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Hyperpolarizabilities of hydrogenlike atoms in Debye and dense quantum plasmas
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The hyperpolarizabilities of the hydrogenlike atoms in Debye and dense quantum plasmas are calculated
using the sum-over-states formalism based on the generalized pseudospectral method. The Debye-Hückel and
exponential-cosine screened Coulomb potentials are employed to model the screening effects in, respectively,
Debye and dense quantum plasmas. Our numerical calculation demonstrates that the present method shows
exponential convergence in calculating the hyperpolarizabilities of one-electron systems and the obtained results
significantly improve previous predictions in the strong screening environment. The asymptotic behavior of
hyperpolarizability near the system bound-continuum limit is investigated and the results for some low-lying
excited states are reported. By comparing the fourth-order corrected energies in terms of hyperpolarizability
with the resonance energies using the complex-scaling method, we empirically conclude that the applicability
of hyperpolarizability in perturbatively estimating the system energy in Debye plasmas lies in the range of
[0, Fmax/2], where Fmax refers to the maximum electric field strength at which the fourth-order energy correction
is equal to the second-order term.
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I. INTRODUCTION

Investigation of the plasma screening effect on atomic
structural properties and scattering dynamics has attracted
considerable interest in the past decades due to its importance
in diagnosing plasma parameters and understanding the ele-
mentary processes in plasmas [1–8]. The hyperpolarizability
of an atom affected by plasma screening has become the
focus of study in recent years [9–16]. Such a quantity is in-
timately related to the third-order nonlinear optical processes
of atoms in external electric fields, such as the third-harmonic
generation, the dc Kerr effect, electric-field-induced second-
harmonic generation, and the degenerate four-wave mixing
[17,18]. The static hyperpolarizability can be understood as
the origin of the fourth-order energy correction when the
atom is placed in a weak static electric field and the poles
of frequency-dependent (dynamic) hyperpolarizability are di-
rectly related to the two-photon excitation energies of the
system. For the free H atom, the static hyperpolarizability
is known exactly [19,20] and the dynamic hyperpolarizabil-
ity has also been obtained with very high accuracy [17].
However, the variation of these quantities even for the sim-
plest H atom under plasma screenings has far from been
established.

In this work, we focus on two model plasmas [21],
i.e., the weakly coupled classical (Debye) and the dense
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quantum plasmas. The weakly coupled classical plasmas,
which generally possess high temperatures and low densi-
ties, are usually modeled by the Debye-Hückel [22] or static
screened Coulomb potential (SCP), V (r) = Ze2

r e−λr , where
λ = 1/D is the screening parameter and D = √

kBTe/(4πne)
is the Debye length [1]. For atomic or ionic targets embed-
ded in these plasmas, the electron-nucleus and interelectronic
Coulomb interactions are commonly replaced by the stati-
cally averaged SCPs (see Ref. [8] and references therein). In
the extreme of opposite conditions, i.e., the strongly coupled
quantum plasmas which are characterized by low temper-
atures and high densities, the quantum mechanical effects
are nonnegligible in modeling the average interaction be-
tween charged particles because the de Broglie wavelength of
the test charged particles may be comparable to the Debye
length of plasmas. In this situation, the modified Debye-
Hückel or exponential cosine screened Coulomb potential
(ECSCP), V (r) = Ze2

r e−λr cos(λr), was developed by Shukla
and Eliasson [23–25] and then was extensively employed
in investigating various atomic properties in dense quan-
tum plasmas (see Ref. [26] and references therein). The
screening parameter, however, reads λ = kq/

√
2 where kq =√

2meωpe/h̄ represents the electron quantum wave number in
association with the electron plasma frequency ωpe [23]. For
convenience, we will use SCP and ECSCP to indicate, respec-
tively, the Debye and dense quantum plasmas, and for the sake
of generalization, we use a single screening parameter λ in
both SCP and ECSCP by ignoring its explicit dependence on
plasma parameters [21].
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The first calculation of the hyperpolarizability of H atom
in Debye plasmas initiates from Saha et al. [9], where the
variational perturbation method based on Slater-type orbitals
is employed to obtain the hyperpolarizability over a wide
range of screening parameters. A significant enhancement
of the hyperpolarizability at large screening parameters was
observed. The dynamic hyperpolarizability and two-photon
excitations of H atom in Debye plasmas were investigated
by Bhattacharyya et al. [10] using time-dependent variational
perturbation theory. In a subsequent work [11], these authors
extended their calculations to dense quantum plasmas and
compared the variation of hyperpolarizability in these two dif-
ferent screening conditions. The same computational method
was recently employed by Chaudhuri et al. [12] in which they
investigated the two-photon transition energies and probabili-
ties of the H atom in both Debye and dense quantum plasmas.
We also note that the hyperpolarizabilities for some multielec-
tron atoms in different plasmas are available in the literature.
For example, the hyperpolarizabilities of two-electron atoms
under spherically confined Debye plasmas, strongly coupled
plasmas, and dense quantum plasmas were obtained by Sen
et al. [13,14] and Chaudhuri et al. [15], where the varia-
tional perturbation theory within the coupled Hartree-Fock
scheme has been adopted to take into account partial electron
correlation effects. The influence of Debye plasmas on the
hyperpolarizability of the lithium atom was surveyed by Kang
et al. [16] utilizing a linear variation method based on B-
spline basis functions. In their research, a one-electron model
potential was employed to simplify the three-electron atom
and, furthermore, the plasma screening effect was introduced
empirically on the model potential. In what follows we will
focus on the H-like atoms, which excludes the complexities
due to electron correlation, and primarily pay our attention to
the plasma screening effect on the hyperpolarizability.

In this work, we employ the sum-over-states formalism to
calculate the hyperpolarizabilities of H-like atoms in both the
ground and excited states embedded in Debye and dense quan-
tum plasmas. The generalized pseudospectral (GPS) method
[27–29] in discrete variable representation is adopted to effi-
ciently and accurately produce the system eigenenergies and
wave functions. The combination of these two techniques
enables us to obtain accurate hyperpolarizability over the en-
tire range of screening parameters where the system is still
bound, and opens the possibility of analyzing the intriguing
phenomena of the system in extreme conditions introduced by
plasmas. This paper is organized as follows. Section II details
the theoretical method employed in this work. The results and
discussion are given in Sec. III, which includes the conver-
gence test of our numerical calculations, the comparison with
previous predictions, the variation and asymptotic behavior of
hyperpolarizability in both the ground and excited states, and
a discussion on the applicability of the hyperpolarizability. We
summarize the present work in Sec. IV. Atomic units (a.u.) are
used throughout this paper unless otherwise mentioned.

II. THEORETICAL METHOD

The time-independent Schrödinger equation for the one-
electron atom in the presence of an external static electric field

can be formally written as

H |ψk〉 = Ek|ψk〉, (1)

where the full Hamiltonian of the system consists of two parts,
i.e.,

H = H (0) + FH ′. (2)

H (0) is the unperturbed Hamiltonian of the one-electron atom
in the form

H (0) = −1

2

d2

dr2
+ l (l + 1)

2r2
+ V (r), (3)

where the effective potential in the plasma environment reads

V (r) =
{ − Z

r e−λr (SCP),

− Z
r e−λr cos(λr) (ECSCP).

(4)

It is worth noting that, when λ = 0, both SCP and ECSCP
reduce to the Coulomb potential in free H-like ions. In Eq. (2),
F represents the strength of the homogeneous static electric
field, and H ′ refers to the strength-independent interaction
between the atom and external electric field, which in the
dipole approximation, is given by

H ′ = −r cos θ. (5)

Here we chose the electric field F in the z direction and,
correspondingly, θ is the polar angle of the electron.

When the electric field is relatively weak so that the
field-atom interaction can be treated as a perturbation to
the Coulomb interaction, the system eigenenergies and wave
functions can be expanded as power series in terms of the field
strength F [30],

Ek = E (0)
k + FE (1)

k + F 2E (2)
k + F 3E (3)

k + F 4E (4)
k + . . . , (6)

|ψk〉 = ∣∣ψ (0)
k

〉 + F
∣∣ψ (1)

k

〉 + F 2
∣∣ψ (2)

k

〉
+ F 3

∣∣ψ (3)
k

〉 + F 4
∣∣ψ (4)

k

〉 + . . . , (7)

where the lowest-order energies and wave functions satisfy the
Schrödinger equation of the unperturbed Hamiltonian H (0)

H (0)
∣∣ψ (0)

k

〉 = E (0)
k

∣∣ψ (0)
k

〉
, (8)

and the wave functions form a complete set of orthonormal
eigenfunctions 〈

ψ
(0)
k′

∣∣ψ (0)
k

〉 = δkk′ . (9)

Following the standard perturbation theory of quantum me-
chanics and considering that the dipole interaction shown in
Eq. (5) is in odd parity, it is readily obtained that all odd-
order energy corrections vanish and only even-order terms
survive. The static dipole polarizability (α) and hyperpolariz-
ability (γ ) of the one-electron system are then defined through
the second- and fourth-order energy corrections [31], respec-
tively, by

α = −2E (2)
k , (10)

and

γ = −24E (4)
k . (11)
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In the sum-over-states formalism [18], the second- and
fourth-order energy corrections can be formally written as

E (2)
k =

∑
n∈p

′ |H ′
n,k|2

E (0)
k − E (0)

n

, (12)

and

E (4)
k =

∑
j∈p

′
(∑

i∈s,d

′∑
n∈p

′ H ′
k, jH

′
j,iH

′
i,nH ′

n,k(
E (0)

k − E (0)
j

)(
E (0)

k − E (0)
i

)(
E (0)

k − E (0)
n

)
−

∑
n∈p

′ |H ′
j,k|2|H ′

n,k|2(
E (0)

k − E (0)
j

)2(
E (0)

k − E (0)
n

)
)

, (13)

where H ′
j,i refers to the dipole transition matrix element from

the initial |i〉 to the final | j〉 states

H ′
j,i = 〈

ψ
(0)
j

∣∣H ′∣∣ψ (0)
i

〉
. (14)

In this work, we are interested in the polarizabilities for
the s-wave states of the H-like atoms. Therefore, in both
Eqs. (12) and (13), the indexes n and j run over all p-wave
states and the index i runs over all s- and d-wave states.
This is due to the fact that the dipole transition only permits
the angular momentum selection rule of 
l = ±1. It is then
obvious that the dipole polarizability of atoms with s-wave
initial state involves s → p one-photon transitions and the
dipole hyperpolarizability involves both s → p → s and s →
p → d two-photon transitions. It is also worth noting that the
primes in the summations over n, i, and j in Eqs. (12) and
(13) indicate the omission of any intermediate states that are
degenerate with the initial state |ψ (0)

k 〉.
From the above discussion it is clear that the transition

matrices in Eqs. (12) and (13) involve only s → p and p → d
dipole transitions, and the magnetic quantum numbers for all
final states are restricted to zeros, considering the initial state
in s-wave symmetry. The transition matrix of Eq. (14) thus
reduces to

H ′
j,i = 〈r〉n j l j

nili

√
(2li + 1)(2l j + 1)

{
l j 1 li

0 0 0

}2

, (15)

where the radial component reads

〈r〉n j l j

nili
=

∫ ∞

0
Rnj l j (r)rRnili (r)r2dr, (16)

in which Rnili (r) and Rnj l j (r) are the radial parts of the initial
and final state wave functions, respectively. An accurate calcu-
lation of polarizability and hyperpolarizability requires (i) the
complete spectrum of the unperturbed system including both
bound and (pseudo) continuum states, and (ii) the accurate
computation of each radial transition matrix element.

In this work, we employ the generalized pseudospectral
(GPS) method to accomplish this task. The implementation
details of the GPS method are available elsewhere and inter-
ested readers are referred to Refs. [27–29] for details. As a
numerical method formulated in discrete variable representa-
tion, the GPS method has shown its high flexibility and fast
convergence in calculating the bound-state energies and wave
functions for one-electron systems [29]. After mapping the
semi-infinite range of r ∈ [0,∞] onto x ∈ [−1, 1], discretiz-
ing the radial variable x based on the Legendre-Gauss-Lobatto

quadrature, and solving the standard eigenvalue problem for
the transformed radial Schrödinger equation, the radial com-
ponent of the transition matrix is expressed as

〈r〉n j l j

nili
=

N∑
k=0

f (xk )φn j l j (xk )φnili (xk )ωk, (17)

where f (x) is the mapping function in the form

r = f (x) = L
1 + x

1 − x
, (18)

φnl (x) is the transformed radial wave function defined by

φnl (x)√
f ′(x)

= rRnl (r), (19)

and xk and ωk are, respectively, abscissas and weights of the
Legendre-Gauss-Lobatto quadrature [32]. It is worth noting
that Eq. (17) is derived on the assumption that the same
mapping function f (x) and same total number of mesh points
N are employed for both the initial and final states. For a
more general expression where the initial and final states are
obtained with different mapping functions at different mesh
points, interested readers are referred to Eq. (30) of Ref. [33].
For convenience Eq. (17) is used throughout the present cal-
culations, and in doing so, we only need to gradually increase
N to achieve converged numerical results.

In our previous work [26], we derived that there exists a
Z-scaling law for the multipole polarizabilities of H-like ions
with respect to the nuclear charge

α(k)(δ) = Z2(k+1)α(k)(Z, λ), (20)

where k refers to the order of multipole expansion of the
electric radiative transition operator and

δ = λ

Z
. (21)

For the dipole polarizability it is readily obtained that α(δ) =
Z4α(Z, λ) [here we delete the superscript (1) by focusing in
this work only on the dipole transition]. Following the same
procedure, we obtain the Z-scaling law for dipole hyperpolar-
izability in the form

γ (δ) = Z10γ (Z, λ). (22)

In our following work, we will focus on the neutral H atom,
but keep in mind that the polarization quantities for H-like
ions and any other two-body systems can be gained straight-
forwardly.

III. RESULTS AND DISCUSSION

A. Convergence of calculation

To test the convergence and accuracy of the present nu-
merical calculations based on the GPS method, we provide
in Table I the ground-state energy, dipole polarizability, and
hyperpolarizability of the H atom under SCP at some se-
lected values of screening parameter. The total number of
mesh points N is gradually increased to ensure that all re-
ported numerical results converge to the last digit shown
in the table. For the ground state of a free H atom where
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TABLE I. Convergence of the ground-state energy (E (0)), dipole polarizability (α), and hyperpolarizability (γ ) for the H atom under SCP
at λ = 0, 0.1, 1.0, and 1.15. L = 10 in the mapping function is used throughout the calculations. Numbers in parentheses represent powers of
ten. The converged results for E (0), α, and γ are indicated by bold numbers.

λ N −E (0) α γ

0 20 5.0000000000006908020(−1) 4.5000000059861588371 1.3331250185885607170(3)
30 5.0000000000000000035(−1) 4.5000000000000164156 1.3331249999989915239(3)
40 5.0000000000000000000(−1) 4.5000000000000000000 1.3331250000000000246(3)
50 5.0000000000000000000(−1) 4.5000000000000000000 1.3331250000000000000(3)

0.1 20 4.0705803061332005914(−1) 4.6997774736678969249 1.5675901603037754557(3)
30 4.0705803061340315671(−1) 4.6997774714803966172 1.5675900747033090710(3)
40 4.0705803061340315675(−1) 4.6997774714803895329 1.5675900747027283676(3)
50 4.0705803061340315675(−1) 4.6997774714803895330 1.5675900747027283710(3)

1.0 40 1.0285789990017700458(−2) 7.8347657464167589943(2) 6.2784403158356940078(9)
60 1.0285789990017696805(−2) 7.8347657464284417354(2) 6.2784403196732991438(9)
80 1.0285789990017696805(−2) 7.8347657464284419499(2) 6.2784403196729366947(9)
100 1.0285789990017696805(−2) 7.8347657464284419499(2) 6.2784403196729366662(9)

1.15 100 4.5588902135595778646(−4) 3.1761384692707120940(5) 3.0026413121047833615(16)
120 4.5588902135595778568(−4) 3.1761384692707820913(5) 3.0026413121132694321(16)
140 4.5588902135595778568(−4) 3.1761384692707814781(5) 3.0026413121133278515(16)
160 4.5588902135595778568(−4) 3.1761384692707814813(5) 3.0026413121133293239(16)
180 4.5588902135595778568(−4) 3.1761384692707814813(5) 3.0026413121133292515(16)
200 4.5588902135595778568(−4) 3.1761384692707814813(5) 3.0026413121133292527(16)

there exist exact results for energy (E = −0.5), dipole polar-
izability (α = 4.5), and hyperpolarizability (γ = 1333.125),
we demonstrate in Fig. 1 the relative errors of the numerical
calculations defined by

δO =
∣∣∣∣ 〈O〉num − 〈O〉exact

〈O〉exact

∣∣∣∣. (23)

FIG. 1. Relative errors of the ground-state energy, dipole polar-
izability, and hyperpolarizability for the free H atom with increasing
the number of mesh points N . The exact value of energy is E =
−0.5. Exact dipole polarizability and hyperpolarizability are 4.5 and
1333.125, respectively. Dots represent the present GPS numerical
calculations and lines refer to the fittings based on power functions
of Eqs. (24) to (26).

It is observed that the GPS method possesses fast, exponential
convergence for all the three quantities as functions of N . The
exponential fittings of the numerical results yield

δE (N ) ∝ e−1.31N , (24)

δα (N ) ∝ e−1.19N , (25)

δγ (N ) ∝ e−1.07N . (26)

The system energy shows the most rapid convergence, which
is due to the fact that its numerical accuracy simply is the
quadratic order of the accuracy of system wave functions. The
accuracy of dipole polarizability and hyperpolarizability are
related to the fourth and eighth powers of the accuracy of sys-
tem wave functions, respectively. Therefore, the convergence
rate for polarizability is relatively slower than that for energy
and the convergence for hyperpolarizability is slowest.

The ground-state energy, polarizability, and hyperpolariz-
ability for the screened H atom in Debye plasmas for λ = 0.1,
1.0, and 1.15 are displayed in the lower part of Table I. The
convergence rates for all the three quantities become slower
at larger values of screening parameter, so one generally
needs more mesh points to achieve a similar accuracy. This is
because, as λ increases, the attractive screened Coulomb inter-
action becomes weaker and the electron probability density is
distributed further away from the nucleus (e.g., the mean value
of radius for the ground state of H atom is 1.5133, 4.3667, and
17.4465 for λ = 0.1, 1.0, and 1.15, respectively). Therefore,
in a stronger screening environment a larger number of mesh
points is necessary for discretizing the system wave function
in the configuration space. Even so, exponential convergence
is still observed in all numerical calculations. The fast con-
vergence shown in Table I indicates that the GPS method
is highly efficient and accurate in predicting the hyperpo-
larizabilities of one-electron systems in a plasma screening
environment.
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FIG. 2. Comparison of the hyperpolarizability for the ground
state of H atom under SCP and ECSCP with the previous calculations
of Saha et al. [9] and Bhattacharyya et al. [11]. The inset magnifies
the comparison at small values of screening parameter and indicates
the crossover phenomenon between the hyperpolarizabilities for SCP
and ECSCP.

B. Ground state of the H atom under SCP and ECSCP

The hyperpolarizabilities for the ground state of the H atom
under SCP and ECSCP are shown in Table II, together with
the comparison with previous calculations of Saha et al. [9]
and Bhattacharyya et al. [11]. The present calculations are
performed by using N = 300 and L = 50, and the results
shown in Table II are converged to their last reported digit.
It has been well established that the critical screening pa-
rameters for the ground state of H atom in SCP and ECSCP
are λc = 1.190612421 . . . and 0.720524085 . . . , respectively,
beyond which the ground state ceases to exist [34,35]. When
the screening parameter approaches a corresponding critical
value, the bound-state energy approaches zero and the elec-
tron density distribution extends to an infinite region. As a
result, both the dipole polarizability and hyperpolarizability
are expected to be infinitely large. As is shown in Table II,
the hyperpolarizabilities at λ = 1.19 for SCP and λ = 0.72
for ECSCP are 31 and 27 orders of magnitude greater than for
λ = 0. These large values may become less useful in practical
applications, but they give good evidence about the extremely
diffuse character of the system wave function and further
reveal the high stability of the present numerical method in
extreme situations.

The comparisons of the present results with previous pre-
dictions of Saha et al. [9] and Bhattacharyya et al. [11] shown
in Table II are also depicted in Fig. 2 for a clear view. In
both of those two works, variational perturbation theory was
employed to calculate the static dipole hyperpolarizability
with the ground and perturbed wave functions represented by
linear combinations of Slater-type orbitals. In the first work
[9], the authors performed numerical calculations in SCP for
screening parameters up to λ = 1.1158, which is very close to
the critical screening parameter of the ground state. However,
the difference between their results and the present calcu-

TABLE II. Hyperpolarizabilities for the ground state of H atom
under SCP and ECSCP at some selected values of screening param-
eter λ. Numbers in parentheses represent powers of ten.

λ γ SCP λ γ ECSCP

0 1.33312500000000(3) 0 1.33312500000000(3)
1.333123(3)a

0.01 1.33563563156775(3) 0.01 1.33323223570712(3)
0.02 1.34299629622742(3) 0.02 1.33395777840433(3)
0.03 1.35501552947499(3) 0.03 1.33585521958968(3)

1.3554453(3)b 1.3359058(3)b

0.05 1.39263656835205(3) 0.05 1.34509124298012(3)
1.3938(3)a

1.3938411(3)b 1.3453024(3)b

0.10 1.56759007470273(3) 0.10 1.41910847190232(3)
1.5730(3)a

1.5730573(3)b 1.4205996(3)b

0.15 1.87866281414449(3) 0.15 1.60911767261550(3)
0.16 1.96140782581178(3) 0.16 1.66744774418353(3)

1.9807084(3)b 1.6745049(3)b

0.20 2.38199794440540(3) 0.20 2.00164861275670(3)
0.25 3.18558119077690(3) 0.25 2.79101133303770(3)
0.29 4.17417443344196(3) 0.29 4.02460758626196(3)
0.30 4.48950924228838(3) 0.30 4.48162074147295(3)

4.6876(3)a

0.31 4.83890731006862(3) 0.31 5.02564056011840(3)
0.35 6.67199948713675(3) 0.35 8.58073326717876(3)
0.40 1.04759070926314(4) 0.40 2.04594641402194(4)
0.45 1.74315081036102(4) 0.45 6.41607680403998(4)
0.50 3.08691643321966(4) 0.50 2.86427341644380(5)

3.1160(4)a

0.55 5.85037436369192(4) 0.55 2.10393051920749(6)
0.60 1.19526340322576(5) 0.60 3.52128036173099(7)
0.65 2.65760550903478(5) 0.65 3.40018733729942(9)
0.70 6.51248319218769(5) 0.70 2.77503386434471(14)
0.75 1.78925013732943(6) 0.71 1.71016930018473(17)
0.80 5.64447821092549(6) 0.715 9.39557071352214(19)

4.2501(6)a

0.85 2.11594908913262(7) 0.718 2.17507837604187(23)
0.90 9.92329621397610(7) 0.719 3.27970903898550(25)
0.95 6.31688152465127(8) 0.72 1.37780877599454(30)
1.00 6.27844031967294(9)

1.2727(9)a

1.10 1.00679177559835(13)
7.9187(10)a

1.11 3.22538712782945(13)
1.4412(11)a

1.1157 6.69602140915848(13)
2.0947(11)a

1.1158 6.78572583069264(13)
2.1090(11)a

1.12 1.20673427872450(14)
1.14 3.33886042165855(15)
1.15 3.00264131211333(16)
1.16 5.04742278506385(17)
1.17 2.62265272461958(19)
1.18 1.99480085665871(22)
1.185 1.16294479173549(25)
1.189 3.03037038356239(30)
1.19 4.84824474173634(34)

aSaha et al. [9].
bBhattacharyya et al. [11].
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lations increases significantly as λ increases. For instance,
for λ < 0.1 they predicted slightly larger values of hyper-
polarizability than our calculations, while for λ > 1.1 their
results are two orders of magnitude smaller than ours. This
discrepancy is probably attributable to the insufficient number
of Slater-type orbitals used in constructing the perturbed wave
functions. In the subsequent work of Bhattacharyya et al. [11],
the authors focused on the variation of static and dynamic
hyperpolarizabilities at relatively small screening parameters
(λ � 0.16). Their numerical results generally reproduce the
predictions of Saha et al. [9] in SCP, and are systematically
larger than our calculations in both SCP and ECSCP. Another
calculation of the hyperpolarizabilities of H-like atoms in SCP
comes from the most recent work of Bhatia and Drachman
[36] in the sum-over-states formalism, where pseudostates
for s, p, d , and f states are also constructed by utilizing
the Slater-type orbitals. However, those authors defined two
physical quantities named by the third-order polarizability
and the fourth-order hyperpolarizability (see Eqs. (7) and (8)
in Refs. [36,37] for their definitions), which use similar but
different formalism compared to the second and first terms
on the right-hand side of our Eq. (13). Unfortunately, we are
unable to make a direct comparison of their numerical results
to the present calculations.

The comparison between SCP and ECSCP reveals another
interesting phenomenon: although the ECSCP manifests a
stronger screening effect on the Coulomb potential than SCP,
its hyperpolarizability is smaller at relatively small screening
parameters. The crossover point is located at about λ = 0.30,
after which the increasing speed of ECSCP is much faster than
that of SCP. A similar phenomenon was observed in the dipole
polarizability where the result for ECSCP goes across that
for SCP at about λ = 0.368 [38]. Therefore, even though the
zeroth-order energy of the system in the electric field strictly
satisfies the inequality E (0)

SCP � E (0)
ECSCP, which is established

from the comparison theorem of quantum mechanics [39],
one must be careful about the comparison of total energy
between different potentials due to the diverse contributions
from high-order energy corrections.

C. Asymptotic behavior of hyperpolarizability

In addition to the high-precision numerical values of hyper-
polarizability in the range of screening parameters where the
bound state survives, we are also interested in its asymptotic
behavior near the system bound-continuum limit, i.e., at λ

near λc. In our previous work [26], we approximately derived
and numerically verified that, when λ → λc, the multipole
polarizabilities for the s-wave states of one-electron systems
obey power laws as a function of λc − λ,

α(k)(λ) ∝ (λc − λ)−2(k+1). (27)

For the dipole polarizability, i.e., k = 1, it readily has α(λ) ∝
(λc − λ)−4 [the superscript (1) is omitted].

The asymptotic behavior for the dipole polarizability can
be easily understood from the approximate formulas such
as the Kirkwood [40], Buckingham [41], Unsöld [42], and
Dalgarno and Lewis [43] expressions (see Eqs. (19) to (23) in
Ref. [26] for their explicit forms), where the first two are lower
bounds to the exact dipole polarizability for a spherical s-wave

FIG. 3. Critical behavior of the hyperpolarizability for the
ground state of H atom under SCP and ECSCP near correspond-
ing critical screening parameters [λSCP

c (1s) = 1.190612421 . . . and
λECSCP

c (1s) = 0.720524085 . . . ]. Dots represent the present GPS nu-
merical calculations and lines refer to the fittings based on the power
function in Eq. (30).

state and the second two are upper bounds for the ground state
[44]. The asymptotic formula then can be obtained by utilizing
the critical behaviors of the s-wave state energies

Ens(λ) ∝ (λc − λ)2, (28)

and corresponding radial expectation values

〈rk〉ns(λ) ∝ (λc − λ)−k, (29)

with the further assumptions that Unsöld [42] and Dalgarno
and Lewis [43] approximations are still valid and the eigenen-
ergy of the 2p state at screening parameters near λc(1s) (more
precisely, the lowest p-wave continuum state) is zero.

However, due to the absence of approximate formulas for
hyperpolarizability, even for the ground state of H-like atoms,
we are currently unable to perform a similar analysis of the
asymptotic behavior as we did in multipole polarizabilities.
We present in Fig. 3 the numerical calculations and power-law
fittings of the hyperpolarizabilities of the H atom in both SCP
and ECSCP for screening parameters near the corresponding
critical values. It is unambiguously observed that they both
follow the tenth-order power law

γ (λ) ≈ (λc − λ)−10, (30)

which means that the hyperpolarizability increases by six
orders of magnitude faster than the dipole polarizability when
the system approaches its continuum limit. Remembering that
hyperpolarizability relates to the fourth-order energy correc-
tion in terms of the electric field strength, i.e., Eq. (11), it is
expected that the perturbation series of system energy shown
in Eq. (6) diverge faster as the field strength increases.

It is also interestingly found that Eqs. (27) and (30) show
much similarity to, respectively, Eqs. (20) and (22) on the
orders of the power laws. Their intrinsic connection is still
unclear. Nevertheless, either formal analysis of the exact
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FIG. 4. Variation of the hyperpolarizability for the (a) 2s and
(b) 3s excited states of H atom under SCP. The inset in (a) and
the upper inset in (b) demonstrate the near-zero hyperpolarizabilities
in the region of “tune-out” screening parameter. The lower inset in
(b) indicates the contribution of the 3d state near its corresponding
critical screening parameter [λSCP

c (3d ) = 0.091345120 . . . ].

formula of hyperpolarizability or the development of new
approximations would shed light on the asymptotic behavior
of hyperpolarizability.

D. Excited states of the H atom under SCP and ECSCP

The static dipole hyperpolarizabilities for the 2s−5s ex-
cited states of the H atom under SCP and ECSCP are
calculated by employing the same technique as that for the
ground state, and their numerical values are provided in the
Supplementary Material [45] for further reference.

In Figs. 4(a) and 4(b), the hyperpolarizabilities for the
2s and 3s states of the H atom under SCP are displayed
to demonstrate the representative behavior of this quantity
in excited states. It is interestingly found that, unlike in the
ground state, the hyperpolarizability in excited states acquires
an infinitely negative value at extremely small, but nonzero,
screening parameters. This is nothing else but the sudden
removal of the energy degeneracy in excited states with re-
spect to the orbital angular momentum, e.g., 2s and 2p states

TABLE III. “Tune-out” screening parameters of hyperpolariz-
ability for the 2s−5s excited states of H atom under SCP and ECSCP.

State λSCP
tune-out λECSCP

tune-out

2s 0.201467610774525 0.143955330371167
3s 0.107245055195906 0.068263653379657
4s 0.065740732516004 0.039287893137210
5s 0.044177248516130 0.025439578475880

in the n = 2 shell and 3s, 3p, and 3d states in the n = 3
shell. It can be deduced from Eqs. (12) and (13) that, when
λ increases slightly from zero, the extremely small energy
difference in the denominator leads to infinitely large mag-
nitudes of both polarizability and hyperpolarizability for the
excited states. As the screening strength increases continu-
ously, the hyperpolarizability increases smoothly, goes across
zero, and finally approaches positive infinity at screening pa-
rameters near the corresponding critical value (λSCP

c (2s) =
0.310209282 . . . and λSCP

c (3s) = 0.139450294 . . .). For the 3s
excited state shown in Fig. 4(b), the hyperpolarizability shows
an additional hump structure at about λ = 0.09. We identify
this behavior as the contribution from the 3d state. Such a
state transitions from a bound to continuum state exactly at
λSCP

c (3d ) = 0.091345120 . . . , which would slightly suppress
the increase of hyperpolarizability.

The zero value of hyperpolarizability attracts special inter-
est in our research because, in this situation, the fourth-order
energy correction disappears in the construction of the sys-
tem’s total energy, perturbed by the external electric field.
We named these special screening parameters as “tune-out”
screening parameters for hyperpolarizability, in a similar
manner to the definition of tune-out wavelength for atomic
dynamic dipole polarizability [46–48]. The tune-out screening
parameters for the 2s−5s states of the H atom under SCP and
ECSCP are listed in Table III and the determination of these
parameters can be found in the Supplementary Material [45].
There exists only one tune-out screening parameter for each
state and its magnitude decreases rapidly along with higher
excited state. In the following section, we will show that
the tune-out screening parameter is responsible for the cusp
structure in the maximum effective field strength for excited
states.

E. Applicability of hyperpolarizability

In this section, we would like to propose some empirical
discussion on the range of application for the perturbation the-
ory, or more precisely, the applicability of hyperpolarizability
in estimating the energy of one-electron atoms in a plasma
screening environment. As shown in Eq. (6), the perturbed
series can only converge if the higher-order energy correction
is smaller than the lower-order one. Because the hyperpo-
larizability is generally several orders of magnitude larger
than the polarizability, we define a maximum effective electric
field strength Fmax, where the fourth-order energy correction
is equal to the second-order one, i.e.,

F 2
maxE (2)

k = F 4
maxE (4)

k . (31)
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TABLE IV. Maximum effective electric field strength Fmax for the
first five s-wave states of the free H atom. Numbers in parentheses
represent powers of ten.

State α γ Fmax

1s 4.5 1.333125(3) 2.0126184217(−1)
2s 1.2(2) 1.26432(7) 1.0672170182(−2)
3s 1.0125(3) 3.729453647625(9) 1.8049514809(−3)
4s 4.992(3) 2.48016273408(11) 4.9145959964(−4)
5s 1.78125(4) 6.996711181640625(12) 1.7478577648(−4)

Recalling Eqs. (10) and (11), we can establish that, in order to
ensure the fourth-order energy correction to be smaller than
the second-order term, the effective field strength must be in
the range of

F < Fmax ≡
√

12α

|γ | , (32)

where the absolute-value sign introduced in the denominator
is attributed to the possible negative value of hyperpolarizabil-
ity.

In Table IV, the estimated values of Fmax for the free H
atom (without plasma screenings) are displayed for the lowest
five s-wave states. Both the polarizabilities and hyperpolar-
izabilities for these states are analytically available in the
literature, so we conclude that the maximum effective electric
field strengths shown in the table are accurate to the last
reported digit. The fast decrease of the magnitude of Fmax

in higher-lying excited states indicates that the perturbation
theory is more applicable for the ground state.

In the plasma screening environment, however, the sit-
uation differs intrinsically between the ground and excited
states. In Fig. 5, our numerically calculated Fmax for the
ground state of H in SCP and ECSCP are displayed as a func-
tion of screening parameters. Due to the smooth increase of

FIG. 5. Maximum effective electric-field strength for the ground
state of H atom under SCP and ECSCP as a function of the screening
parameter.

FIG. 6. Maximum effective electric field strength for the 2s state
of H atom under SCP and ECSCP as a function of the screening
parameter.

the hyperpolarizability from free H atom (λ = 0) to screened
situations (λ > 0), as one can see from Table I, the value of
Fmax also decreases smoothly from 0.201261842 . . . to zero
as λ increases from zero to λSCP

c (1s) and λECSCP
c (1s). The

diminishing of Fmax in stronger screening environments is
simply due to the hyperpolarizability increasing faster than the
polarizability. To be specific, as we discussed in Sec. III. C, the
dipole polarizability increases by fourth power of λc − λ in
the asymptotic region, while the hyperpolarizability increases
by tenth power.

The variation of Fmax for the 2s excited state shown
in Fig. 6 reveals more interesting phenomena. It goes to
zero in both the extreme situations of λ → 0 and λ →
λSCP(ECSCP)

c (2s), which, respectively, are due to the negative
and positive infinities of the hyperpolarizability in these two
limits. In the middle of Fig. 6, a cusp structure appears exactly
at the tune-out screening parameter λ

SCP(ECSCP)
tune-out (2s), where the

hyperpolarizability incidentally reduces to zero (i.e., Fmax =
∞). The higher-lying excited states follow a similar trend and
their variations are not discussed here for brevity. With great
caution, we suggest that the application of hyperpolarizability
in the excited states of one-electron atoms in a plasma screen-
ing environment needs further careful consideration.

Finally, it is of crucial importance to make quantitative
comparisons between the perturbative estimations based on
(hyper)polarizabilities and those nonperturbative calculations.
There exist in the literature several sophisticated calculations
of the ground-state energy of the H atom in the combination
of plasma screening and electric field [49–53]. Essentially
speaking, the spectra of the H atom in a static electric field
are composed of resonance states (see Fig. 1 in Ref. [54]),
no matter how small the field intensity is, and the system is
more properly described in cylindrical or parabolic coordi-
nates other than spherical coordinates. The complex-scaling
(or complex-coordinate rotation) method [55] based on L2-
type basis functions was successfully employed to extract
the resonance state energies and widths of the Debye-plasma
screened H atom in a static electric field [50,52]. On the
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FIG. 7. Comparison of the zero-, second-, and fourth-order corrected energies for the ground state of H atom under SCP with previous
nonperturbative calculations by Ivanov [49], Yu and Ho [50], Paul and Ho [51], and Pawlak and Bylicki [52]. (a) λ = 0, (b) λ = 0.01, (c) λ =
0.02, (d) λ = 0.1, (e) λ = 0.2, (f) λ = 0.5. In each figure, the vertical dotted line indicates the electric field strength of Fmax/2.

other hand, Paul and Ho [51] numerically verified that, when
the electric field strength is relatively week, and so in this
case the resonance width is much smaller than the associated
resonance energy, the usual variational method can be safely
used to estimate the system energy by treating the resonance
state as a bound state. The perturbation treatment of this
problem employed in the present work, i.e., Eqs. (6) and (7),
although less accurate than the nonperturbative variational
method, should also be applicable in the weak electric field.

In Fig. 7, we compare the present zero-order (E (0)),
second-order (E (0) + F 2E (2)), and fourth-order (E (0) +
F 2E (2) + F 4E (4)) corrected energies with those nonperturba-
tive calculations for the ground state of the H atom in SCP
at some selected values of the screening parameter. The zero-
order energy depends only on the plasma screening parameter
and, therefore, it does not change with respect to the field
strength. The second-order effect due to polarizability low-
ers the ground-state energy, and the fourth-order correction
due to hyperpolarizability reduces the energy further. For all
screening parameters, the inclusion of fourth-order correc-
tion improves the agreement of perturbation estimation with
the accurate complex-scaling and variational calculations in
the weak-field region. However, it gradually underestimates
the system energy in the strong-field region. In each figure,
we empirically indicate the position of Fmax/2 [see Eq. (32)
and Fig. 5 for the definition and variation of Fmax], smaller
than which the fourth-order corrected energies are expected
to reasonably reproduce the sophisticated calculations. From
the comparisons shown in Fig. 7, we generally conclude that
the applicability of hyperpolarizability, i.e., the fourth-order
perturbation method, more likely lies in the range of F ∈
[0, Fmax/2], in different plasma screening conditions.

For the H atom in ECSCP, to the best of our knowledge,
the only complex-scaling calculation of the Stark resonances
was performed by Wang et al. [56] recently. However, those
authors primarily focused on high-lying resonance states
and no numerical data or depicted figures for the ground
state are available for comparison. In Fig. 8, the variation
of the fourth-order corrected ground-state energy of the H
atom with increasing electric field strength is displayed for

FIG. 8. The fourth-order corrected energies for the ground state
of H atom under ECSCP at some selected values of screening pa-
rameter. The dotted line indicates the electric field strength of Fmax/2
beyond which the perturbation theory is expected to fail.
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different screening parameters. The dividing line indicating
the boundary at Fmax/2, based on the same criteria in SCP,
is also included to guide the eye. It is conjectured that the
left region of the figure is responsible to predict the lowest
resonance state energy of the H atom in ECSCP. Further
sophisticated calculations based on complex-scaling or non-
perturbative variational methods are necessary to elucidate
such a conjecture.

IV. CONCLUSION

In this work, the hyperpolarizabilities of the H atom un-
der Debye and dense quantum plasmas are investigated by
employing the GPS method in the framework of sum-over-
states formalism. The exponential convergence of the GPS
method ensures that the present calculation provides a highly
accurate prediction of hyperpolarizability, especially in the
strong screening environment. When the system approaches
the bound-continuum limit as the screening parameter gets
close to the critical value, the hyperpolarizability increases by
a tenth-power law, which is six orders of magnitude larger
than that for the dipole polarizability.

We further extended the calculation to the excited states of
the H atom in both of two model plasmas. It is interestingly
found that when the screening effect is just introduced into
the system, the hyperpolarizability jumps from the free-atom
finite value to negative infinity, which is due to the sudden
removal of the energy degeneracy with respect to the orbital

angular momentum. With continuously increasing the screen-
ing strength, the hyperpolarizability goes across zero at the
so-called “tune-out” screening parameter, and finally follows
the asymptotic behavior near corresponding critical screening
parameters. Such a different trend between the excited and
ground states implies a divergent behavior of the maximum
field strength Fmax, which is defined by equating the second-
and fourth-order energy corrections.

We finally focus on the applicability of hyperpolarizabil-
ity in estimating the ground-state energy of the H atom in
a plasma screening environment. By comparing the fourth-
order corrected energies for H atom in Debye plasmas with
those nonperturbative complex-scaling and variational cal-
culations existing in the literature, we empirically conclude
that the effective electric-field strength lies in the range of
[0, Fmax/2], so that the perturbative calculations based on
(hyper)polarizabilities can reasonably reproduce the physical
resonance state energies. The confirmation of such a conjec-
ture for the H atom in dense quantum plasmas still needs
further verification by complex-scaling calculations.

The data that support the findings of this study are available
within the article.
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