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Research on conjugated radiation-conduction (CRC) heat transfer in participating media is of vital scientific
and engineering significance due to its extensive applications. Appropriate and practical numerical methods are
essential to forecast the temperature distributions during the CRC heat-transfer processes. Here, we established
a unified discontinuous Galerkin finite-element (DGFE) framework for solving transient CRC heat-transfer
problems in participating media. To overcome the mismatch between the second-order derivative in the energy
balance equation (EBE) and the DGFE solution domain, we rewrite the second-order EBE as two first-order
equations and then solve both the radiative transfer equation (RTE) and the EBE in the same solution domain,
resulting in the unified framework. Comparisons between the DGFE solutions with published data confirm the
accuracy of the present framework for transient CRC heat transfer in one- and two-dimensional media. The
proposed framework is further extended to CRC heat transfer in two-dimensional anisotropic scattering media.
Results indicate that the present DGFE can precisely capture the temperature distribution at high computational
efficiency, paving the way for a benchmark numerical tool for CRC heat-transfer problems.
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I. INTRODUCTION

Research on gaining highly accurate solutions for conju-
gated radiation-conduction (CRC) heat-transfer problems has
sparked increasing research interest in recent years due to its
extensive applications in engineering, including semitranspar-
ent media [1], porous material [2], fibrous insulation [3], and
ceramics insulation [4]. The CRC heat-transfer problems are
controlled by the energy balance equation (EBE) coupled with
the radiative transfer equation (RTE). The RTE is an intricate
integral-differential equation, for which it is almost impossi-
ble to obtain analytical solutions for general cases. In addition,
the radiation serves as a source term in the EBE [5], leading
to solid nonlinearity of the EBE. Thus, numerical methods
have become the mainstream for handling CRC heat-transfer
problems.

Various numerical methods have been successfully utilized
to solve CRC heat-transfer problems in participating media.
In the early 1960s, by using a direct iterative algorithm,
Viskanta et al. [6,7] first acquired the approximate solutions
to steady-state CRC heat-transfer problems in parallel slabs
filled with an emitting and absorbing medium. However, this
iterative method requires too much time to reach convergence
because of the complexity of the governing equation, and it
cannot extend to transient or multidimensional cases. Due to
the significant directionality nature of the RTE, some schol-
ars used some special methods to solve it, and then they
coupled the radiation information into the EBE by using con-
ventional computational algorithms. For instance, Talukdar
et al. [8] addressed the radiative part of CRC problems in
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a one-dimensional (1D) absorbing, emitting, and anisotropic
scattering medium by using the collapsed dimension method
(CDM), and they applied the Crank-Nicholson difference
scheme for the discretization of the EBE. Mishra et al. [9–11]
obtained the radiation information by the discrete transfer
method (DTM), the finite-volume method (FVM), and the
discrete ordinate method (DOM), respectively, and they used
a lattice Boltzmann method (LBM) to solve the EBE in planar
and rectangular geometries. Although these numerical meth-
ods can be used to obtain accurate radiation information, the
drawback of hybrid methods is that the mesh incompatibility
problem usually occurs, resulting in additional node interpola-
tions. Thus, some researchers tried to build unified numerical
methods for both the RTE and the EBE. For example, Raz-
zaque et al. [12] employed the finite-element method (FEM)
in solving the CRC heat-transfer problems in a rectangular
enclosure. Zhao et al. [13] proposed a spectral element method
(SEM) to solve the steady CRC heat-transfer problems in 1D
and 2D semitransparent media. Wei et al. [14] investigated the
radiation effects on the temperature distribution in a rectangu-
lar semitransparent medium via a unified LBM. These unified
methods show good geometric adaptability and ease of cod-
ing, but the computational cost is huge for multidimensional
cases. All the above numerical methods are based on the mesh
discretization of the spatial domain. In contrast, Zhang et al.
[15] proposed a meshless nature element method (NEM) for
the numerical calculations of CRC problems. Nevertheless,
the calculation quantity of the NEM is very large due to the
complicated shape functions.

Pioneered by Reed and Hill [16], the discontinuous finite-
element method (DFEM) has many attractive advantages,
such as local conservation, geometric flexibility, and high par-
allel efficiency [17]. The DFEM was originally used to solve
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hyperbolic conservation law equations, and it has achieved
significant success in many flow and heat-transfer fields
[18–21]. As for the applications of the DFEM in solving
the RTE, Cui and Li [22,23] carried out the first attempt
at the beginning of this century. They adopted a standard
upwind numerical flux and applied the DFEM to solve the
internal radiation problems. Later, Liu et al. [24] extended
the DFEM to radiative problems in 2D semitransparent media
with graded index distributions. Kitzmann et al. [25] presented
a DFEM to solve the RTE in a spherical and symmetric struc-
ture with arbitrary scattering phase functions. Clarke et al.
[26] used high-order polynomials for space and angular dis-
cretization, and they discussed the DFEM convergence for
radiative transfer problems under different boundary condi-
tions. Their results showed that the DFEM could achieve a
p + 1 convergence rate using a polynomial of degree p. Feng
et al. [27] utilized the DFEM with a local numerical flux
scheme for radiative transfer problems with strong inhomo-
geneity. Although the DFEM has been proven effective and
accurate for pure radiation problems, there has been much
less progress regarding its applications to CRC heat-transfer
problems.

By using a high-order DFEM for the RTE and a continu-
ous FEM for solving the EBE, respectively, Ghattassi et al.
[28] studied the combined radiation-conduction characteris-
tics under the Dirichlet and Robin boundary conditions. Their
results showed that the DFEM could easily couple with other
numerical methods with good numerical stability. Wang et al.
[29] investigated the CRC heat-transfer problems in irregular
media by the DFEM with an upwind numerical flux. But in
their work, the calculation cannot be implemented element by
element, which seriously impedes the computation efficiency.
Although it is convenient to discretize the EBE by using the
FEM, the FEM cannot accurately capture the temperature
distribution in the cases involving strong temperature inhomo-
geneity or discontinuity, such as in the multilayered thermal
protective coatings for high-temperature aircraft skin. In such
scenarios, the DFEM is necessary for predicting and capturing
the temperature distribution with strong fluctuations.

In practice, the main hindrance of DFEM extension to
CRC heat-transfer problems lies in the mismatch between the
DFEM solution domain and the second-order derivative in the
EBE. To overcome this mismatch, Cockburn and Shu [30,31]
rewrote the second-order equation as two first-order equations
by introducing an auxiliary variable, they implemented DFEM
discretization like that for a hyperbolic equation, and then
they proposed a local discontinuous Galerkin (DG) method
integrating with the advantages of local solvability and opti-
mal convergence. However, current studies on the local DG
method mainly focus on its convergence characteristics with
specifically defined periodic boundary conditions [32]. To the
best of our knowledge, a unified DGFE framework where both
the RTE and EBE are discretized via the DG scheme for CRC
heat-transfer problems is still lacking.

This work aims to establish a unified DGFE framework for
transient CRC heat-transfer problems. The governing equa-
tions and corresponding DGFE discretization are presented
in Sec. II, followed by a detailed solution procedure of the
proposed framework. In Sec. III, the capability of the present
framework for CRC heat-transfer problems is first verified by

comparing the DGFE solutions with published data for 1D
and 2D cases. Finally, in Sec. IV, the work is summarized.

II. MATHEMATICAL MODEL

A. Governing equation

For the transient CRC heat-transfer problems in a partici-
pating medium, the EBE is written as [33]

ρcp
∂T (r)

∂t
= k∇2T (r) − ∇ · qr (r), (1)

where T is the temperature; t is the time; r is the posi-
tion coordinate; ρ, cp, and k are the density, specific heat,
and thermal conductivity of the medium, respectively; and
∇ · qr= ∂qr,x

∂x + ∂qr,y

∂y is the divergence of radiative heat flux [see
Fig. 1(a)] obtained from

∇ · qr (r) = β(1 − ω)

(
4σT 4(r) −

∫
4π

I (r,�)d�

)
, (2)

where β = κa + κs is the extinction coefficient, with κa and
κs denoting the absorption coefficient and scattering coeffi-
cient, respectively, ω = κs/β is the scattering albedo, σ is
the Stefan-Boltzmann constant (5.67 × 10−8 W m−2 K−4), I
is the radiation intensity, �(θ, ϕ) is the radiative direction
angle with θ and ϕ denoting the zenith and azimuth angle,
respectively, seen in Fig. 1(b), and qr is the radiative heat flux
calculated via

qr =
∫

4π

I (r,�)ŝd�, (3)

where ŝ denotes the direction cosine of �.
The discrete-ordinate form of the RTE is written as [33]

�m · ∇I (r,�m) + βI (r,�m) = S(r,�m), (4)

where S is the source term given by

S(r,�m) = κaIb(r,�m) + κs

4π

M∑
m′=1

I (r,�m′
)�(�m′

,�m)wm′
,

(5)
where Ib is the blackbody radiation intensity, M = Nθ × Nϕ

is the total number of discrete directions with Nθ and Nϕ

denoting the discrete directions in the zenith and azimuth
space, respectively, m = 1, 2, . . . , M is the direction index,
and w is the weight of each discrete angle. �(�m′

,�m) is the
scattering phase function defined as

�(�m′
,�m) = Is(�m′

,�m)
1

4π

∫
4π

Is(�m′
,�m)d�m

, (6)

with Is(�m′
,�m) denoting the direction scattering intensity.

For the opaque wall, the diffuse reflective boundary condi-
tion of the RTE is given by

Iw(rw,�m) = εwIbw(rw)

+ 1 − εw

π

∑
nw·�m′

<0

Iw(rw,�m′
)|nw · �m′ |wm′

,

(7)
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FIG. 1. Schematic diagrams of (a) the physical meaning of divergence of radiative heat flux, (b) radiation intensity Im and radiative direction
angle 
m, and (c) relations of variable values.

where εw denotes the wall emissivity and nw denotes the unit
inward normal vector of the boundary.

B. DGFE discretization for the RTE

For the sake of conciseness and without introducing any
ambiguity, the terms I (r,�m) and S(r,�m) are replaced by
Im and Sm, respectively. Then Eq. (4) is written as

�m · ∇Im + βIm = Sm. (8)

By multiplying the weight function W on both sides of
Eq. (8) and integrating by the Gauss divergence theorem in
the element K, we can get the weak form of Eq. (8) as∫

∂K

̂�mIm · n+ · W dl −
∫

K
Im�m · ∇W dA +

∫
K

βImW dA

=
∫

K
SmW dA, (9)

where ∫∂K is the line integral over the edge of element K, ∫K
is the surface integral over element K, n+ is the unit outward
normal vector of the element edge, and ̂�mIm is the numeri-
cal flux. In this paper, a local Lax-Friedrichs numerical flux
scheme [34] where the angular direction vectors are separated
from the spatial coordinates is applied, and the numerical flux
is written as

̂�mIm = �m{Im} + |�m|[Im]n+, (10)

where {Im} and [Im] are the average and jump of Im on the two
sides of the element edge, respectively, and they are written as

{Im} = 1
2 (Im+ + Im−

), [Im] = 1
2 (Im+ − Im−

), (11)

where Im+
is the radiation intensity on the edge in the element

K, and Im−
is that on its neighbor edge, as seen in Fig. 1(c).

For the boundary-connected elements, the numerical flux is
written as

̂�mIm=̂�mIm
w . (12)

Then substitute Eqs. (10) and (11) into Eq. (9), and utilize
the Galerkin weighting scheme where the weight function W

is chosen as the shape function φi which is selected as the
one-order linear polynomial [13]. One gets the second-order
convergent DGFE discretization of the RTE in the matrix
form as

KmIm = Hm, (13)

where Im = [Im
1 , Im

2 , . . . , Im
n ]T is the radiation intensity on the

solution nodes in one element, with n denoting the node
number. The matrix elements in the stiffness matrix K and
the column vector H are calculated by

K ji = −
∫

K
φi�

m · ∇φ jdA + 1

2

∫
∂K

(�m · n+ + |�m|)φiφ jdl

+
∫

K
βφiφ jdA, (14)

H j =
n∑

i=1

∫
K

Sm
i φiφ jdA − 1

2

n∑
i=1

∫
∂K

(�m · n+ − |�m|)

× Im−
i φiφ jdl, (15)

where φi and φ j are the weight functions, and the subscripts i
and j represent the index for column and row, respectively.

C. DGFE discretization for EBE

The brackets in Eq. (1) are omitted for the convenience of
deducing the discretization equation. Then Eq. (1) is abbrevi-
ated as

ρcp
∂T

∂t
= k∇2T − ∇ · qr. (16)

Based on the main idea of the local DG scheme, an aux-
iliary variable q = [qx, qy]T needs to be introduced to rewrite
Eq. (16) into two first-order equations [31], that is,

q = k∇T, (17)

ρcp
∂T

∂t
= ∇ · q − ∇ · qr. (18)
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Similarly, Eqs. (17) and (18) are multiplied by the weight
functions w and v, respectively, and integrated by the Gauss
divergence theorem in the element K. Then the weak forms of
Eqs. (17) and (18) are expressed as∫

K
q · wdA =

∫
∂K

kT̂ w · n+dl −
∫

K
kT ∇ · wdA, (19)∫

K
ρcp

∂T

∂t
· vdA =

∫
∂K

q̂v · n+dl −
∫

K
q · ∇vdA

−
∫

K
(∇ · qr ) · vdA, (20)

where T̂ and q̂ are given by

T̂ = {T } + C1[T ], q̂ = {q} − C1[q] − C2[T ], (21)

where {T }, [T ], {q}, and [q] are defined as

{T } = 1
2 (T + + T −), [T ] = (T + − T −)n+,

{q} = 1
2 (q+ + q−), [q] = (q+ − q−)n+. (22)

In Eq. (21), the terms C1 and C2 are the stabilization pa-
rameters. The term C1 is a vector satisfying [35]

C1 · n+ = 1
2 sgn(v · n+) = C1, (23)

where v is an arbitrary vector without zero components, such
as v = [1, 1]T. The term C2 = kh–1, with h denoting the min-
imum element length.

At the boundary walls exposed to the Dirichlet boundary
condition, the numerical fluxes take the forms

T̂ = Tw, q̂ = q+ − C2(T + − Tw)n+, (24)

where Tw denotes the boundary temperature. By substituting
Eqs. (21) and (22) into Eqs. (19) and (20) and utilizing the

Galerkin weighting scheme, one can get the DGFE discretiza-
tion for the EBE as

Eqx = F, Eqy = G, (25)

and

MṪ = N, (26)

where qx = [qx1, qx2, . . . , qxn]T, qy = [qy1, qy2, . . . , qyn]T,

Ṫ = [ ∂T1
∂t , ∂T2

∂t , . . . , ∂Tn
∂t ]

T
, and the matrices E, F, G, M, and N

are expressed as

E ji =
∫

K
φiφ jdA, (27)

F j = k

[
n∑

i=1

∫
∂K

T +
i nx

(
1

2
+ C1

)
φiφ jdl

+
n∑

i=1

∫
∂K

T −
i nx

(
1

2
− C1

)
φiφ jdl

−
n∑

i=1

∫
K

T +
i

∂φ j

∂x
φidA

]
, (28)

G j = k

[
n∑

i=1

∫
∂K

T +
i ny

(
1

2
+ C1

)
φiφ jdl

+
n∑

i=1

∫
∂K

T −
i ny

(
1

2
− C1

)
φiφ jdl

−
n∑

i=1

∫
K

T +
i

∂φ j

∂y
φidA

]
, (29)

M ji = ρcp

∫
K

φiφ jdA, (30)

N j =
n∑

i=1

∫
∂K

q+
xinx

(
1

2
+ C1

)
φiφ jdl +

n∑
i=1

∫
∂K

q−
xinx

(
1

2
− C1

)
φiφ jdl +

n∑
i=1

∫
∂K

q+
yiny

(
1

2
+ C1

)
φiφ jdl

+
n∑

i=1

∫
∂K

q−
yiny

(
1

2
− C1

)
φiφ jdl −

n∑
i=1

∫
∂K

C2
(
T +

i − T −
i

)
φiφ jdl −

n∑
i=1

∫
K

q+
xi

∂φ j

∂x
φidA

−
n∑

i=1

∫
K

q+
yi

∂φ j

∂y
φidA −

n∑
i=1

∫
K

∇ · qriφiφ jdA, (31)

where nx and ny are the components of the normal vector n+
in the x and y directions, respectively.

Then, by calculating the matrix elements in Eqs. (27)–(31),
and solving Eqs. (25) and (26), one can obtain the variables
qx, qy, and Ṫ in the current element. The field solutions
within the computational domain can then be depicted via the
straightforward element-to-element sweep calculation.

D. Transient term discretization

The transient term is discretized by using a standard Euler
forward difference scheme [17] as

Tt+�t = Ṫt�t + Tt , (32)
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FIG. 2. Temperature distribution in the planar medium with (a) Nplk = 0.01, (b) Nplk = 0.1, and (c) Nplk = 1.0 at ω = 0.

where T = [T1, T2, . . . , Tn]T, and �t is the time step which
satisfies the Courant-Friedrich-Lewy (CFL) criterion of [17]

CFL =α�t

h2
< 0.5, (33)

where α = k/ρcp is the thermal diffusivity.
So far, the DGFE discretization for the governing equation

of CRC heat-transfer problems has been accomplished.

E. Solution procedure

Based on the spatial and time discretization, the DGFE
framework can be applied to solve the CRC heat-transfer
problems in a participating medium according to the follow-
ing procedure:

Step 1: Mesh the spatial and angular domains. Initialize the
temperature and radiation intensity.

Step 2: Solve the radiation intensity.
(a) According to the initial temperature and radiation in-

tensity, the source term S can be obtained from Eq. (5).
(b) Global iteration. Calculate the radiative intensity I in

the first direction for the first element by using Eq. (13),
and go to the next element until the last one. Then go to
the next direction and sweep the element until all discretized
directions. For the boundary-connected elements, impose the
boundary condition by Eq. (12).

(c) Update the source term according to the newly calcu-
lated radiative intensity.

(d) Repeat the global iteration until the convergence,

‖Gnew − Gold‖
‖Gnew‖ < 10−6, (34)

where G = ∫
4π

I (r,�)d� denotes the incident radiation,
and the symbol |||| denotes the L2 norm.

Step 3: Solve the temperature.
(a) Calculate the ∇ · qr by using Eq. (2).
(b) Calculate the q from the initial temperature by using

Eq. (25).
(c) Calculate the Ṫ from q and ∇ · qr by using Eq. (26),

and impose the Dirichlet boundary condition at the boundary
edges by using Eq. (24).

(d) Calculate the temperature T at the next time step using
Eq. (32).

Step 4: Check if the system satisfies the steady-state (SS)
criterion

‖T t+�t − T t‖
‖T t+�t‖ < 10−6. (35)

Step 5: If the temperature reaches the SS, end the calcula-
tion. Otherwise, return to Step 2.

III. RESULTS AND DISCUSSION

In this section, the present DGFE framework is applied
to several cases, including the 1D planar medium and the
2D square medium, to evaluate its performance on CRC heat
transfer. The physical parameters of the medium are assumed
to be constant. For the transient calculations in all cases, the
CFL number is set to 0.01 to determine the corresponding
time step. All the simulations in this paper are implemented
with MATLAB code and performed on a personal desktop
with a configuration of AMD Ryzen 7-5800 processor with
3.40 GHz CPU and 16 GB RAM.

Some dimensionless parameters are used to facilitate the
analysis and comparison. The conduction-radiation parameter
that describes the ratio of heat conduction energy to radiation

TABLE I. Dimensionless temperature at ξ = 0.05 for the 1D
medium with Nplk = 0.1, ω = 0.5, T0 = 0.

Dimensionless temperature T/Tb

εW εE Literature x/L = 0.25 x/L = 0.5 x/L = 0.75

1.0 1.0 Tsai and Lin [36] 0.4889 0.1773 0.0588
Talukdar and Mishra [8] 0.4892 0.1768 0.0585

Mishra and Roy [10] 0.4897 0.1771 0.0587
Mondal and Mishra [11] 0.4898 0.1769 0.0583

Sun and Zhang [37] 0.4894 0.1771 0.0585

Present 0.4896 0.1772 0.0586
1.0 0.0 Tsai and Lin [36] 0.5031 0.2001 0.0830

Talukdar and Mishra [8] 0.5033 0.1995 0.0824
Mishra and Roy [10] 0.4996 0.1991 0.0820

Mondal and Mishra [11] 0.5025 0.1958 0.0800
Sun and Zhang [37] 0.5028 0.1992 0.0823

Present 0.5040 0.2004 0.0833
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FIG. 3. Temperature distribution in the planar medium with (a) ω = 0.0, (b) ω = 0.5, and (c) ω = 0.9 at Nplk = 0.01.

energy, i.e., the Planck number, is expressed as

Nplk = kβ

4σT 3
b

, (36)

where Tb represents the characteristic temperature. The di-
mensionless time is used to represent the transient moments,
and it is defined as

ξ = αβ2t . (37)

In addition, the radiative heat flux and conductive heat flux
are nondimensionalized by

Q∗
r = qr

σT 4
b

, Q∗
c = qc

σT 4
b

, (38)

where qc is the conductive heat flux.

A. One-dimensional cases

The present DGFE framework is used to solve the 1D
CRC heat-transfer problems and compared with other nu-
merical results to verify its correctness. For the 1D planar
participating medium, the initial temperature of the system
is T0. At time t > 0, the temperature of the west boundary
(x/L = 0) suddenly rises to Tb(> T0) and then maintains, and
the temperature of the east boundary (x/L = 1.0) remains
constant at T0. The medium has a thickness of L = 1 m and

FIG. 4. The steady-state heat flux distribution in the planar
medium at Nplk = 0.1 and ω = 0.0.

an extinction coefficient of β = 1 m–1. Under the combined
impacts of radiation and conduction, the temperature of the
medium will gradually increase until the steady state. The
1D plate is divided into 40 elements. As for the 1D planar
medium, because of the azimuthal symmetry only the zenith
space needs to be discretized, and it is discretized into 10
directions.

We first calculated the dimensionless temperature T/Tb

for the case with Nplk = 0.1, ω = 0.5, and T0 = 0. Two pairs
of boundary emissivities—εW = 1.0, εE = 1.0 and εW = 1.0,
εE = 0.0—are considered.

Table I shows the present DGFE solutions of T/Tb at the
dimensionless time ξ = 0.05, compared with available results
at three points x/L = 0.25, 0.5, and 0.75. It is seen that the
present results agree very well with those obtained via numer-
ical results, indicating the excellent capability of the present
DGFE framework for solving 1D CRC heat transfer. In terms
of computational efficiency, the CPU time of the DGFE cal-
culations is 21.5 and 21.8 s for the cases with εE = 1.0 and
0.0, respectively. With the same element, angular discretiza-
tion, and time step, the CPU time of the traditional FEM for
the same cases reads 29.1 and 30.3 s, which is even longer
than that of the DGFE. The computational time comparison
illustrates the computational efficiency of the present DGFE
framework.

FIG. 5. Physical model of the 2D square medium.
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FIG. 6. Dimensionless temperature at the centerline x/Lx = 0.5 in the 2D isotropic media discretized by using different (a) spatial grids,
(b) angular grids.

Further, by setting the boundary emissivity as εE = εW =
1, we plot the temperature distribution along the nonscattering
medium at different time moments, obtained by the present
DGFE in Fig. 2 for the cases with different Nplk = 0.01, 0.1,
and 1.0. In this case, the initial temperature of the medium
is kept at T0 > 0. For t > 0, the west boundary is heated up
and remains at Tb = 2T0 while the east boundary maintains at
T0. The LBM-FVM solutions for the same case obtained by
Mishra and Roy [10] are also plotted for reference. It is seen
that the LBM-FVM and DGFE results are in great agreement
for all the cases. Keeping in mind that the LBM-FVM used
100 lattices/control volumes, which is much more than the
40 elements in the present framework, one can confirm the
good convergence and computational efficiency of the present
DGFE framework. It is also observed that the temperature
profiles are strongly nonlinear induced by the radiation effect,
and the nonlinear trend becomes more striking for the smaller
Nplk case with a stronger radiation effect. In addition, we can
find that it takes more time to reach the steady state for the
case with a larger Nplk. This is because the speed of radiative
transfer is far greater than conduction.

When considering the medium scattering, we presented
in Fig. 3 the temperature distribution along the medium
with different scattering albedo ω = 0.0, 0.5, and 0.9. The
conduction-radiation parameter is set as Nplk = 0.01. As can
be seen, results obtained via the LBM-FVM and the present

DGFE match closely for all cases. Due to the multiple scatter-
ing effects, the time to reach the steady state becomes longer
for the case with a bigger scattering albedo.

The heat flux in the 1D planar medium at the steady state
is also calculated. Figure 4 shows the dimensionless heat flux
profile, including the radiative heat flux Q∗

r , conductive heat
flux Q∗

c , and total heat flux Q∗
t = Q∗

r + Q∗
c , for the case with

Nplk = 0.1 and ω = 0.0. As can be seen, due to the high
radiation intensity emitted from the hot west wall, the Q∗

r
gradually increases from x/L = 0 and reaches its maximum
at the location near x/L = 0.3, and then decreases gradually
until the east wall at x/L = 1.0. In contrast, the conductive
heat flux Q∗

c shows a completely opposite trend to the Q∗
r

as the total heat flux Q∗
t at the steady state is constant for

any locations. Results in Fig. 4 reveal the coupling effect of
radiation and conduction, and they refer to the radiative and
conductive heat flux for later research on this case.

B. Two-dimensional cases

As shown in Fig. 5, we consider the 2D medium with the
length and width of Lx = Ly = 1.0 m. The medium has an
extinction coefficient of β = 1 m–1. The temperature of the
medium is initially at T0 > 0. At time t > 0, the south wall
rises to Tb = 2T0 and then maintains, while the other walls are

FIG. 7. Temperature distribution along the centerline of x/Lx = 0.5 in the 2D isotropical media with (a) Nplk = 0.01, (b) Nplk = 0.1, and
(c) Nplk = 1.0 at εS = 1.0 and ω = 0.0.
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FIG. 8. Temperature distribution along the centerline of x/Lx = 0.5 in the 2D isotropical media with (a) ω = 0.0, (b) ω = 0.5, and (c)
ω = 0.9 at εS = 1.0 and Nplk = 0.01.

kept at T0. The emissivity of the east, west, and north walls is
kept at εE = εW = εN = 1.0.

1. Isotropic scattering

Here we consider a square enclosure filled with an ab-
sorbing, emitting, and isotropic scattering medium. The
grid-independence tests for 2D cases are first carried out.
At the angular discretization of Nθ × Nϕ = 4 × 8, Fig. 6(a)
shows the steady-state temperature along the centerline
x/Lx = 0.5 for the cases with different spatial grids of Nx ×
Ny = 10 × 10, 20 × 20, and 30 × 30. The other control pa-
rameters are set as Nplk = 0.1, ω = 0.0, and εS = 1.0. It is
found that consistent temperature distributions can be ob-
tained even by using 10 × 10 grids. There is no appreciable
difference between the results obtained from 20 × 20 grids
and those obtained from 30 × 30 grids. Figure 6(b) depicts
the effect of angular grid size on the temperature distribution
at the fixed spatial grid of Nx × Ny = 20 × 20. As can be ob-
served, the temperature obtained by using Nθ × Nϕ = 4 × 8 is
almost the same as that by using Nθ × Nϕ = 6 × 12, indicat-
ing that Nθ × Nϕ = 4 × 8 is enough for angular discretization.
Results in Fig. 6 prove that Nx × Ny = 20 × 20 spatial grids
and Nθ × Nϕ = 4 × 8 angular grids are enough for obtaining
solutions for the 2D CRC heat-transfer problems, and they are
adopted in the following numerical calculations.

The DGFE solutions of the steady-state temperature at
different locations of y/Ly along the perpendicular centerline
of x/Lx = 0.5 are presented in Table II for the cases with
Nplk = 1.0, 0.1, and 0.01, and they are compared with pub-
lished data to verify the accuracy of the present framework. It
is seen that the present results are in good agreement with the
published data, illustrating the capability and accuracy of the
present DGFE framework for 2D CRC heat-transfer problems.
The CPU time of the DGFE calculation process reads 460.6,
1297.9, and 1460.4 s for the cases with Nplk = 0.01, 0.1, and
1.0, respectively, which is acceptable in practical applications.

Further, we plotted the temperature distribution along the
perpendicular centerline at dimensionless time ξ = 0.001,
0.005, 0.015, 0.04, and steady state in Figs. 7 and 8 for the
cases with varying Nplk and ω, respectively. All the DGFE
results are compared with the DTM results [40]. For the cases
with ω = 0.0, εS = 1.0, and different Nplk = 0.01, 0.1, and
1.0, the temperature distributions are presented in Fig. 7. For

the cases with εS = 1.0, Nplk = 0.01, and different ω = 0.0,
0.5, and 0.9, the temperature distributions are presented in
Fig. 8. It is seen that the results obtained via two different nu-
merical methods agree well with each other. The temperature
changing trends in Figs. 7 and 8 are like those in Figs. 2 and
3 for the 1D cases, respectively. Nevertheless, the steady-state
temperature in the 2D media is much lower than that in the 1D
cases, especially at the central region of the medium. This is
because in the 2D media, heat energy will spread to the west
and east directions when propagating to the north from the hot
south wall.

At the fixed Nplk = 0.01 and ω = 0.0, the temperature
distributions at ξ = 0.015 and steady time for the cases with
εS = 1.0, 0.5, and 0.1 are compared in Figs. 9(a) and 9(b),
respectively, to highlight the effects of the hot wall. For the
case with a lower εS, because the thermal emission from the
hot boundary is less and more incoming radiation will be
reflected, the temperature decreases faster and remains lower
than that with higher εS, as shown in Fig. 9. Due to the same
reason, the dimensionless steady-state time, 0.089, 0.090, and
0.096 for the case with εS = 1.0, 0.5, and 0.1, respectively, is
later for the case with a lower εS.

2. Anisotropic scattering

The present DGFE framework is extended to solve the
CRC heat-transfer problems in a 2D square enclosure filled
with an anisotropically scattering medium. The forward and

TABLE II. Steady-state temperature at different locations of y/Ly

along the perpendicular centerline of x/Lx = 0.5.

Nplk Location of y/Ly Wu [38] Yuen [39] Mondal [11] Wei [14] Present

1.0 0.3 0.733 0.737 0.738 0.738 0.738
0.5 0.630 0.630 0.631 0.631 0.632
0.7 0.560 0.560 0.565 0.564 0.564

0.1 0.3 0.760 0.763 0.761 0.759 0.760
0.5 0.663 0.661 0.664 0.662 0.663
0.7 0.590 0.589 0.596 0.593 0.592

0.01 0.3 0.791 0.807 0.777 0.788 0.792
0.5 0.725 0.726 0.722 0.722 0.727
0.7 0.663 0.653 0.672 0.662 0.661
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FIG. 9. Temperature distribution along the centerline of x/Lx = 0.5 in the 2D medium with different emissivities of the south wall, Nplk =
0.01 and ω = 0.0.

backward scattering media are considered, respectively. The
scattering phase function for the forward scattering is given by

�(�m′
,�m)=1 + �m′ · �m (39)

and that for the backward scattering is given by

�(�m′
,�m)=1 − �m′ · �m. (40)

At the fixed control parameters of ω = 0.5, Nplk = 0.01,
and εS = 1.0, we present in Table III the steady-state tem-
perature at specific points along the centerline of x/Lx =
0.5 in isotropically and anisotropically scattering media,
respectively. It can be concluded that the scattering pattern
influences the temperature distribution in a slight manner. In
the forward scattering medium, the temperature near the hot
south wall is the lowest as more radiation is scattered into the
north direction. As a result, the temperature near the north
wall is the highest as more radiation energy propagates to this
boundary.

For the media with different scattering patterns, we further
compare the steady-state heat flux, including the radiative
heat flux and conductive heat flux along the perpendicular
centerline of x/Lx = 0.5 in Figs. 10(a) and 10(b), respectively.
As seen from Fig. 10(a), the forward scattering enhances the
radiative heat flux, and this phenomenon can be interpreted
as follows. For the forward scattering medium, the radiation
intensity along the upward direction is enhanced compared
with that for the isotropically scattering medium. As a result,
the radiative heat flux with an upward direction is enhanced. In
contrast, the backward scattering shows a suppression impact
on the radiative heat flux. The distributions of conductive heat

TABLE III. Steady-state dimensionless temperature along the
centerline x/Lx = 0.5 with different scattering patterns.

Dimensionless temperature T/Tb

Location of y/Ly forward scattering isotropic scattering backward scattering

0.1 0.892 0.894 0.896

0.3 0.789 0.791 0.793

0.5 0.722 0.722 0.722

0.7 0.657 0.654 0.652

0.9 0.573 0.571 0.569

flux for media with different scattering patterns, plotted in
Fig. 10(b), are quite close, indicating that conductive heat
flux is less affected by the scattering pattern. The conductive
heat flux is determined by the temperature other than the
radiation intensity, which is directly influenced by the medium
scattering events.

IV. CONCLUSIONS

In this work, a unified DGFE framework is proposed to
solve the transient CRC heat-transfer problems. Both the RTE
and the EBE are solved based on the DGFE discretization.
The second-order EBE is rearranged as two first-order equa-
tions to match the DGFE solution domain. The proposed
DGFE is applied to solve the CRC heat-transfer problems
in 1D planar and 2D square geometries filled with absorb-
ing, emitting, and scattering media. The DGFE solutions of
temperature distributions are obtained and their comparisons
with published data verify the accuracy of the present DGFE
framework. Based on the DGFE results, it is found that big
conduction-radiation parameter, high scattering albedo, and
low wall emissivity will increase the time for the CRC heat
transfer to reach the steady state. Further, the impacts of the
medium scattering pattern on the CRC heat-transfer problems
in 2D anisotropic scattering media are also studied. Results
indicate that the scattering pattern has an obvious influence
on the radiative heat flux while it has little impact on con-
ductive heat flux. The proposed framework can be extended
straightforwardly to CRC heat-transfer problems in complex
media for highly accurate solutions on a unified DGFE dis-
cretization.
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FIG. 10. Steady-state (a) radiative heat flux and (b) conductive heat flux along the centerline of x/Lx = 0.5 in 2D media with different
scattering patterns.
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