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We generalize the previous study on the application of variational autoencoders to the two-dimensional Ising
model to a system with anisotropy. Due to the self-duality property of the system, the critical points can be
located exactly for the entire range of anisotropic coupling. This presents an excellent test bed for the validity of
using a variational autoencoder to characterize an anisotropic classical model. We reproduce the phase diagram
for a wide range of anisotropic couplings and temperatures via a variational autoencoder without the explicit
construction of an order parameter. Considering that the partition function of (d + 1)-dimensional anisotropic
models can be mapped to that of the d-dimensional quantum spin models, the present study provides numerical
evidence that a variational autoencoder can be applied to analyze quantum systems via the quantum Monte Carlo
method.
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I. INTRODUCTION

Machine learning (ML) has become an indispensable tool
to expand the limits of scientific understanding in the age of
big data. An overflow of information is being analyzed using
ML to quantify patterns in a wide variety of fields, including
social networks, object and image recognition, advertising,
finance, engineering, medicine, biological physics, and astro-
physics, among others [1].

Machine learning is a data modeling approach that employs
algorithms that favor strategies driven by statistical analysis
and based on pattern extraction and inference. ML algorithms,
such as deep learning, provide new avenues for understanding
physical data. Opportunities for scientific investigations are
being devised, particularly in numerical studies, which nat-
urally involve large data sets and complex systems, where
explicit algorithms are often challenging. A concerted effort is
emerging to address large data problems in statistical mechan-
ics and many-body physics using the ML approach [2–10].
The foundation of ML is deeply connected with statistical
physics and hence is fruitful to combine ML techniques with
numerical methods that involve predicting phase transition
regions. Scaling and renormalization are the core principles
of understanding macroscopic phenomena from microscopic
properties. The way forward for machines to learn from large
data sets would incorporate conceptually similar principles
[2,10,11].

Changes in the macroscopic properties of a physical
system occur in phase transitions, which often involve
a symmetry-breaking process [12]. The theory of phase

transitions and symmetry breaking was formulated by Landau
as a phenomenological model and was later devised from
microscopic principles using the renormalization group [13].
Phases can be identified by an order parameter that is zero in
the disordered phase and finite in the ordered phase. The order
parameter is determined by the symmetry considerations of
the underlying Hamiltonian. There are states of matter where
the order parameter can only be defined in a complicated non-
local way. These systems include topological states such as
quantum spin liquids [14]. A major goal of the ML approach
in complex statistical mechanics models or strongly correlated
systems is to detect phase transitions from the data without
explicitly constructing any order parameter [3].

The development of artificial neural networks to detect
phase transitions is a major advance in the area of ML appli-
cations in physics. In earlier works, artificial neural networks
were based on supervised learning algorithms [2,3,10]. La-
beled data are used to train the supervised learning algorithm,
from which the algorithm learns to assign labels to input
data points [15,16]. Apart from supervised learning, another
major type of ML is unsupervised learning, for which the
input data have no labels. Conventional unsupervised learning
algorithms, such as principal component analysis [17], find
structure in unlabeled data without involving any artificial
neural network. Here, data are classified into clusters, and
labels can then be assigned to the data points accordingly [17].

The autoencoder is a new direction to utilize artifi-
cial neural networks in unsupervised machine learning. The
first versions of the autoencoder were used to reduce the
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dimensions of the data before feeding its output to other
ML algorithms [18,19]. The autoencoder is created by en-
coding an artificial neural network, which outputs a latent
representation of the given input data; this intermediate latent
data are utilized as input to a decoding neural network that
tries to accurately reconstruct the input data from the latent
representation [20,21].

A major shortcoming of the autoencoder is the possibility
of sharp changes in the latent representation with respect to
small differences in the input data. Ideally, the latent repre-
sentation should be a smooth function of the input data. The
variational autoencoder (VAE) represents the latent represen-
tation in terms of probability distributions instead of a fixed
set of numbers [22,23]. This probabilistic latent representation
allows a smooth behavior of the model. Since 2013, VAEs
have become one of the most successful unsupervised learning
algorithms [22]. Promising results are shown in both data
encoding and data reconstruction [2,22,23].

VAEs have recently been successfully applied to detect
phase transitions in classical spin models [2,24,25]. The input
data sets are given by the Monte Carlo method. Then, unsu-
pervised machine learning, such as VAE, is used to decipher
and distinguish different regimes of physics in the input data
sets. After successfully applying this to classical models, a
natural question is whether such an approach remains viable
for quantum models. In particular, a VAE can be viable for
distinguishing different quantum phases and transition regions
on the basis of the data obtained from the quantum Monte
Carlo method. Recently, various models from statistical me-
chanics, particularly the Ising model and the Potts model, have
been investigated [26–28]. In this work, we investigate a rather
simple quantum model, the one-dimensional transverse-field
Ising model (TFIM), to address the capability and limitations
of the autoencoder. Since the critical line of the model can be
calculated analytically due to the self-dual property [29–31],
the TFIM is an excellent test bed to address the various aspects
of VAEs in quantum models.

This paper is organized as follows. In Sec. II, we briefly
describe the TFIM and the Suzuki-Trotter formulation by
mapping it to the anisotropic Ising model. In Sec. III, the
Monte Carlo method and the VAE are presented. The re-
sults of the VAE are described in Sec. IV. We conclude
and discuss the implication and possible future applica-
tions of the method developed in this study in Sec. V.
The self-duality of the anisotropic two-dimensional Ising
model and the details of the VAE are discussed in the
Appendices.

II. TRANSVERSE FIELD ISING MODEL

We consider an Ising model with a transverse field [32–34].
The Hamiltonian is given as

H = −
∑
〈i, j〉

Ji jσ
z
i σ z

j − �
∑

i

σ x
i , (1)

where σα (α = x, y, and z) are the Pauli matrices which
obey the commutation relation [σα

i , σ
β
j ] = 2ιδi jεαβγ σ

γ
i . Ji j

is the coupling between the spins at sites i and j. Only
nearest-neighbor coupling is considered in this study. � is
the transverse field applied in the x direction and σ z has

eigenvalues ±1. Their eigenvectors are symbolically denoted
by |↑〉 and |↓〉, that is,

|↑〉 =
(

1
0

)
(2)

and

|↓〉 =
(

0
1

)
. (3)

The order parameter is given by the average magnetiza-
tion m = ∑

i〈σ z
i 〉/N (N is the total number of sites), which

characterizes the phase transition between the paramagnetic
and ferromagnetic phases. Without specification, we consider
only the one-dimensional TFIM with coupling limited to the
nearest neighbors.

Instead of working with quantum spins directly, we follow
the standard procedure of mapping a d-dimensional quantum
Hamiltonian to a d + 1-dimensional effective classical Hamil-
tonian by using the Suzuki-Trotter transformation [35–37].
The details are discussed in Appendix A. We define the longi-
tudinal spin-coupling terms and the transverse-field terms as
follows:

H0 ≡ −
∑
〈i, j〉

Ji jσ
z
i σ z

j ,

V = −�
∑
i=1

σ x
i , (4)

H = V + H0.

The effective classical Hamiltonian after the Suzuki-
Trotter transformation is

Heff ({σ }) =
N∑

〈i, j〉

M∑
k=1

[
−Ji j

M
σi,kσ j,k

− 1

(2β )
ln

(
coth

β�

M

)
σi,kσi,k+1

]
. (5)

The effective Hamiltonian shows the spin system in the
1 + 1-dimensional lattice with an additional label k for each
spin variable. Each single quantum spin variable σi in the orig-
inal Hamiltonian now carries an array of M classical spins σi,k .
This new (timelike) dimension along which these classical
spins are spaced is called the Trotter dimension.

In this paper, we assume that the model only has nearest-
neighbor coupling on a square lattice. The coupling along the

x direction and the y direction are denoted as Jx = Ji j

M and Jy =
1

(2β ) ln (coth β�

M ), respectively. We also define Kx = 1/(βJx )
and Ky = 1/(βJy). We set N = M in this study.

The critical points can be analytically obtained for the
two-dimensional classical Ising model due to the self-dual
property. The detail of the dual transformation is shown in
Appendix B.

III. METHODOLOGY

A. Monte Carlo sampling

The spin configurations are generated by using the single
spin-flip Metropolis algorithm. We first flip the spin of a single
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FIG. 1. Diagram depicting the structure of the VAE. The left-
hand side is the encoding part, and the right-hand side is the decoding
part. x is the input Ising spin configuration, qφ (z|x) is the encoder
neural network, and μ and σ are the latent means and standard
deviations of the latent space distribution z. pθ (x′|z) is the decoder
neural network, and x′ is the reconstructed Ising spin configuration.

lattice site and calculate the change in energy �E . Then, we
use the resulting change in energy to calculate the Metropolis
criterion exp(−�E/T ). If a randomly generated number in
the range [0,1) is less than or equal to the Metropolis criterion,
the configuration is accepted as the new configuration. The
simulation code is written in PYTHON using the NumPy library
[38–41]. We note that using a generative neural network,
instead of the Monte Carlo method, for sampling has also
been recently proposed for one-dimensional (1D) quantum
spin models [42,43].

B. Variational autoencoder

The VAE is in the category of generative models. New
data can be produced by learning the input data distribution
[22,44]. We use an encoder-decoder architecture where the
encoder maps the input to a latent representation in terms of
some chosen distribution. The latent distribution is mapped
back to reconstruct the input data using the decoder. The latent
representation in a well-trained model can be used to generate
new samples that resemble the original training data [45].

This study only considers a multidimensional Gaus-
sian distribution for the latent space representation. We
briefly explain the main concepts of the VAE in the
following.

Encoder. The encoder is a neural network that takes the
higher-dimensional input data into a lower-dimensional la-
tent space. It is also called a probabilistic encoder of the
VAE. For example, the spin configuration of a lattice of size
32 × 32 = 1024 can be converted into a vector of dimension
8. The encoder is a method for dimensionality reduction. The
neural network representing the encoder maps each sample to
a distribution. The encoder, denoted as qφ (z|x), is a distribu-
tion that maps an input sample x (Ising spin configurations) to
provide a latent representation z (the parameters in the mul-
tidimensional Gaussian distribution). φ is a set of learnable
parameters in the neural network that are varied to produce
the encoder output (see Fig. 1).

Latent space. The latent space is the input for the decoder
network, and it is outputted from the encoder network. For

the VAE, the latent space is represented by a multidimen-
sional Gaussian distribution. As the Gaussian distribution is
completely specified by its mean and standard deviations, the
dimension of the latent space is twice that of the dimension
of the multidimensional Gaussian distribution. An encoded
sample is denoted by z.

The latent space is regularized and then penalized for de-
viating from the prior multidimensional Gaussian distribution
by the Kullback-Leibler (KL) divergence term [46].

Decoder. The decoder in VAE converts compressed sam-
ples in the latent space back to input samples [47] (see Fig. 1).
It is represented as pθ (x′|z), a distribution that produces re-
constructed samples x′ conditioned on latent representation z.
θ is a set of neural network learning parameters that can be
varied to produce a different output.

Loss functions in the VAE. The VAE contain two sets of
trainable parameters, θ and φ, for the neural networks of
the encoder and the decoder, respectively. They are trained
by minimizing the loss function. Loss functions in the VAE
consist of two terms. The first one measures the “similarity”
of the inputs and the reconstructed outputs. The second one
measures the difference between the designated prior distri-
bution, chosen to be a multidimensional Gaussian distribution,
and the actual distribution of the inputs.

For the first term of the loss function, the standard re-
construction loss measures the error between the samples
generated by the decoder and the original input samples.
We measured this error by the binary cross-entropy be-
tween the encoder input and the decoder output. This is
expressed as LRC = −Ez∼qφ (z|x)[log pθ (x|z)]. The expectation
E is over the representations z with respect to the encoder’s
distribution.

The second is the Kullback-Leibler divergence (KLD)
of the latent representation. The KLD measures the di-
vergence between the chosen latent representation p(z)
and the approximated distribution from the output of the
encoder qφ (z|x).

The KLD is defined as

LKLD = DKL[qφ (z|x)||p(z)] = −
∑

z

qφ (z|x) log

(
qφ (z|x)

p(z)

)
.

(6)

It is minimized to optimize the latent representation of the
encoder qφ (z|x) to resemble the latent representations of p(z).

The total loss is the sum of the reconstruction loss and the
KLD [48]:

L(φ, θ ; x, z) = −Ez∼qφ (z|x)[log pθ (x|z)]

+ DKL[qφ (z|x)||p(z)] = LRC + LKLD. (7)

The two losses in the VAE are optimized simultaneously.
The linear combination of the reconstruction loss and the
KLD is often denoted as a variational lower bound or evi-
dence lower bound loss function since both the reconstruction
loss and the KLD are non-negative. Minimizing the loss,
minθ,φ L(θ, φ; x, z), maximizes the lower bound of the proba-
bility of generating new samples [45].
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C. β-total correlation VAE

The VAE can be further refined by decomposing the KLD
into three parts. The three parts describe the index-code mu-
tual information, the total correlation, and the dimensionwise
Kulback-Leibler divergence and are denoted as α, β, and γ ,
respectively. β is the most important one for obtaining optimal
results [48,49].

The β-total-correlation VAE (β-TCVAE) is defined as the
VAE with α = γ = 1, and β is a tuning parameter. Further
details are given in Appendix B. This approach is well suited
for learning patterns [49]. In this study, we fixed the decom-
position parameters with α = γ = 1 and β = 8; these values
were found to be reliable in finding the phase diagram of the
two-dimensional (2D) isotropic Ising model [25,50].

Our goal is to map the raw Ising spin configurations to
a reduced set of descriptors that discriminate between the
samples using the criterion inferred by the β-total correlation
VAE [25,50]. The encoder and the decoder are implemented
as deep convolution neural networks (CNN) to preserve the
spatially dependent two-dimensional structure of the Ising
spin configurations [51]. A scaled exponential linear unit
(SELU) activation function is used in each convolution layer.
The output of the final convolution layer is flattened and fed
into two two-dimensional dense layers. Then, the output of
the encoder CNN is used as the input layer for the decoder
CNN. The decoder network is simply the opposite of the
encoder network, with convolution transpose layers instead
of standard convolution layers [50–52]. The final output layer
of the decoder network is reproduced from the original in-
put configurations obtained from the encoder network, which
uses a sigmoid activation function. The loss term consists
of the reconstruction loss and the β-total-correlation KLD
(β-TCKLD) term with α = γ = 1 and β = 8 [46,50]. We
employ minibatch stratified sampling on the given data while
training.

To optimize the loss, Nesterov-accelerated adaptive mo-
ment estimation was used, which efficiently minimizes the
loss during training of the β-TCVAE model [50,53]. The de-
fault parameters provided by the Keras library and a learning
rate of 0.000 01 were chosen. Training was carried out over
100 epochs with a batch size of 33 × 33 = 1089 for both
lattice sizes N = 64 and N = 128 with a number of samples
of 1024 per phase point. The reduced descriptors of the 2D
Ising spin configuration are given by the latent variables [50].
The β-TCVAE model used in this work was implemented
using the Keras ML library with TensorFlow as the supporting
backend [54].

D. Principal component analysis on the latent space

The principal component analysis (PCA) is applied to the
latent means and standard deviations obtained after fitting
the β-TCVAE using the sci-kit-learn package [17,55]. The
PCA performs an orthogonal transformation into a new ba-
sis of linearly uncorrelated features, principal components.
Each principal component encompasses the largest possi-
ble variance across the sample space under an orthogonality
constraint [17].

The latent representation characterizes the structure of the
Ising configurations, but the principal components of the

latent representation show greater discrimination between the
different structural characteristics of the configurations com-
pared to the raw variable representation [50]. The rationale for
using the PCA is to provide a more compact representation
that characterizes the different phases of the Ising model. As
we show in the results section, the first and second compo-
nents already distinguish between the different phases of the
anisotropic Ising model.

IV. RESULTS

As discussed in the previous section, for VAE models, the
samples are drawn from a multidimensional Gaussian distri-
bution parametrized by a vector of means, μi, and standard
deviations, σi, where i is the index of the dimension of the
distribution. All plots in this paper were generated with the
MATPLOTLIB package using a perceptually uniform color map
[56]. In each plot, the coloration of each square pixel repre-
sents the average ensemble value of the principal components
of the mean or variance of the latent space. We study two dif-
ferent system sizes, N = 64 and 128. We focus on the first two
principal components of the latent variance and the second
principal component of the latent mean. We denote them by
τ0, τ1, and ν1, respectively. The first principal component of
the latent mean ν0 does not capture a clear distinction between
the ferromagnetic and paramagnetic phases of the system. See
Appendix D for the plot of ν0.

Figure 2 displays ν1, the second principal component of
the latent mean. It is apparent that ν1 resembles the magneti-
zation m of snapshots of Ising spin configurations. We note
that it is not expected that any of the latent variables have
the same value as any physical quantity, such as magneti-
zation. Nonetheless, the plot of ν1 clearly discriminates the
ferromagnetic phase from the paramagnetic phase. The phase
transition line in white corresponds to the analytical solution
in the thermodynamic limit, Eq. (B14) in Appendix B. Since
the magnetization can be seen as the order parameter for
the two-dimensional Ising model, a reasonable representa-
tion of the order parameter is seen to be possibly extracted
from the VAE. We note that the simulations and the VAE
are performed on finite-size systems where a truly broken
symmetry does not occur. This is the reason for the seem-
ingly random values of ν1 in the ferromagnetic phase. We
show that other latent variables from the VAE have structures
similar to the amplitude of the magnetization. As magneti-
zation is a linear feature of the Ising spin configuration, a
simpler linear model would be sufficient for extracting the
magnetization.

The first principal component of the latent variance τ0 is
plotted in Fig. 3. The white line is the analytical solution for
the phase transition line. The value of τ0 remains very small
in the upper right region of the figures. This can be considered
as the reflection of the small changes in the amplitude of
the energy or the magnetization in the magnetic phase. Once
the system approaches the critical line from the upper right
region, the value of τ0 increases sharply. This behavior is
again consistent with the larger range of values of energy or
magnetization.

In particular, we consider the case for the isotropic limit
(Kx = Ky), that is, the classical (� = 0) limit. The critical
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FIG. 2. The second principal component of the latent mean, ν1, with respect to model parameters Kx [1/(βJx )] and Ky [1/(βJy )] for the
2D square lattice. The left panel and the right panel are for system sizes N = M = 64 and N = M = 128, respectively. The white line is the
analytical phase transition line.

point is given as Kc(= Kx = Ky) = 2
ln[1+√

2]
∼ 2.2721 [57].

Correspondingly, in Fig. 3, we see a sharp change in τ0 around
this value of Kc.

It should be noted that the paramagnetic samples are es-
sentially noisy due to entropic contributions. Therefore, these
are easy to discriminate from the rest of the samples using

FIG. 3. The first principal component of the latent variance, τ0, with respect to model parameters Kx [1/(βJx )] and Ky [1/(βJy )] for the 2D
square lattice. The left and right panels are for the system sizes N = M = 64 and N = M = 128, respectively. The white line is the analytical
phase transition line.
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FIG. 4. The second principal component of the latent variance, τ1, with respect to model parameters Kx [1/(βJx )] and Ky [1/(βJy )] for
the 2D square lattice. The left and right panels are for the system sizes N = M = 64 and N = M = 128, respectively. The white line is the
analytical phase transition line.

a β-TCVAE model. Given this fact, the samples with ν1 val-
ues corresponding to nearly zero magnetization and relatively
high values for τ0 resemble Gaussian noise with no notable or-
der preference. An interesting question is to look for a quantity
that may resemble a response function, such as susceptibility
or heat capacity.

We plot the second principal component of the latent vari-
ance τ1 in Fig. 4. The phase-transition line is again included
for comparison. The values of τ1 along the analytical critical
line are much higher than for any other combination of Kx

and Ky. Thus, τ1 has a substantial similarity for magnetic
susceptibility.

In brief, from the plots of τ0, τ1, and ν1, we find that the
VAE can generate quantities that resemble the magnetization,
the amplitude of the magnetization or the energy, and the mag-
netic susceptibility or the heat capacity, respectively. We can
infer from these quantities the phase transition line between
the paramagnetic and ferromagnetic phases.

The quality of fitting the Ising spin configurations to the
present VAE model can be quantified by the values of the
loss functions. The three losses represented in Fig. 5 are the
VAE loss, the reconstruction loss, and the latent loss. The
reconstruction loss converges to about 0.5. The latent loss
is obtained from the β-TCKLD term. This loss quickly con-
verges to a value close to 0. The total β-TCVAE loss for the
two-dimensional anisotropic Ising model for both lattice sizes,
N = 64 and N = 128, also settles quickly to a value around
0.5.

V. DISCUSSION AND CONCLUSIONS

We used a β-TCVAE model to extract structural infor-
mation from the raw Ising spin configurations. It exposes

interesting derived descriptors of the configurations which are
used to identify the second-order phase transition line. This
is done by studying the behavior of latent variable mappings
of the Ising spin configurations with respect to the anisotropic
coupling (Jx, Jy ) associated with temperature.

We find that ν1, the second principal component of the
latent mean, reflects the magnetization of the two-dimensional
anisotropic Ising model. Hence, ν1 is interpreted as an indi-
cator of the magnetization exhibited by the configurations.
In contrast, τ0 and τ1, the first two principal components of
the latent variance, can be understood as indicators of the
amplitude of the magnetization or the energy and the magnetic
susceptibility or the heat capacity, respectively. Thus both τ0

and τ1 can also provide a reasonable estimate of the second-
order phase transition line. In the lack of a proper ansatz to
perform a finite-size scaling, the data generated by machine
learning cannot be used to extract the critical exponents cor-
responding to the isotropic limit. In addition, it is a crude
assumption to assume that the data obtained from the VAE
are within the thermodynamic limit.

Since the d + 1-dimensional anisotropic Ising model is
equivalent to the d-dimensional quantum spin system through
the Suzuki-Trotter transformation, this method can be trivially
extended to other 1D quantum systems [58]. Various quantum
Monte Carlo methods map correlated fermions on the lattice
to an effective classical Ising model via a discrete Hubbard-
Stratonovich transformation [59–61]. The approach presented
here has the same data structure as those quantum Monte
Carlo methods, which can be readily adapted to analyze the
data from these methods.

Moreover, methods for strongly correlated systems, such
as the dynamical mean-field theory (DMFT) and their cluster
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FIG. 5. β-TCVAE loss and the reconstruction loss settle to about 0.5 and the latent loss settles close to 0 for 100 epoch cycles. The left and
right panels are for the square lattice of sizes N = M = 64 and N = M = 128, respectively.

generalizations—the dynamical cluster approximation (DCA)
and the cellular dynamical mean-field theory (CDMFT)—all
have a very similar data structure when using the Hirsch-Fye
quantum impurity solver [60,62,63]. The dynamical variables
for the quantum impurity solver are represented by Ising-like
variables since the Hubbard-Stratonovich field to decouple the
local Hubbard interaction can be simplified to binary variables
for fermionic operators [60]. For the single quantum impurity
in the DMFT, the data structure is given by a set of 1 × NT

binary variables, where NT is the number of Suzuki-Trotter
steps. On the other hand, for quantum clusters with N impu-
rities in DCA and CDMFT, the data structure is given by a
set of N × NT binary variables. It is notoriously difficult to
obtain the putative quantum critical point from the paramag-
netic solution of the Hubbard model, as there is no simple
quantity to track the transition [64,65]. The method presented
here can readily be adapted to the study of these quantum
systems. Therefore, this method would be an essential tool
for analyzing data from DMFT, DCA, and CDMFT.

There are many opportunities to develop this method fur-
ther, not only by investigating more complex systems but
also by introducing improvements beyond the scope of this
work. Finite-size scaling has become an important approach
to address limitations in using finite-sized systems to in-
vestigate regions near critical phenomena [66,67]. To find
a correspondence between the VAE encodings of different
system sizes is a challenging problem, as different VAE
structures need specific training for each system size, which
in turn demands different hyperparameters and training it-
erations [66]. Numerical difficulties arise when performing
finite-size scaling analysis since the variation of properties
concerning the system size is hard to isolate from the sys-
temic variation because of the use of different neural networks
trained with different hyperparameters to extract the spe-
cific macroscopic properties. Solving this issue would play a

significant role in improving the VAE characterization of
critical phenomena.

Another interesting direction is to use the generative ad-
versarial network [68] instead of the VAE as the generative
model. Promising results have been obtained for the isotropic
2D Ising model [69].

An important topic that has not been studied in the present
work is the estimation of the critical exponents. Conventional
numerical methods estimate exponents by calculating the cor-
responding critical quantities for numerous system sizes. A
finite-size scaling ansatz based on the theory of renormal-
ization group is used to fit the exponents. The fundamental
assumption is that the correlation length of a finite-size system
is cut off by the system size and thus ends up in the finite-
size scaling ansatz. It is not well studied whether the same
approach can be applied on the neural network. In particular,
we do not know whether a neural network can be critical. Even
if it is critical, it is unknown whether different training data
could tune the neural network to different universality classes.
These are crucial questions that must be addressed before a
proper estimation of the critical exponents can be obtained.
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APPENDIX A: SUZUKI-TROTTER FORMALISM

We apply the Suzuki-Trotter transformation to the
transverse-field Ising model. The longitudinal spin-coupling
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term and the transverse-field term are defined as follows:

H0 = −
∑
〈i, j〉

Ji jσ
z
i σ z

j ,

V = −�
∑
i=1

σ x
i , (A1)

H = V + H0.

The partition function of H reads

Z = Tr(e−β(H0+V ) ), (A2)

where β is the inverse temperature. The Trotter formula ap-
proximates the exponential of a sum,

exp(A1 + A2) = lim
M→∞

[exp(A1/M ) exp(A2/M )]M , (A3)

when [A1, A2] �= 0. Using the Trotter formula, we have the
following:

Z =
∑

i

lim
M→∞

〈si|[exp(−βH0/M ) exp(−βV/M )]M |si〉, (A4)

where si is the ith spin configuration of the entire system, and
the above summation runs over all possible 2N configurations
denoted by i. We use M identity operators to decouple the
terms. The identity operator formed from the spin operators is
given as

I =
2N∑
i

|si,k〉〈si,k|

=
1∑

σi,k=−1

|σi,k, . . . , σN,k〉〈σi,k, . . . , σN,k|, (A5)

where k = 1, 2, . . . , M. Hence, Z becomes the product of M
exponentials:

Z = lim
M→∞

Tr
M∏

k=1

〈σi,k, . . . , σN,k| (A6)

exp

(
−βH0

M

)
exp

(
−βV

M

)
|σi,k+1, . . . σN,k+1〉. (A7)

Applying the periodic boundary conditions σN+1,p = σ1,p, we
arrive at the following expression of the partition function,

Z = C
NM

2 Trσ [−βHeff ({σ })], (A8)

where C = 1
2 sinh 2β�

M and the effective classical Hamiltonian
is

Heff ({σ }) =
N∑

〈i, j〉

M∑
k=1

[
−Ji j

M
σi,kσ j,k

− 1

(2β )
ln

(
coth

β�

M

)
σi,kσi,k+1

]
, (A9)

where σi,k are the eigenvalues of σ z and, therefore, there is no
noncommuting part in Heff .

Each single quantum spin variable σi in the original Hamil-
tonian is now represented by an array of M numbers of
classical spins σi,k . Therefore, the partition function of the 1D
quantum Ising model is mapped to that of the 2D Ising model.

This new (timelike) dimension k, along which these classical
spins are spaced, is called the Trotter dimension.

APPENDIX B: SELF-DUALITY OF THE
TWO-DIMENSIONAL ISING MODEL

In this Appendix, we summarize the derivation of the criti-
cal line for the anisotropic two-dimensional Ising model via
the self-duality property [29,71,72]. We closely follow the
lecture notes by Muramatsu [72].

Taking into account the partition function of the Ising
model (where K = βJ),

Z =
∑
{S j}

eK
∑

〈 j,l〉 S j Sl =
∑
{S j}

∏
〈 j,l〉

eKSj Sl

=
∑
{S j}

∏
〈 j,l〉

1∑
r=0

Cr (K )(S jSl )
r, (B1)

where C0(K ) = cosh K and C1(K ) = sinh K . Applying a sim-
ple transformation, for each bond 〈 j, l〉, a new Z2 variable
r is introduced. We label the new variable as rμ with μ ≡
(i, 〈i, j〉), labeling it with the site i from which the bond 〈i, j〉
emanates. The partition function thus follows

Z =
∑
{S j}

∑
{rμ}

∏
〈 j,l〉

Crμ
(K )

∏
i

S
∑

〈i, j〉 rμ

i . (B2)

Grouping all products of spins at site i together,
∑

〈i, j〉 rμ, con-
tains all four contributions resulting from the bonds connected
to site i. Further, we explicitly perform the sum over all spin
configurations:

Z =
∑
{rμ}

∏
〈 j,l〉

Crμ
(K )

∏
i

∑
Si=±1

S
∑

〈i, j〉 rμ

i

=
∑
{rμ}

∏
〈 j,l〉

Crμ
(K )

∏
i

2δ

⎡
⎣mod 2

⎛
⎝ ∑

<i, j>

rμ

⎞
⎠

⎤
⎦. (B3)

We define a dual lattice in which the vertices of the dual
lattice are set in the center of the plaquettes defined by the
original lattice. We have vanishing contributions as a result of
the presence of the Kronecker δ in many configurations. By
defining the new Z2 variables σi = ±1 on the sites of the dual
lattice, we can associate with each link of the original lattice
a pair of σi’s (e.g., on the sites i and j on the dual lattice).
Therefore, the variable rμ is expressed as

rμ = 1
2 (1 − σiσ j ), (B4)

where the sites i and j in the dual network are those where
the link crosses rμ. The sum of rμ is over the four nearest
neighbors of a site i, and we have∑

〈i, j〉
rμ = 2 − 1

2
(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1). (B5)

There are 24 possible configurations for the four variables
σ1, . . . , σ4. They are grouped into four cases, and all of the
cases lead to an even number for the sum of rμ over the
nearest-neighbor bonds. The choice of variables needs to
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satisfy the δ function. The partition function becomes

Z = 1

2
2N

∑
{σi}

∏
〈 j,l〉

C[(1−σiσ j )/2](K ), (B6)

where N is the number of sites in the lattice, and the product
is now in the bonds associated with the dual lattice. The
expression of the partition function shows that the weight for
each configuration of the σ ’s is given by the coefficients C(K ).
Hence, rewriting C(K ) to a form that resembles a Boltzmann
weight,

Cr (K ) = cosh(K ){1 + r[tanh(K ) − 1]}
= cosh(K ) exp ( ln{1 + r[tanh(K ) − 1]})

= cosh(K ) exp[r ln tanh(K )]

= cosh(K ) exp

[
1

2
(1 − σiσ j ) ln tanh(K )

]

= [cosh(K ) sinh(K )]1/2 exp

(
−1

2
ln tanh Kσiσ j

)
,

(B7)

the partition function becomes

Z = 1/2(sinh 2K̃ )−N
∑
{σi}

exp

⎛
⎝K̃

∑
〈 j,l〉

σ jσl

⎞
⎠. (B8)

There are 2N bonds, and we define the new coupling constant
on the dual lattice as follows:

K̃ ≡ − 1
2 ln tanh(K ), (B9)

where K = βJ . The Ising model is self-dual, since the dual-
ity transformations bring it into itself. We consider the free
energy per site

f (Z ) = − 1

N
ln Z. (B10)

According to the relation between the partition functions of
the original and the dual model, we can write

f (K ) = ln sinh(2K̃ ) + f (K̃ ). (B11)

This is a strong constraint on free energy. Since sinh(2K̃ ) is an
analytic function, a singularity in f (K ) implies a singularity
in f (K̃ ). K̃ (K ) is a monotonous function of K ; hence, it holds
K̃c = Kc and we have the following:

Kc = 1
2 ln(1 +

√
2). (B12)

Self-duality has allowed us to calculate the exact value of
the critical temperature in the two-dimensional isotropic Ising
model (Kx = Ky), where Kx = βJx and Ky = βJy. Generaliz-
ing the results obtained in the isotropic to the anisotropic one,
that is, when couplings Kx �= Ky in the respective directions,
the anisotropic case is as follows:

K̃y ≡ − 1
2 ln tanh(Kx ), K̃x ≡ − 1

2 ln tanh(Ky). (B13)

Given Kx and Ky, there is only one critical point, with the
following condition for a critical line that separates the or-
dered phase from the disordered phase in the anisotropic Ising

model:

sinh(2Kxc) sinh(2Kyc) = 1. (B14)

APPENDIX C: β-TCVAE LOSS

The expression of the total loss for the VAE is given by

L(φ, θ ; x, z) = LRC + LKLD, (C1)

where the reconstruction error (RC) and the Kullback-Leibler
divergence (KLD) are defined as

LRC = −Ez∼qφ (z|x)[log pθ (x|z)] (C2)

and

LKLD = DKL[qφ (z|x)||p(z)], (C3)

respectively. Suppose the prior distribution of the latent
representation is Gaussian. In that case, the VAE provides
disentangled factors in the latent representation, which means
the significant dimensions of the latent space are largely inde-
pendent of each other. In β-total correlation VAE (β-TCVAE),
we try to improve the disentanglement of factors in the repre-
sentation by decomposing the KLD term and apply the tuning
parameters independently [49,50]. Each training sample is
identified with a unique integer index n ∈ 1, 2, . . . , N and
assigned a uniform random variable in this decomposition.
The aggregated posterior qφ (z) = ∑

n qφ (z|n)p(n) captures
the aggregate structure of the latent variables under the distri-
bution of the input, where qφ (z|n) = qφ (z|xn) and qφ (z, n) =
qφ (z|n)p(n) = 1

N qφ (z|n). The decomposition is given as

I (z; x) + DKL

⎡
⎣qφ (z)||

∏
j

qφ (z j )

⎤
⎦

+
∑

j

DKL[qφ (z j )||p(z j )]. (C4)

The first term is the index-code mutual information,
I (z; x) = DKL[qφ (z, n)||qφ (z)p(n)], between the input and the
latent variable, which is based on the empirical input distri-
bution qφ (z, n). The second term measures the dependence
between the latent variables and the total correlation (TC).
It is essential to produce representations that penalize the
total correlation and force the model to discover statistically
disentangled factors in the input distribution. The third term
prevents the individual latent variables in the representation
from deviating far from their priors. It is called dimensionwise
KLD [50]. After adding the tuning parameters to the decom-
position, the β-TC-modified KLD term becomes

Lβ−TC = αI (z; x) + βDKL

⎡
⎣qφ (z)||

∏
j

qφ (z j )

⎤
⎦

+ γ
∑

j

DKL[qφ (z j )||p(z j )]. (C5)

Modulating only the parameter β shows the most signif-
icant effect on disentanglement in the latent representation
given by empirical evidence [49].
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FIG. 6. The first principal component of the latent mean, ν0, with respect to the different Kx and Ky [1/(βJx ) and 1/(βJy )] for the 2D square
lattice. The left and right panels are for the system sizes N = M = 64 and N = M = 128, respectively.

APPENDIX D: FIRST PRINCIPAL COMPONENT
OF THE LATENT MEAN

The first principal component of the latent mean ν0 is
shown in Fig. 6. As the samples in the paramagnetic phase

are noisy from thermal fluctuations that destroy any possible
order, the ν0 remains somewhat uniform in the whole phase-
space diagram. However, it varies slightly near the phase
transition region without clearly demarcating the two phases,
as seen in Fig. 6.
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