eq

i (x, tn) + 1

2
Fi + 1

2
�i

]
︸ ︷︷ ︸

f neq
i

+ 1

2
Fi + 1

2
�i. (C4)

All of the nonequilibrium part f neq
i can be reconstructed

through the recursive regularization [27]. The regularization
step is conducted through this nonequilibrium tensor such as

aneq,(2)
αβ =

∑
i

(
ciαciβ − δαβc2

s

) (
fi − f eq

i + 1

2
Fi + 1

2
�i

)
︸ ︷︷ ︸

f neq
i

,

(C5)

and its higher-order moment. More details are provided
in Refs. [1,5]. The nonequilibrium tensors reconstruct the
nonequilibrium term f̃ neq,HRR

i (x, tn), which gives

fi(x + ci�t, tn + �t ) = f eq
i (x, tn) + f̃ neq,HRR

i (x, tn)

− �t

τ
f̃ neq,HRR
i (x, tn) + 1

2
Fi(x, tn)

+ 1

2
�i(x, tn). (C6)

APPENDIX D: ROTATING AND FIXED
GRID COUPLING ALGORITHM

First, we describe the procedure to transfer information
from a rotating to a fixed grid. Here the border nodes (re-
ceivers) at fixed grid indicate (X,Y ) in Fig. 4 (left) (Sec. II D).
Eight donor nodes in the rotating grid indicate (xn, yn) in
Fig. 4 (left) (Sec. II D). Here the number of donor nodes is
eight in 3D and four in 2D. The algorithm is described in the
2D case.

Algorithm 1. Interpolation from rotating to fixed grid.

for all border nodes at fixed grid do
for 4 surrounding interpolating nodes at rotating

grid do
ûmg = umg + ω × r;
interpolation: ρ f g = I (ρmg), û f g = I (ûmg),

âneq
f g = I (aneq

mg ), θ f g = I (θmg);
rotation matrix: u f g = R(û f g), aneq

f g = R(âneq
f g );

reconstruct: f eq
i, f g, f neq

i, f g = g(ρ f g, u f g, aneq
f g , θ f g);

Then the algorithm about passing information from fixed
to rotating grids is detailed. The border nodes (receivers) at
rotating grid indicate (x, y) in Fig. 4 (right) (Sec. II D). Eight
donor nodes in the fixed grid indicate (Xn,Yn) in Fig. 4 (right)
(Sec. II D). Four donor nodes are required in the 2D case, and
eight donor nodes are needed in the 3D case, but here we
describe only the 2D case. In particular, the last reconstruction
step gmg follows the procedure described in Appendix C.

Algorithm 2. Interpolation from fixed to rotating grid.

for all border nodes at rotating grid do
for 4 surrounding interpolating nodes at fixed grid
do

interpolation: ρmg = I (ρ f g), ũmg = I (u f g),
ãneq

mg = I (aneq
f g ), θmg = I (θ f g);

rotation matrix: ûmg = R(ũmg),
aneq

mg = R(ãneq
mg ); umg = ûmg − ω × r;

reconstruct: f eq
i,mg, f neq

i,mg = gmg(ρmg, umg, aneq
mg , θmg);

APPENDIX E: HIGH MACH ERROR ON THE LBM
WITH DISCRETE FORCING TERM:

THE CHAPMAN-ENSKOG EXPANSION

Let us expand the LBM equation with a discrete forc-
ing term via the Chapman-Enskog expansion up to the
second-order Knudsen number ε2 as Guo et al. [17], which
reads

ε0 : f (0)
i = f eq

i ,

ε1 :

(
∂

∂t1
+ ci · ∇1

)
f (0)
i = − 1

τ�t
f (1)
i + F1i, (E1)

ε2 :
∂ f (0)

i

∂t
+

(
1 − 1

2τ

)(
∂

∂t1
+ ci · ∇1

)
f (1)
i

= − 1

τ�t
f (2)
i − �t

2

(
∂

∂t1
+ ci · ∇1

)
F1i. (E2)
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Rewrite the first-order Knudsen expansion ε1 of Eq. (E1)
in terms of the nonequilibrium part such as

f (1)
i = −(τ�t )

(
∂

∂t1
+ ci · ∇1

)
f (0)
i + (τ�t )F1i. (E3)

Take the second-order momentum �(1) = �icici f (1)
i on

Eq. (E3) and follow the algebraic procedure of Hou et al. [50],
which gives

�
(1)
αβ = − (τ�t )

[
c2

s ∂α (ρuβ ) + c2
s ∂β (ρuα ) + ∂t1(ρuαuβ )

− (uαFβ + uβFα )
]
, (E4)

where the last term comes from the second-order momentum
of the discrete forcing term [17]. Also, here we assume that
the lattice types are D2Q9 or D3Q19. When we take the
second-order momentum �icici of Eq. (E3), there appears
the third-order momentum of the equilibrium function such
as �icicici f (0)

i , where the type of lattices and the order of
equilibrium function bring different results.

The time derivative term ∂t1(ρuαuβ ) can be rephrased by
using the momentum and continuity equation as in Ref. [50],
which reads

∂t1(ρuαuβ ) = − ∂γ (ρuαuβuγ ) − (
c2

s uβ∂αρ + c2
s uα∂βρ

)
+ (uαFβ + uβFα ), (E5)

where the last term comes from the Navier-Stokes momentum
equation with external force.

Then input the time derivative term into Eq. (E4), which
gives

�
(1)
αβ = −τ�tc2

s ρ(∂αuβ + ∂βuα ) + τ�t∂γ (ρuαuβuγ ), (E6)

where the last term is the high Mach deviation term. This term
can be corrected by projecting it on the second-order Hermite
polynomials [30].

In conclusion, according to the Chapman-Enskog analysis,
even though there exists the discrete forcing term in the LBM
equation, the high Mach correction term maintains the same
formulation as the conventional way in fixed inertial reference
frame. The necessary condition is the second-order moment of
discrete forcing term �iciciFi has to be uαFβ + uβFα . Guo’s
forcing term satisfies this necessary condition.

The authors note that the Chapman-Enskogg derivation in
this section handles only the O(u3) high Mach error coming
from the lattice defects. Indeed, there exist other error terms in
the nonequilibrium tensors, but we do not deal with the other
terms because they are composed of scalar values and linear
operators which will not be affected by the noninertial frame.
More details about the other errors are described in Ref. [51].
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