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Electrowetting lattice Boltzmann method for micro- and nano-droplet manipulations
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Electrowetting has become a widely used tool for manipulating tiny amounts of liquids on surfaces. This paper
proposes an electrowetting lattice Boltzmann method for manipulating micro-nano droplets. The hydrodynamics
with the nonideal effect is modeled by the chemical-potential multiphase model, in which the phase transition
and equilibrium are directly driven by chemical potential. For electrostatics, droplets in the micro-nano scale
cannot be considered as equipotential as macroscopic droplets due to the Debye screening effect. Therefore, we
linearly discretize the continuous Poisson-Boltzmann equation in a Cartesian coordinate system, and the electric
potential distribution is stabilized by iterative computations. The electric potential distribution of droplets at
different scales suggests that the electric field can still penetrate micro-nano droplets even with the screening
effect. The accuracy of the numerical method is verified by simulating the static equilibrium of the droplet under
the applied voltage, and the results show the apparent contact angles agree very well with the Lippmann–Young
equation. The microscopic contact angles present some obvious deviations due to the sharp decrease of electric
field strength near the three-phase contact point. These are consistent with previously reported experimental
and theoretical analyses. Then, the droplet migrations on different electrode structures are simulated, and the
results show that droplet speed can be stabilized more quickly due to the more uniform force on the droplet in
the closed symmetric electrode structure. Finally, the electrowetting multiphase model is applied to study the
lateral rebound of droplets impacting on the electrically heterogeneous surface. The electrostatic force prevents
the droplets from contracting on the side which is applied voltage, resulting in the lateral rebound and transport
toward the side.
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I. INTRODUCTION

When a voltage is applied, the contact angle of the droplet
decreases, and a new equilibrium value is reached, i.e., the
voltage enhances the wettability of the surface. This phe-
nomenon is known as electrowetting [1]. Electrowetting is
one of the broad ways to control the wettability of liquids
because of its fast response speed (several milliseconds), large
switching range (several tens of degrees), excellent durability
(hundreds of thousands of switching cycles), and low energy
consumption (10–100 µW) [2]. Since droplets can be sepa-
rated, merged, produced, and relocated with the assistance of
an electric field, electrowetting is playing an increasing role in
displays [3], inkjet printing [4–6], digital microfluidics [7–9],
and varifocal lenses [10,11].

Studying the physical laws of fluids on the microscale is
crucial to applying electrowetting in practice better. However,
there are still some unresolved questions about the physical
behavior of droplets in the electrowetting system, and ex-
perimental work on micro-nano droplets may be expensive
and complicated. Therefore, numerical simulation is a useful
way to study the behavior of these systems. Some numerical
methods have been proposed in recent years, including the
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molecular dynamics simulations [12,13], the level set method
[14,15], finite element method [16], the phase-field approach
[17,18], etc.

For conventional computational fluid dynamics (CFD)
methods, within the framework of continuum theory, the
whole system is described by macroscopic quantities, and
the intermolecular structures are ignored. However, the inter-
molecular forces or disjoining pressure should be considered
at the microscale, making the approximation underlying the
continuum picture no longer valid [1]. For molecular dynam-
ics, enormous computational demands limit its application on
minimal space and time scales. In contrast to the two methods
mentioned above, the lattice Boltzmann method (LBM) is an
approach between macroscopic and microscopic scales with
unique merits. LBM does not depend on continuum theory,
and it is efficient in computation and supports parallel calcu-
lations. Aminfar et al. [19] extended the free-energy model
to simulate electrowetting. They proposed a new relation for
surface tensions based on the free-energy functional min-
imization to estimate the contact angle after applying the
voltage. Clime et al. [20] used the Shan–Chen multiphase
model to simulate the fundamental transport processes of
droplets in electrowetting-actuated Hele-Shaw cells. Li et al.
[21] used the Shan–Chen multiphase model to study the elec-
trowetting of electrolyte droplets and flows on flat and rough
surfaces. They demonstrated that the external voltage may
efficiently regulate the flow across the channel in a rough-wall
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channel. Ruiz-Gutierrez et al. [22] used the multifield coupled
LB equations with a unified form. They applied the method
to study the stability and dynamics of a thin dielectric film
and found a good match with analytical predictions based
on the lubrication theory. Simulations of electrowetting using
the lattice Boltzmann method rarely involve droplets at the
micro-nano scale. However, current fluid control research is
evolving to the scale [23–25]. In addition, the micro-nano
droplets will be affected by the length of the Debye screen
differently from the macroscopic droplets due to scale effects.
Thus, we developed an LBM for electrowetting of micro-nano
droplets.

Several multiphase models have been developed by the
LBM community, such as color-gradient model [26], pseu-
dopotential model [27,28], free-energy model [29], discrete
Boltzmann method [30], etc. The method used in this study is
based on the chemical-potential multiphase model developed
by Wen et al. [31], which directly evaluates the nonideal force
by introducing a chemical-potential gradient. The computa-
tional efficiency is improved because the calculation of the
pressure tensor is avoided. Meanwhile, the chemical-potential
multiphase model has been proved to agree with thermo-
dynamic consistency and Galilean invariance. Recently, by
introducing a proportional coefficient, Wen et al. [32] decou-
pled the grid space from the momentum space; this promotes
the model to achieve very low temperatures and extreme
liquid-gas density ratios while the thermodynamic consis-
tency is still preserved.

This paper is organized as follows. In Sec. II, we briefly
review the LB equation and the chemical-potential multi-
phase model. Then a discretization scheme for solving the
electric potential of droplets is given. Finally, the governing
equations involving electrostatics in the simulation experi-
ments of this study are presented. In Sec. III, we simulate
the static equilibrium configuration of the droplet under the
action of an applied voltage. The contact angle obtained
from the simulation is compared with the famous Lippmann–
Young equation to verify the accuracy. The reason why the
microscopic contact angle does not conform to the Lippmann–
Young equation is analyzed by calculating the electric field
strength along the surface profile of the droplet. Then, the
migration under the action of the electric field is simulated.
The electric potential distribution, electric field strength, and
migration speed are studied under different electrode struc-
tures. Last, we study the lateral rebound caused by droplets
hitting the electrically heterogeneous surface. The relationship
between the momentum and the electric potential is calculated
and analyzed. Section IV contains some conclusions.

II. LATTICE BOLTZMANN METHOD

A. Multiple-relaxation-time lattice Boltzmann method

The Boltzmann equation is a mathematical description of
fluids motion, which uses an average statistical method to
describe the macroscopic motion and fluids properties. But the
collision term of the equation is a complex calculus form, and
solving its exact solution is impractical. The Boltzmann-BGK
equation uses a relaxation method to replace the collision
term, which can linearize the collision term to significantly

reduce the calculation cost and maintain the average feature
of the original collision operator [33]. The lattice Boltz-
mann equation (LBE) is a special discretization format of the
Boltzmann-BGK equation [34]. It uses a lattice to discretize
the Boltzmann equation, and the lattice model generally de-
termines the velocity of the particles.

Multiple-relaxation-time (MRT) LBE is adopted in this
study, and a 2D lattice with nine velocity vectors, so-called
D2Q9, is employed. The evolution equation in a time step δt
is as follows [35–38]:

fα (x + eαδt, t + δt ) = fα (x, t ) − M−1S[m − meq], (1)

where fα (x, t ) is the particle distribution function at time t
and lattice site x, moving along the direction defined by the
discrete velocity vector eα with α = 0, . . . , 8, M is an orthog-
onal transformation matrix used to transform the distribution
function into the momentum space, and M−1 is the inverse
matrix of M. The transformation matrix M can be given
by [35]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)

m and meq represent the velocity moments of the distribution
functions and their equilibria. For the D2Q9, the flowing result
can be obtained [35]:

m = Mf = Mαβ fβ = (ρ, σ, ς, jx, qx, jy, qy, pxx, pxy)T, (3)

where f = ( f0, f1, . . . , f8)T, σ is the energy mode, ς is related
to the energy square. The x and y components of the mo-
mentum and energy flux are represented by jx, jy, qx, and qy,
respectively, pxx and pxy are associated with the diagonal and
off-diagonal components of the stress tensor. The superscript
“T” denotes the transposition operator. S is a diagonal matrix
composed of multiple relaxation times given by [39]

S = diag(sρ, sσ , sς , s j, sq, s j, sq, sυ, sυ ), (4)

where sρ = s j = 1, sσ = 1.64, sς = 1.54, sq = 1.7 and sυ =
1/τ , respectively [35]. τ is related to the viscosity υ:

υ = (
τ − 1

2

)
c2

s δt, (5)

where the sound speed is cs = c/
√

3, and c = δx/δt (the lat-
tice constant c = 1). The density ρ and macroscopic velocity
u are calculated by

ρ =
8∑

α=0

fα, ρu =
8∑

α=0

eα fα. (6)

B. Chemical-potential multiphase model

In this study, the entire evolution space contains the liq-
uid phase where the droplet is located and the gas phase
around the droplet. For the modeling of multiphase fluids, it
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is necessary to ensure that the model can describe the gas-
liquid two-phase balance of the multiphase flow movement
in actual physical space. The multiphase flow modeling by
the chemical-potential multiphase model is divided into two
substeps. First, the nonideal force of the multiphase flow
is calculated by the chemical-potential gradient; second, the
nonideal force is coupled with the LBE.

Following the classic capillary theory of van der Waals
(VDW), the free-energy functional within the gradient square
approximation is [29,40]


 =
∫ (

ψ (ρ) + κ

2
|∇ρ|2

)
dx, (7)

where the first term is the bulk free-energy density at a given
temperature with the density ρ. The second term gives the
free-energy contribution from density gradients in an inho-
mogeneous system, where κ is the surface tension coefficient.
The chemical potential can be derived from the free-energy
density function:

μ = ψ ′(ρ) − κ∇2ρ. (8)

The free-energy function in turn determines the diagonal term
of the pressure tensor

p = p0 − κρ∇2ρ − κ

2
|∇ρ|2, (9)

with the general expression of the equation of state (EOS),

p0 = ρψ ′(ρ) − ψ (ρ). (10)

Substituting Eqs. (8) and (10) into the divergence of the pres-
sure tensor, the nonideal force can be calculated by chemical
potential [29,41]:

F = −ρ∇μ + c2
s ∇ρ. (11)

The numerical simulations of static and dynamic fluids con-
firm that gas-liquid two-phase flow modeled by this method
conforms to thermodynamic consistency and Galilean invari-
ance [31,32]. The former guarantees that the mathematical
model can correctly simulate the phase balance, and the latter
is helpful for the model to evolve the motion of the multiphase
flow accurately.

For a given EOS p0, solving Eq. (10), which is a typical
one-order linear ordinary differential equation, the general
solution for the free-energy density can be obtained:

ψ = ρ

(∫
p0

ρ2
dρ + C

)
, (12)

where C is a constant and does not affect the calculation of
nonideal force in Eq. (11). The relevant chemical potential can
be obtained by using a specific EOS to express p0 and substi-
tuting Eq. (12) into Eq. (8). In this study, Peng–Robinson (PR)
EOS is selected which is usually superior in predicting liquid
density:

p0 = ρRT

1 − bρ
− aα(T )ρ2

1 + 2bρ − b2ρ2
, (13)

where R is the universal gas constant, a is the attraction
parameter, b is the volume correction, and α(T ) =
[1 + (0.37464 + 1.54226ω − 0.26992ω2)(1 − √

T/Tc)]2,

where ω is the acentric coefficient. Its chemical potential is
[31]

μ = RT ln
ρ

1 − bρ
− aα(T )

2
√

2b
ln

√
2 − 1 + bρ√
2 + 1 − bρ

+ RT

1 − bρ
− aα(T )ρ

1 + 2bρ − b2ρ2
− κ∇2ρ. (14)

In the following simulations, the parameters are a = 2/49,
b = 2/21, R = 1, and ω = 0.344. The reduced variables Tr =
T/Tc and ρr = ρ/ρc are defined to associate the numerical
results with the actual physical properties, where the critical
temperature Tc = 4/7 and the critical density ρc = 7/2.

The nonideal force is coupled with the LBE through the
force term technique [42,43]:

fα (x + eαδt, t + δt )

= fα (x, t ) − M−1S[m − meq] + Fα. (15)

In this study, the method proposed by Kupershtokh et al. is
adopted. The bulk force term is equal to the difference in the
equilibrium distribution function after and before the nonideal
force acts on the fluid during a time step [44]:

Fα = f eq
α (ρ, u + δu) − f eq

α (ρ, u), (16)

where δu = Fδt/ρ. Correspondingly, the macroscopic fluid
velocity is redefined as the average momentum after and be-
fore the collision [45]:

ρu =
8∑

α=0

eα fα + Fδt

2
. (17)

Studies have shown that LBE does not require lattice sym-
metry and the consistency between computational mesh and
momentum space [46,47]. So, a proportionality coefficient is
introduced to establish the relationship between the space step
in the momentum space and the space step in the computa-
tional mesh [32]:

δx̂ = kδx. (18)

Here, if the dimension of a quantity contains a length unit,
then the sign of this quantity in the computational mesh is
marked with a superscript. The chemical potential in the com-
putational mesh is evaluated by

μ̂ = k2ψ ′(ρ) − κ̂∇̂2ρ. (19)

Thus, the computational mesh can use more lattices to sim-
ulate the gas-liquid transition region to obtain more accurate
and stable results when calculating the derivative and gradient
(for more details, see the Appendix). A large gas-liquid den-
sity ratio can be achieved while conforming to thermodynamic
consistency and Galilean invariance.

C. Poisson-Boltzmann equation discretization

Before calculating the contribution of the electric field
force to the droplet, the electric potential should be estimated.
The Poisson–Boltzmann (PB) equation is used to solve the
electric potential distribution of the micro-nano droplet. It is a
functional equation that aims to describe the electric potential

045305-3



XU, WANG, QIN, AND WEN PHYSICAL REVIEW E 107, 045305 (2023)

distribution of the solution in the direction normal to a charged
surface.

For a solution containing ion i (the valence is zi), the static
charge density at x is expressed as zieρi, where e is electronic
charge. Then the Boltzmann distribution equation of ion i is

ρi = ρ∞ie
−zieϕ/kBT , (20)

where the ρ∞i is the ion concentration at the bulk, ϕ is electric
potential, and kB is the Boltzmann constant. Another essential
equation that needs to be satisfied is the Poisson equation for
the net external charge density at x:

d2ϕ

dx2
= −

∑
i

zieρi

ε0εr
, (21)

where ε0 is vacuum dielectric constant, and εr is relative
permittivity dielectric constant. Substituting Eq. (20) into
Eq. (21), the PB equation can be obtained [48]:

d2ϕ

dx2
= −

∑
t

(
zieρ∞i

ε0εr

)
e−zieϕ/kBT . (22)

The electric potential distribution inside the droplet must
satisfy the PB equation. For the electrolyte solutions with one-
to-one valence, the nonlinear PB equation can be rewritten as

d2ϕ

dx2
= eρ∞

ε0εr
(eeϕ/kBT − e−eϕ/kBT ). (23)

When the applied voltage is less than 1, Eq. (23) can be
linearized [19]:

d2ϕ

dx2
= 2e2ϕρ∞

ε0εrkBT
. (24)

An important parameter is the so-called Debye screening
constant κD, which describes the exponential attenuation of
the electric potential in the solution:

κ2
D = 2e2ρ∞

ε0εrkBT
= 1

l2
D

, (25)

where lD is the Debye length. Since the droplet size is
small, the effect of Debye length must be considered in the
simulation. Substituting Eq. (25) into Eq. (24) gives

d2ϕ

dx2
= κ2

Dϕ. (26)

Aminfa et al. [19] use polar coordinate to discretize and
compute Eq. (26), therefore it is not convenient to be applied
to the droplet deformation. This paper discretizes the PB
equation in the Cartesian coordinates because it is more
suitable for dealing with nonsymmetric droplet motion due to
nonuniform voltage:

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= κ2

Dϕ. (27)

Through the central difference scheme of the second-order
derivative in two dimensions and four times relationship
between ω1–4 and ω5–8 in D2Q9, taking δx = δy, the

central difference scheme of the second-order derivative
in two-dimensional can be obtained:

∇2ϕi, j = 2

3δx2
(ϕi, j+1 + ϕi, j−1 + ϕi+1, jϕi−1, j ) − 4

δx2
ϕi, j

+ 1

3δx2
(ϕi+1, j+1 + ϕi+1, j−1 + ϕi−1, j+1ϕi−1, j−1).

(28)

Substituting Eq. (28) into Eq. (27), the discrete PB
equation can be obtained:

2

3δx2
(ϕi+1, j + ϕi−1, j+ϕi, j+1+ϕi, j−1) − 4

δx2
ϕi, j

+ 1

3δx2
(ϕi+1, j+1 + ϕi−1, j−1+ϕi−1, j+1+ϕi+1, j−1)

= κ2
Dϕi, j . (29)

The discrete PB equation gives

ϕi, j = 1

4 + κ2
Dδx2

[
2

3
(ϕi+1, j + ϕi−1, j+ϕi, j+1+ϕi, j−1)

+ 1

3
(ϕi+1, j+1 + ϕi−1, j−1+ϕi−1, j+1+ϕi+1, j−1)

]
.

(30)

The electric potential can be obtained by solving Eq. (30)
with Jacobi iteration.

D. Governing equations for the electrostatic field

The areas of conductive droplets and insulating fluid are
marked as �1 and �2, respectively. In addition, the gas-liquid
interface, the solid-liquid interface, and the solid-gas interface
are denoted by �lg, �sl, and �sg, respectively. n represents the
normal unit vector from �lg to �2.

For electrostatics, a constant electric potential U is applied
to the substrate. The electric potential in the region �1, as
described in Sec. II, satisfies the PB equation. In the �2, the
electric potential satisfies the Laplace equation:

∇2ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0. (31)

The permittivity of the liquid phase is much larger than that
of the gas phase. So the following condition can be assumed
at �lg [49]:

n · ∇ϕ = 0. (32)

According to the Gauss law, the relationship between electric
potential and free charge ρe can be obtained [50]:

ε0∇ · (εr∇ϕ) = −ρe. (33)

The electric field strength can be regarded as a gradient of the
electric potential, E = −∇ϕ. So that the total force can be
calculated by

F= − ρ∇μ + c2
s ∇ρ+ε0∇ · (εr∇ϕ)∇ϕ − ε0

2
(∇ϕ)2∇εr,

(34)

where the third term on the right side of the Eq. (34) is
Coulombic force and the fourth term is polarization stress
[51]. The solution of derivative is used the fourth-order central
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difference. Specifically, the solution of electric potential is
used second-order central difference to improve the efficiency
of the iterative calculation. The εr can be expressed as [52]

εr = ρ − ρl

ρg − ρl
εg − ρ − ρg

ρl − ρg
εl, (35)

where εg and εl are the relative permittivities of gas and liquid,
respectively. ρg and ρl are the coexistence densities obtained
by the Maxwell equal-area construction. By coupling the non-
ideal force and the electrostatic force and acting together on
the momentum change of the system, our model can reflect the
phase separation and phase balance under the applied voltage.
In addition, the Bond number Bo = √

g�ρr2/γlg measures
the strength of gravity with respect to surface tension, which
decreases with the droplet radius reduction. Therefore, the
gravity effect in the conditions of micro-nano droplets is ne-
glected in the rest of the paper.

The LBM discretizes the physical space with grids, so the
physical quantities in the computational grid are dimension-
less. Converting the lattice dimension of physical quantities
to the actual dimension should be considered to simulate
real-world physical processes. The apostrophe is added to rep-
resent physical quantities in the lattice dimension, and without
the symbol, physical quantities are expressed using the in-
ternational system of units. The length dimension LD, time
dimension TD, mass dimension GD, and current dimension ID

are defined as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

LD = r0
r0

′

TD = ν ′
ν

L2
D

GD = ρ

ρ ′ L3
D

ID = U ′
U L2

DGDT −3
D

, (36)

where the viscosity coefficient ν = 0.01cm2/s, ν ′ = 0.1 [cal-
culated by Eq. (5)], and U is the voltage applied on the
substrate. The above four quantities are taken as the base
dimensions, and the dimensions of all physical quantities in
this paper can be derived from their combination. Thus, the
dimension conversion can be achieved.

III. RESULTS AND DISCUSSION

In our simulation experiment, a conductive droplet is im-
mersed in another insulating fluid (vapor in this study). A
constant voltage is applied on the solid surface to generate
an electric field and affect the wetting behavior of the droplet.
Zero potential is set at the top boundary of the flow field. The
system is in a limited area, where the substrate is x axis. Peri-
odic boundary conditions are adopted in the x-axis direction,
and the half-way bounce boundary conditions are imposed
on the top and bottom boundaries. The contact angle is a
vital feature to reflect the wettability of a solid surface. The
chemical-potential multiphase model can effectively simulate
wetting phenomena, so a constant chemical potential μs is set
on the solid surface to characterize the initial contact angle.
The density distribution of the flow field is initialized by [53]

ρ(x, y) = ρg + ρl

2
+ ρg − ρl

2
tanh

[
2(r − r0)

W

]
, (37)

where W = 10 is the initial gas-liquid interface width, r =√
(x − x0)2 + (y − y0)2, where the node (x0, y0) is the center

of the droplet, and r0 is the initial droplet radius. In this study,
Tr = 0.6, τ = 0.8, k = 0.2, ε0 = 8.85 × 10−12 C2 J−1 m−1,
εl = 81, εg = 1, and the gas-liquid surface tension γlg =
0.072N/m. Unless otherwise indicated, lD = 9.6 nm [54], the
macroscopic size of the droplet is 40 nm and r0 takes 80 lattice
units.

The electric potential distribution of the droplet is solved
by using the discretized PB equation, and the grid indepen-
dence is checked. Then an example about droplet spread
is used to verify the correctness of the numerical method.
Finally, droplet migration and lateral rebound due to the in-
homogeneous voltage are simulated.

A. Electric potential distribution inside a droplet

According to Eq. (30), the electric potential ϕ′
i, j of the fluid

node (i, j) at the next time step is calculated by the one of
the neighboring nodes. This iterative process is repeated until
the absolute error value of the electric potential between the
two-time steps reaches a pre-specified convergence criterion,
i.e., |ϕi, j − ϕ′

i, j | < 10−7. The electric potential distribution
of droplets with different sizes was simulated, and the elec-
tric potential variation along the perpendicular bisector was
observed. Also, each droplet size was simulated by using
different mesh densities to check the grid independence.

For droplets with r0 = 10 nm, 20 nm, and 40 nm as shown
in Fig. 1, the electric potential distributions were simulated
when the grid sizes are 0.1 nm, 0.2 nm, 0.5 nm, and 1 nm,
respectively. The results show that variation in the mesh den-
sity has almost no effect on the electric potential distribution.
Moreover, it can be seen that the electric potential is attenu-
ated exponentially along the positive direction of the y axis.
The electric potential is above 0.3 V for the droplet with
r0 = 10 nm [Fig. 1(a)]. Doubling the droplet radius, as shown
in Fig. 1(b), the electric double layer (EDL) attenuates the
electric potential by up to more than half. By doubling the
droplet size again, the electric potential can be attenuated to
less than 0.1 V [Fig. 1(c)]. It can be seen that the screening
effect becomes more and more significant as the droplet size
increases because the EDL described by the PB equation leads
to an increasing electrical screening for each additional Debye
length from the charged solid surface. The electric potential
distribution of the droplet with r0 = 1000 nm is simulated
when the grid sizes are 1 nm and 2 nm, respectively. The
results are also grid independence. The electric potential can
be attenuated to approximate 0 V since the droplet radius is
much larger than the lD.

To show the electric potential distribution of the droplet
intuitively, we plotted the electric potential contour diagrams
of the droplets with r0 = 10 nm, 20 nm, 40 nm, and 1000 nm,
corresponding to Fig. 2, respectively. The electric field pene-
trates the droplet with r0 = 10 nm due to its miniature size,
although it is affected by the screening effect [Fig. 2(a)].
The proportion of voltages above 0.3 V is less as the droplet
size increases [Figs. 2(b) and 2(c)]. For the droplet with r0 =
1000 nm, most of the electric potential is close to 0 V, and
the EDL nearly screens the external electric field [Fig. 2(d)].
It indicates that electric fields penetrate micro-nano droplets,
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FIG. 1. The electric potential variations at the perpendicular bisector of the droplet: (a) r0 = 10 nm, (b) r0 = 20 nm, (c) r0 = 40 nm, and
(d) r0 = 1000 nm. The Debye screening causes the exponential reduction in electric potential. Electric potential variations are the same with a
given droplet radius regardless of the mesh density, suggesting that the results are grid independence.
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progressively difficult for the electric field to penetrate through the entire droplet.
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unlike macroscopic droplets that can be considered equipo-
tential bodies.

B. Equilibrium configuration of a droplet in electric fields

After obtaining the electric potential, this section verified
the accuracy of the simulation method by simulating the
static equilibrium configuration of a droplet under the ap-
plied voltage and compared the contact angle obtained from
the simulation with the well-known Lippmann–Young equa-
tion [55].

Without applying voltage, the droplet on the substrate sat-
isfies the Young equation:

cos θY = γsg − γsl

γlg
, (38)

where θY denotes Young’s contact angle, and γsg and γsl rep-
resent the surface tension at �sg and �sl, respectively. When
voltage is applied to the substrate, the horizontal component
of the electrostatic force acting on the droplet surface breaks
the balance of forces, causing the droplet to spread, and the
apparent contact angle θ satisfies the following equation:

cos θ = γsg − (
γsl − ε0εr

2d U 2
)

γlg
. (39)

Substituting Eq. (38) into Eq. (39), the famous Lippmann-
Young equation is obtained:

cos θ = cos θY + 1

2

ε0εr

dγlg
U 2, (40)

where d is the fixed distance where the counter-ions are all
located from the solid surface. This equation describes the
relationship between the contact angle and the voltage in the
electrowetting model, i.e., the contact angle of the droplet
decreases as the applied voltage increases. Additionally, at the
same voltage, the contact angle can be varied in a wider range
when d is shorter. So d (i.e., lD) takes 2 nm [55] in this section.

The computational domain is a rectangle with a width of
300 lattice units and a height of 150 lattice units. First, the
voltage on the substrate is set to 0 V and relax the droplet for
5 × 104 time steps. The droplet will spread on the substrate
and eventually stabilize into a spherical cap. Then the voltage
was applied, and the contact angle was recorded after relax-
ation for 5 × 104 time steps.

The contact angle variation results are illustrated in Fig. 3.
The apparent contact angle decreases gradually with increas-
ing voltage and agrees with the Lippmann–Young equation.
Because the electric field exerts electrostatic traction on �lg

near the three-phase contact point, resulting in a net force in
the direction parallel to the solid surface, leading to a defor-
mation of the droplet surface and a reduction in the apparent
contact angle. In contrast, the microscopic contact angle de-
creases slightly, no longer described by the Lippmann–Young
equation, and approaches the angle indicated by the Young
equation. This feature was observed experimentally [56] and
predicted by the electromechanical model of electrowetting
[57]. To better explain this feature, we calculated the elec-
tric field strength along the droplet surface and normalized
arc length s ∈ [0, 1], and s = 0, 1 correspond to the left and
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FIG. 3. Comparison of the variation of contact angle with the
analytical solution. The apparent contact angle decreases with
increasing voltage and is consistent with the Lippmann–Young equa-
tion. In contrast, the voltage variation slightly affects the microscopic
contact angle.

right three-phase contact points, respectively. Figure 4 illus-
trates that the electric field strength does not simply increase
monotonically as the distance from the substrate decreases. In
contrast, as s approaches 0 or 1, the electric field strength tends
to increase and then decrease sharply. In addition, the inset
shows that the maximum value of the electric field strength
increases with the increment in the mesh density. The reason is
that the electric field strength varies drastically in the tiny area
near the three-phase contact points. Therefore, using more
points can better capture the electric field intensity variation
trends.
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FIG. 4. The electric field strength along the droplet interface
in different mesh densities. The inset shows magnified views in
s ∈ [0, 0.0275]. When approaching the three-phase contact points,
the electric field strength first increases and then decreases sharply.
In addition, the electric field strength near the three-phase contact
points gradually enhances as the mesh density increases.
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FIG. 5. The variation of droplet contour line with increasing
voltage.

From the equilibrium profile of the droplet surface in
Fig. 5, it can be seen more intuitively that the electrostatic
force drives the droplet to spread compared to the interface
profile in the absence of the electric field. And the microscopic
contact angle at the three-phase contact point does not change
significantly during the droplet spreading process.

C. Droplet migration driven by electrowetting

Electrowetting has been widely applied in digital microflu-
idics. This section simulated the droplet migration on a solid
surface driven by an inhomogeneous electric field. The param-
eters are chosen as U = 0.2 V and θY = 120◦.

In digital microfluidics, the electrode array is generally
controlled by digital signals to drive the droplet movement.
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FIG. 7. The electric field strength along the droplet interface in
the open structure. The inset shows a magnified view in s ∈ [0.89, 1].

Therefore, droplet migration in an open electrode structure
and closed symmetric electrode structure will be simulated,
respectively. The droplet migration simulation in an open
structure is shown in Fig. 6. The computational domain is a
rectangular flow field with a width of 400 lattice units and
a height of 150 lattice units. The electrode length is 50 nm,
and the electrode is located between 50 nm and 100 nm. The
electrode covers 25% of the solid-liquid interface in the initial
phase. Figure 7 shows the electric field strength at the gas-
liquid interface of the droplet in the initial state, and s = 0, 1
represent the three-phase contact points on the left and right
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FIG. 6. The electric potential distribution of the drop during the migration process in an open structure: (a) t = 0.05 ns, (b) t = 1 ns,
(c) t = 2 ns, and (d) t = 3 ns.
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FIG. 8. The electric potential distribution of the droplet during the migration process in the closed symmetric electrode structure: (a) t =
0.05 ns, (b) t = 1 ns, (c) t = 2 ns, and (d) t = 3 ns.

sides of the droplet, respectively. Because the left side of the
droplet is not in touch with the electrode, the electric field
strength at s = 0 is approximate 0 V/nm. As s increases, the
electric field strength enhances, and the electric force on the
right side is considerably larger than that on the left, causing
the droplet to migrate to the right. The contact length between
the droplet and the electrode steadily increases as the droplet
moves rightward. The electrode begins to affect the left part of
the droplet, which shows the same step-like electric potential
attenuation pattern as the right.

The closed structure is more difficult to manufacture than
the open structure, but it prevents the droplets from evap-
orating and contaminating. Figure 8 shows the simulation
results for the closed symmetric electrode structure. The com-
putational domain is a rectangular flow field with 400 lattice
units for width and 114 lattice units for height. The 50-nm-
long electrodes on both the top and bottom plates locate
from 50 nm to 100 nm, and the spacing between them is
55 nm. The electrode initially covers about a quarter of the
solid-liquid interface. The electric potential distribution is also
symmetrical up and down due to the symmetry in the electrode
configuration. Figure 9 depicts the electric field strength at
the right gas-liquid interface in the initial phase. s = 0, 1
represent the right three-phase contact point located at the top
and bottom plates, respectively. Similarly, the electric field
strength is symmetrically distributed at the gas-liquid inter-
face. It is lowest (around 3.2 × 10−3 V/nm) in the middle of
the two plates and gradually increases from the center to the
two sides, reaching a maximum (about 2.7 × 10−2 V/nm).

The migration speed during droplet movement is generally
the main focus of studies. The aim is to comprehend transport

dynamics and consequently increase transportation efficiency.
The following study will analyze the average speed of droplet
migration in an open structure and a closed symmetric struc-
ture, respectively. The three-phase contact points on the left
and right sides of the open structure are marked by the A and
B, respectively. Due to the symmetry of the top and bottom
planes in the closed structure, only the three-phase contact
points on the left and right sides at the lower boundary are
observed, marked by the C and D, respectively.
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FIG. 9. The electric field strength along the droplet interface in
the closed symmetric electrode structure. The inset shows a magni-
fied view in s ∈ [0.96, 1].
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FIG. 10. The average speed of each three-phase contact point
during droplet migration in different structures.

The average speed of the four contact points throughout the
droplet migration is shown in Fig. 10. Initially, the droplet is
at a standstill, and the average speed of both the four contact
points is 0 nm/ns. For the open structure, B accelerates to
5.8 nm/ns in the first period due to electric force acting on
the right side of the droplet. In contrast, A remains stationary
because the moving distance of B is insufficient to cause the
right side of the droplet to pull A. In the second period, the
right side of the droplet starts to pull the left side to move,
while the left side will prevent the rightward movement due to
the reaction force. Therefore, the average speed of A exceeds
that of B and reaches 6 nm/ns, while the average speed of B
drops to 3.1 nm/ns. Similarly, in the third period, the com-
bined effect from the rightward push and the electric force
results in the speed of B (7.2 nm/ns) exceeding that of A
(6.2 nm/ns). Throughout the process, the speeds of A and B
alternately exceed each other, and the droplet speed shows an
overall increasing trend. The speed differential between A and
B gradually decreases, eventually tending to nearly the same
speed.

For the closed symmetric structure, also in the first period,
the average speed of D reaches 3.7 nm/ns, which is higher
than the average speed 2.8 nm/ns at C due to the electric
force. However, compared to the open structure, there is al-
most no difference between the speed of C and D in the second
period, which reaches about 7 nm/ns. Following that, the two
points keep moving at about the same speed. The two contact
points in the closed symmetric structure are faster than those
in the open structure from the second to the fifth periods.
While the difference in electric field strength near the three-
phase contact point is minimal, as shown in Figs. 7 and 9, the
open structure primarily acts on the bottom part of the droplet.
In contrast, the closed symmetric structure simultaneously
acts on both the top and bottom parts. Additionally, since the
force on the droplet is more uniform in the closed structure
than in the open structure, the speed of the entire droplet can
be stabilized more quickly.

It is notable that the acceleration of C and D gradually
decreases, and the average speed of both C and D starts to
fall after reaching 10.4 nm/ns in the sixth period. Because
as C gradually approaches the electrode, the electric potential
on the left side begins to increase. The leftward electric force
prevents the droplet from moving to the right. Similarly, after
attaining the 11.7 nm/ns in the 11th period, the average speed
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FIG. 11. The distribution of momentum modulus and electric
potential inside the droplet during the impact: (a1, b1) t = 0.16 ns,
(a2, b2) t = 1.4 ns, (a3, b3) t = 1.95 ns, (a4, b4) t = 2.89 ns, (a5, b5)
t = 3.98 ns, and (a6, b6) t = 5.17 ns.

of A and B begin to drop. Through numerical simulation, it
is available to observe the speed fluctuation at the three-phase
contact point over time, which aids in selecting optimal pa-
rameters for more precise control of droplet migration speed
in real applications.

D. Drop lateral rebound induced by electrowetting

Droplet bouncing has many engineering applications, such
as self-cleaning and surface cooling. In the last example, a
voltage is applied on the right side of the solid surface to
simulate the lateral rebound of the droplet after it hits the
surface, which can be used to extend the bouncing application.
The macroscopic size of the droplet is 100 nm and r0 takes 80
lattice units. The other parameters are chosen as U = 0.4 V
and θY = 150◦. The computational domain is a rectangle with
a width of 720 lattice units and a height of 300 lattice units,
and the droplet center is at (360, 130). The droplet hits the
solid surface with the velocity of 0.06.
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The droplet rebound is usually characterized by two pro-
cesses, diffusion and recoil, as it impacts a solid surface.
To further understand the intrinsic mechanism during the
droplet impact on the electrically heterogeneous surface, we
plotted the momentum modulus distribution of the droplet
and the corresponding electric potential distribution. First,
the droplet spreads rapidly, and its kinetic energy is par-
tially converted into surface energy [Figs. 11(a1)–11(a2)].
The spreading speed of the droplet gradually decreases under
various resistances during spreading [Figs. 11(a3)–11(a4)].
The droplet retracts to reduce its interfacial energy when it
spreads to the maximum distance. The droplet has enough
energy to rebound if the dissipation within the droplet and
the friction with the surface are small enough. If there is
no voltage applied, then the droplet is symmetric throughout
the spreading and retraction process, the internal momentum
modulus change is symmetrical, and the center of mass does
not deviate from the centerline of the substrate. The electric
field produces electrostatic traction on the right side of the
droplet when voltage is applied to the right side of the solid
surface. It causes the droplet to have a rightward acceleration,
preventing the right side from contracting and causing the left
side of the droplet to contract faster than the right. As a result,
the internal momentum modulus shows an asymmetric distri-
bution, and the center of mass deviates from the centerline
of the substrate, resulting in the lateral rebound. Through nu-
merical simulation, the relationship between the momentum
distribution and the electric potential distribution at each mo-
ment of the rebound process can be easily and quantitatively
analyzed to reveal the law of motion [Figs. 11(a5)–11(a6)].

IV. CONCLUSION

In this paper, we have presented an electrowetting lattice
Boltzmann method to simulate the behaviors of micro-nano
droplets in an electrostatic field. The chemical-potential
multiphase model is used to simulate phase transition and
equilibrium, making the system thermodynamically consis-
tent and Galilean invariant. For electrostatics, droplets in the
micro-nano scale cannot be considered as equipotential as

macroscopic droplets due to the Debye screening effect. Thus,
the nonlinear continuous PB equation, a tool to describe the
EDL, is linearized and discretized in the Cartesian coordinate
system to iteratively calculate the electric potential. The total
force obtained by coupling the gradient of chemical potential
and electric potential is applied to the momentum variation of
the system through the force term technique.

Through simulations of the electric potential distribution
of droplets with different sizes, it is observed that the elec-
tric potential is attenuated exponentially when away from the
charged substrate. Moreover, the micro-nano droplets cannot
wholly screen the charge, indicating that the variation of the
electric potential inside the droplets should be considered. The
grid independence was also demonstrated. Then we have vali-
dated the accuracy of the simulation method by simulating the
equilibrium configuration of the droplet under the action of an
electric field. The results demonstrate that the apparent contact
angle agrees with the Lippmann-Young equation. Meanwhile,
the microscopic contact angle deviates from this equation and
approaches Young’s angle. The electric field strength along
the droplet profile line was calculated to analyze the reason.
The results show that the electric field strength sharply drops
when approaching the three-phase contact point, resulting in
a less electrostatic effect on the microscopic contact angle.
These are consistent with previously reported experimental
and theoretical analyses.

We have simulated the droplet migration in the open
electrode structure and closed symmetric electrode structure,
respectively. The electric potential distribution, electric field
strength, and migration speed in the two structures were com-
pared and analyzed. Since the force on the droplet is more
uniform in the closed structure than that in the open structure,
the speed of the entire droplet can be stabilized more quickly.
The simulation enables us to observe the speed variation of the
three-phase contact points at different time periods and select
suitable parameters to control the drop movement in applica-
tions accurately. Finally, the electrowetting multiphase model
is applied to study the lateral rebound of droplets impacting
on an electrically inhomogeneous surface. The droplet mo-
mentum and the corresponding electric potential distribution
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FIG. 13. The relative error of the gradient calculation determined by CDM and CFM against the proportionality coefficient.

were calculated during the whole process. The electric force
causes charged side of the droplet to recoil slower than the
other side. Thus, the droplet rebounds toward the side which is
applied voltage. It can deepen our understanding of the lateral
rebound mechanism by electrowetting and help to achieve
flexible regulation of droplet impact. In the future work, we
will improve the computational efficiency and introduce the
more versatile Nernst-Planck model [58]. Moreover, the LB
weight stencil will be applied to enhance the isotrop [59,60].

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX

Let us consider an isothermal liquid-gas system which has
a planar phase interface and develops along the y coordi-
nate. In the equilibrium state, the domain has the boundary
conditions ρ(−∞) = ρg and ρ(+∞) = ρl. (ρg + ρl )/2 is the

origin of the y coordinate. The mechanical equilibrium con-

dition ∇ · ↔
P(x) = 0 can be ensured by the equilibrium of the

chemical potential μ(x) = μb where μb is the bulk chemical
potential. Solving Eq. (8) in the one-dimensional system gives

κ

2

(
dρ

dy

)2

= ψ (ρ) − ψ (ρb) − μb(ρ − ρb), (A1)

where ρb is equal to ρg or ρl. Transforming Eq. (A1) and
integrating gives

±
∫ ρ

ρ0

dy =
∫ ρ

ρ0

dρ√
2
κ
ψ (ρ) − ψ (ρb) − μb(ρ − ρb)

, (A2)

where the sign of the left part is negative for ρb = ρg in the
gas phase or positive for ρb = ρl in the liquid phase. For
a given density ρ ∈ [ρg, ρl], integrating Eq. (A2) gives the
corresponding y value, and the density distribution with y
is then obtained, which is shown as the analysis solution in
Fig. 12.

In the present multiphase model, the errors in numerical
calculations of multiphase simulations are mainly dependent
on the accuracy of the discrete gradient calculations. Denser
points make the gradient calculation more accurate. The gra-
dient is calculated using the the central difference method
(CDM) and the compact finite-difference method (CFM) re-
spectively. The relative errors of the gradient calculations are
shown in Fig. 13. Decreasing the proportionality coefficient
can reduce the relative error.
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