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Modal and nonmodal stability analysis for an electrified falling film
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We have performed the modal and nonmodal stability analyses of a gravity-driven three-dimensional viscous
incompressible fluid flowing over an inclined plane in the presence of a uniform electric field acting normal to
the plane at infinity. The time evolution equations are derived for normal velocity, normal vorticity, and fluid
surface deformation, respectively, and solved numerically by using the Chebyshev spectral collocation method.
The modal stability analysis demonstrates the existence of three unstable regions for the surface mode in the
wave number plane at the lower value of the electric Weber number. However, these unstable regions coalesce
and magnify as the electric Weber number rises. By contrast, there exists only one unstable region for the shear
mode in the wave number plane, which attenuates slightly with an increase in the value of the electric Weber
number. But both the surface and shear modes are stabilized in the presence of the spanwise wave number, where
the long-wave instability shifts towards the finite wavelength instability as the spanwise wave number rises. On
the other hand, the nonmodal stability analysis reveals the existence of transient disturbance energy growth, the
maximum value of which intensifies slightly with an increase in the value of the electric Weber number.
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I. INTRODUCTION

Studies of the stability of viscous films have generated
enormous interest in the research field because of their variety
of applications in mechanical, chemical, and technological in-
dustries. As such studies have fundamental importance in fluid
mechanics, numerous researchers are deeply involved in this
field. Some of the pioneering research work on the stability
of viscous films includes the following: Benjamin [1] and Yih
[2] first initiated the study of long-wave instability subjected
to an infinitesimal disturbance on the surface of a viscous
film flowing down an inclined plane without an electric field
and determined the critical Reynolds number for the onset of
the surface mode instability, which is a function of the angle
of inclination. They reported that the unidirectional parallel
flow with a flat surface becomes unstable to two-dimensional
infinitesimal disturbances if the Reynolds number exceeds the
critical value. After that, the same flow problem was revis-
ited by Lin [3] and Bruin [4] to decipher the shear mode
instability, which, in fact, dominates over the surface mode
instability at the high Reynolds number regime when the
inclination angle is sufficiently small. However, the effect of
surface tension was not discussed in their studies. This gap
was filled in the research work of Chin et al. [5] and Floryan
et al. [6]. As they discussed, the critical Reynolds number for
the onset of the shear mode instability has a nonmonotonic
behavior as the surface tension increases. Chang et al. [7]
investigated the nonlinear evolution of the surface mode in-
stability for a vertically falling film. Using three-dimensional
Navier-Stokes equations based on the boundary layer approx-
imation, they showed that the most unstable disturbance is the
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two-dimensional one. Reviews of this topic have been pro-
vided by Chang [8], Oron et al. [9], and Craster and Matar
[10]. In this context, there is already evidence that the shear
flow exhibits a transient disturbance energy growth phe-
nomenon when the Reynolds number lies in the subcritical
regime [11–13]. Actually, the idea of the existence of tran-
sient disturbance energy growth for a shear flow emerged to
explain the discrepancy between the results procured from
the eigenvalue analysis, energy analysis, and experiment [13].
According to Schmid and Henningson [13], the reason is the
non-normal nature of the eigenvalue operator, which renders
a set of nonorthogonal eigenfunctions, and their superposition
yields a transient amplification. As a consequence, the critical
Reynolds number for the onset of the shear mode instability
differs from that determined from the modal stability analysis
or eigenvalue analysis. Hence, the nonmodal stability analysis
is imperative for a flow configuration whose eigenvalue op-
erator is not normal. The existence of transient disturbance
energy growth for a gravity-driven falling film with a free
surface without an electric field was reported in the research
work of Olsson and Henningson [14] and Samanta [15,16]
because such flows are also susceptible to shear mode insta-
bility in the high Reynolds number regime. For this reason,
we are inspired to explore the nonmodal stability analysis for
the gravity-driven electrified falling film.

Recently, many studies [17–20] have been carried out to
decipher the effect of an electric field on the surface mode
instability of falling viscous films. Actually, these studies have
been motivated by the fact that the presence of an electric field
introduces an additional Maxwell stress along with the exist-
ing hydrodynamic stress at the fluid-air interface, where the
fluid is treated as a perfect conductor and the air surrounding
the fluid surface is treated as a perfect dielectric. In particular,
Kim et al. [17] explored the flow of a viscous fluid down
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a wall in the framework of the lubrication approximation
and developed a time evolution equation for the fluid surface
height, h(x, t ). The linear stability analysis was accomplished.
Later, an experimental validation of Kim’s result was reported
by Griffing et al. [18]. The nonlinear surface wave dynamics
for an electrified falling film was scrutinized by Gonzalez and
Castellanos [19] and Tseluiko and Papageorgiou [21] based on
the Benney-type surface evolution equation, which contains a
nonlocal term involving the electric potential. It was reported
that the presence of an electric field exhibits a destabilizing
impact on the surface mode instability. However, it is worth
reporting here that they ignored the effect of the induced
magnetic field by assuming low conductivities so that the
electrostatic approximation of Maxwell’s equations prevailed.
Furthermore, the influence of electrostriction force was ne-
glected and there was no electric field inside the fluid as it
was treated as a perfect conductor. In addition, they assumed
that the electric conductivity and the electric permittivity of
the fluid were constants. Finally, they considered that the
charge relaxation timescale is small compared to the dynam-
ical timescale, allowing them to apply continuity of current
across the fluid-air interface [22–24]. As the Benney-type
surface evolution equation possesses an unphysical blowup
property, the weighted residual method [25] was implemented
by Wray et al. [26] to derive a coupled system of evolution
equations for the local film thickness, local flow rate, and
two subsidiary fields which measure the distortion of the
streamwise velocity from the parabolic base flow velocity.
Their numerical result demonstrated a good agreement with
that obtained from the direct numerical simulation of the
Navier-Stokes equations. Later, Rohlfs et al. [27] conducted
an experimental study to examine the effect of electrostatic
forces on the nonlinear waves evolved on the surface of a
falling film. They demonstrated that the wave peak height is
increased and decreased in different regions of the wave. The
electrostatic field induced instability, morphology, and pattern
formation on the surface of a thin film confined between two
electrodes can be found in the work of Verma et al. [28]. The
results were produced for both spatially homogeneous and
heterogeneous electric fields. A hexagonal packing of liquid
columns is formed if a spatially homogeneous electric field is
applied, whereas a spatial variation of the electrostatic field
produces locally ordered aligned patterns. As the insoluble
surfactant has a stabilizing influence [29] and the electric field
has a destabilizing influence on the surface mode instability,
Blyth [30] investigated the combined effect of the insoluble
surfactant and electric field on the surface mode instability
of a viscous film flowing down an inclined plane. He first
discovered an inertialess instability in the finite wave number
regime, which intensifies as the electric Weber number in-
creases. Samanta [31] studied the shear mode instability of an
electrified falling film. As discussed by Samanta, the electric
field suppresses the shear mode instability at low values of
the inclination angle. After that, Samanta [32] examined the
linear spatiotemporal instability for the same flow problem.
He found that the four spatial branches obtained from the Orr-
Sommerfeld equation lose their spatial symmetry if the effect
of an electric field is introduced in the flow configuration.
Recently, the binary interaction between the solitary pulses
and their bound state form was discovered by Blyth et al. [33]

FIG. 1. A sketch of a three-dimensional gravity-driven electrified
viscous falling film.

for an electrified falling film. A detailed review of this topic
can be found in Refs. [22,24,34].

It is worth noting that the above studies were conducted
on the two-dimensional electrified viscous falling films. More
specifically, most of the studies only carried out the modal
stability analysis for the two-dimensional disturbances, where
the effect of the spanwise wave number was negated. It seems
that they used Squire’s theorem, which prevails in the modal
stability analysis, because, using Squire’s transformation,
one can demonstrate that the two-dimensional disturbance
is linearly more unstable than the three-dimensional ones.
However, such a statement cannot be applied in the nonmodal
stability analysis because only spanwise disturbance provided
the largest transient disturbance energy growth when com-
pared to disturbances that include both the streamwise and
spanwise wave numbers [35]. The analytical derivation of
Squire’s theorem for the electrified falling film is further pro-
vided in Appendix A. Moreover, there is no information about
the nonmodal stability analysis for the electrified falling film.
To fill these gaps available in the literature, we are motivated
to study the modal and nonmodal stability analyses for an
electrified falling film corresponding to the three-dimensional
disturbances of arbitrary wave numbers.

II. EQUATIONS OF MOTION

Consider the flow of a gravity-driven viscous incompress-
ible fluid down an inclined plane with a slope angle θ with the
horizontal and a uniform electric field E0 acting normal to the
plane at infinity. In fact, this is similar to the electrified falling
film model proposed by Tseluiko and Papageorgiou [21], but
the flow configuration is three dimensional rather than the
two-dimensional one. The sketch of the flow model is shown
in Fig. 1. Suppose that y = h(x, z, t ) denotes the height of the
disturbed fluid surface, and d is the height of the undisturbed
fluid surface from the plane in the cross-stream direction when
the fluid flow is unidirectional and parallel. The Cartesian
coordinate system is used to describe the current flow configu-
ration, where the origin is located at the inclined plane and the
axes x, y, and z are placed along the streamwise, cross-stream,
and spanwise directions, respectively. The physical properties
of the fluid, such as density ρ, dynamic viscosity μ, and
surface tension σ , are constants for a given fluid. Suppose the
viscous fluid occupying region I is a perfect conductor, and
the air surrounding the fluid surface in region II is a perfect
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dielectric with a permittivity εa (see Fig. 1). Here, the inclined
plane is considered as an infinite electrode and it is grounded.
Therefore, it possesses a zero voltage potential. The three-
dimensional flow of the Newtonian viscous incompressible
fluid is governed by the mass conservation and momentum
equations [36],

∂xi ui = 0, i = 1, 2, 3, (1)

ρ(∂t ui + u j∂x j ui ) = −∂xi p + μ∂x j x j ui

+ρgi, i, j = 1, 2, 3, (2)

where u1, u2, and u3 are, respectively, the velocity components
in the streamwise, cross-stream, and spanwise directions,
and p is the pressure of the fluid. Here, (g1, g2, g3) =
(g sin θ,−gcos θ, 0) are the components of the gravitational
acceleration. In order to avoid any confusion and for the sake
of mathematical simplicity, we shall assume u1 = u, u2 = v,
u3 = w, x1 = x, x2 = y, and x3 = z. Now we introduce the
electric potential �, which can be obtained from the elec-
tric field E with the help of the electrostatics approximation
E = −∇�, i.e., the electric field E is irrotational (∇ × E =
0). Furthermore, in electrostatics, the Gauss divergence law
(∇ · E = 0) in the dielectric air medium leads to the Laplace
equation in terms of the electric potential �,

∇2� = ∂xixi� = 0, i = 1, 2, 3. (3)

The above governing equations are closed by the following
boundary conditions:

(i) At the rigid inclined plane, y = 0, the velocity com-
ponents of the fluid must satisfy no-slip and no-penetration
boundary conditions,

ui = 0, i = 1, 2, 3. (4)

(ii) At the disturbed fluid-air interface, y = h(x, z, t ), an
additional Maxwell stress is generated due to the presence of
the normal electric field E along with the usual hydrodynamic
stress, and their balance results in the tangential stress and
normal stress boundary conditions [21,30,31,37,38],

τi jn jt
1
i = 0, τi jn jt

2
i = 0, i, j = 1, 2, 3, (5)

τi jnin j = σκ, i, j = 1, 2, 3, (6)

where κ is the curvature of the fluid-air interface [36]. Here,
(t1

1 , t1
2 , t1

3 ) and (t2
1 , t2

2 , t2
3 ) are the components of the unit tan-

gent vectors in the streamwise and spanwise directions, and
(n1, n2, n3) are the components of the unit normal vector at
the fluid-air interface [15,16,36]. The combined stress tensor
τi j at the fluid-air interface can be written from the constitutive
relations of region I and region II as [21,24,30,38,39]

τi j = τ I
i j − τ II

i j

= −pδi j + μ(∂x j ui + ∂xi u j )

+paδi j − εa

(
EiEj − |E|2 δi j

2

)
, i, j = 1, 2, 3, (7)

where τ I
i j = −pδi j + μ(∂x j ui + ∂xi u j ) is the fluid stress ten-

sor and τ II
i j = −paδi j + εa(EiEj − |E|2 δi j

2 ), where the second
term in the expression of τ II

i j appears due to the Maxwell stress

generated by the electric field [24,40]. Here, pa is the ambient
pressure, δi j is the Kronecker delta, and Ei are the components
of the electric field at the fluid-air interface.

(iii) The time evolution of the fluid-air interface, y =
h(x, z, t ), can be understood with the help of the kinematic
boundary condition,

∂t F + ui∂xi F = 0, (8)

where F (x, y, z, t ) = y − h(x, z, t ).
(iv) As the fluid is a perfect conductor, there is no electric

field inside the fluid. The electric field E is acting only in the
normal direction to the fluid-air interface, and it has no com-
ponent in the tangential directions at the fluid-air interface.
Therefore, we must have

∂xi�t1
i = 0, ∂xi�t2

i = 0, i = 1, 2, 3. (9)

Hence, the electric potential � is constant at the fluid-air
interface. We assume that the electric potential � is zero at
the fluid-air interface, y = h(x, z, t ) [21,30,31,38].

(v) Finally, the electric potential � also satisfies the follow-
ing condition at infinity, y → ∞:

∂xi� = −E0δi2, i = 1, 2, 3. (10)

Since we are mainly interested in exploring the modal and
nonmodal stability of the primary flow or base flow, it is
essential to compute the solution of the unidirectional parallel
flow with a constant fluid layer thickness, y = d , the so-called
base flow. As a result, the governing equations (1)–(10) for the
base flow are simplified into the following forms:

μ∂yyu + ρg sin θ = 0, ∂y p + ρgcos θ = 0, ∂z p = 0, (11)

∂yy� = 0. (12)

The above base flow governing equations are subjected to the
following boundary conditions:

u = 0 at y = 0, (13)

∂yu = 0, p = pa − εa

2
(∂y�)2, � = 0 at y = d, (14)

∂y� = −E0 at y → ∞. (15)

The solution of the base flow governing equations (11)–(15)
can be expressed as

Ū (y) = ρgd2 sin θ

2μ

(
2

y

d
− y2

d2

)
, V̄ = 0, W̄ = 0, (16)

P̄(y) = ρgd cos θ
(

1 − y

d

)
+ pa − εa

2
E2

0 , (17)

�̄(y) = E0d
(

1 − y

d

)
, (18)

where variables with bar notation represent the base flow
variables. It should be noted that the base flow pressure is
explicitly dependent on the magnitude of the uniform electric
field E0, and it decreases as the magnitude of the electric field
E0 increases. However, the base flow velocity is independent
of the magnitude of the electric field E0.
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III. LINEARIZED PERTURBATION EQUATIONS

Before proceeding to the derivation of the linearized pertur-
bation equations, we introduce the following nondimensional
variables:

x∗ = x

d
, y∗ = y

d
, z∗ = z

d
, u∗ = u

Us
,

v∗ = v

Us
, w∗ = w

Us
, t∗ = tUs

d
,

p∗ = p

ρU 2
s

, �∗ = �

E0d
, h∗ = h

d
,

where the thickness of the base flow, d , is preferred as the
characteristic length scale, the fluid surface velocity of the
base flow, Us = ρgd2 sin θ

2μ
, is preferred as the characteristic

velocity scale, ρUs
2 is preferred as the characteristic pres-

sure scale, d
Us

is preferred as the characteristic timescale,
and E0d is preferred as the characteristic scale for the elec-
tric potential. For our convenience, we have omitted the star
symbol from the nondimensional variables in the subsequent
mathematical formulations. Next, we impose an infinitesimal
three-dimensional perturbation on the base flow and, conse-
quently, each variable of the disturbed flow and disturbed
electric potential can be decomposed as

u = Ū (y) + u′, v = V̄ + v′, w = W̄ + w′,

p = P̄(y) + p′, � = �̄(y) + φ′, h = 1 + h′,

where the variables with prime notation represent the per-
turbation variables. After nondimensionalizing, the linearized
perturbation equations can be expressed as

∂xu′ + ∂yv
′ + ∂zw

′ = 0, (19)

∂t u
′ + U∂xu′ + v′∂yU + ∂x p′ = (∂xx + ∂yy + ∂zz )u′

Re
, (20)

∂tv
′ + U∂xv

′ + ∂y p′ = (∂xx + ∂yy + ∂zz )v′

Re
, (21)

∂tw
′ + U∂xw

′ + ∂z p′ = (∂xx + ∂yy + ∂zz )w′

Re
, (22)

(∂xx + ∂yy + ∂zz )φ′ = 0, (23)

u′ = 0, v′ = 0, w′ = 0 at y = 0, (24)

(∂yu′ + ∂xv
′ + h′∂yyU ) = 0 at y = 1, (25)

(∂yw
′ + ∂zv

′) = 0, φ′ − h′ = 0 at y = 1, (26)

− p′ + 2∂yv
′

Re
+ 2EWe∂yφ

′

Re
+ cos θh′

Fr2

− We(∂xx + ∂zz )h′ = 0 at y = 1, (27)

∂t h
′ + U∂xh′ = v′ at y = 1, (28)

∂xφ
′ = 0, ∂yφ

′ = 0, ∂zφ
′ = 0 at y → ∞, (29)

where Re = ρUsd
μ

is the Reynolds number which compares

inertia to the viscous force, Fr = Us√
gd

is the Froude number
which compares inertia to the gravity force, We = σ

ρU 2
s d is the

Weber number which compares the capillary force induced by

the surface tension to inertia, and EWe = εaE2
0 d

2μUs
is the electric

Weber number which compares the surface force induced by
the electric field to the viscous force [21,30]. In particular,
the dimensionless electric Weber number EWe appears in the
normal stress boundary condition (27) at the fluid-air interface
due to the jump between the Maxwell stress generated by the
electric field and the normal stress of the viscous film. For
example, in the case of a thin film of silicon oil DMS T12
at 25 ◦C with thickness d = 10−3 m, density ρ = 949 kg/m3,
kinematic viscosity ν = μ/ρ = 2.03 × 10−5 m2/s, and sur-
face tension σ = 0.0201 N/m flowing down an inclined plane
with slope angle θ = 4◦, the magnitude of the electric Weber
number is approximately 13.6, when the magnitude of the
uniform electric field, E0, is of the order of 106 V/m and
permittivity εa = 8.85 × 10−12 C/(Vm) [27]. However, if the
physical properties of the fluid are constants for a given incli-
nation angle, the magnitude of the electric Weber number can
be altered by varying the magnitude of the applied uniform
electric field. The Weber number We can also be written in
terms of the Kapitza number as

We = Re−5/3

(
3

2
sin θ

)−1/3

, (30)

where  = ( 3ρσ 3

gμ4 )1/3 is the Kapitza number, which can be
varied only by changing the physical properties of the fluid
[6,41]. Furthermore, the Weber number can also be expressed
in terms of the capillary number as We = 1/(Ca Re), where
Ca = μUs/σ is the capillary number [30,42].

IV. TIME EVOLUTION EQUATIONS

To develop time evolution equations, we assume the solu-
tion of the linearized perturbation equations (19)–(29) in the
normal mode form [43],⎡

⎢⎢⎢⎢⎢⎢⎣

u′(x, y, z, t )
v′(x, y, z, t )
w′(x, y, z, t )
p′(x, y, z, t )
φ′(x, y, z)
h′(x, z, t )

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

û(y, t )
v̂(y, t )
ŵ(y, t )
p̂(y, t )
φ̂(y)
ĥ(t )

⎤
⎥⎥⎥⎥⎥⎥⎦

exp[i(αx + βz)], (31)

where the variables with “hat” notation are the amplitudes of
the perturbation variables. Here, α and β are the streamwise
and spanwise wave numbers. Next, our purpose is to evalu-
ate the electric potential term remaining in the normal stress
boundary condition (27). With the aid of the normal mode
solution (31), the Laplace equation for the electric potential
can be expressed as

(∂yy − k2)φ̂ = 0, (32)

where k =
√

α2 + β2 is the total wave number. The general
solution of Eq. (32) is of the form

φ̂(y) = c1 exp[ky] + c2 exp[−ky], (33)

where c1 and c2 are arbitrary constants to be determined.
Using the boundary conditions for the electric potential, one
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can obtain

φ̂(y) = ĥ exp[−ky]

exp[−k]
. (34)

Now we introduce the perturbation normal vorticity com-
ponent �′ = ∂zu′ − ∂xw

′. Next, by eliminating the pressure
terms from the perturbation momentum equations (20)–(22)
and after doing some mathematical calculations, we obtain
the time evolution equations for normal velocity and normal
vorticity components,

(∂yy − k2)∂t v̂ = 1

Re
(∂yy−k2)2v̂−iα[U (∂yy − k2)v̂ − ∂yyU v̂],

(35)

∂t �̂ = 1

Re
(∂yy − k2)�̂ − iαU �̂ − iβ∂yU v̂, (36)

where �̂ = (iβû − iαŵ) is the amplitude of the perturbation
normal vorticity component. The associated boundary condi-
tions can be reduced to the following forms:

v̂ = 0, ∂yv̂ = 0, �̂ = 0 at y = 0, (37)

(∂yy + k2)v̂ − iαĥ∂yyU = 0 at y = 1, (38)

∂y�̂ + iβĥ∂yyU = 0 at y = 1, (39)

∂y∂t v̂ = 1

Re
(∂yy − 3k2)∂yv̂ − iαU∂yv̂

−
[

cos θ

Fr2 + k2We − 2kEWe

Re

]
k2ĥ at y = 1, (40)

∂t ĥ = v̂ − iαUĥ at y = 1. (41)

The above system of time evolution equations for normal ve-
locity, normal vorticity, and fluid surface deformation can be
written into a temporal matrix initial value problem [15,16],

B∂t q̂ = Aq̂, (42)

with initial condition q̂0 = q̂(t )|t=0. It should be useful to
mention here that the above set of equations coincides with
that of Olsson and Henningson [14] if the effect of the electric
field is removed from the current flow configuration. Here,
q̂ = [v̂, �̂, ĥ]T is the column matrix of the flow variables, and
the matrices A and B can be expressed as [13,14]

A =
⎡
⎣Los 0 0
Lc Lsq 0
1 0 −iαU

⎤
⎦, B =

⎡
⎣(D2 − k2) 0 0

0 1 0
0 0 1

⎤
⎦,

(43)
where D2 = ∂yy is the differential operator, Los = 1

Re (∂yy −
k2)2 − iα[U (∂yy − k2) − ∂yyU ] is the Orr-Sommerfeld op-
erator, Lc = −iβ∂yU is the coupling operator, and Lsq =
1

Re (∂yy − k2) − iαU is the Squire operator. It is worthwhile to
report here that the coupling operator Lc plays an important
role in the appearance of transient disturbance energy growth.
However, we can see the presence of another coupling term
between the normal velocity component and fluid surface
deformation arising from the kinematic boundary condition
(41). Here, the normal velocity and normal vorticity compo-
nents are simply the cross-stream velocity and cross-stream
vorticity components, and they are normal to the bounding

plane. It should be noted that the coupling equation (41) is ab-
sent from the mathematical formulation for a plane Poiseuille
flow because there is no deformed fluid surface. In particular,
these coupling terms are responsible for the appearance of
short-time disturbance energy growth if the eigenfunctions are
nonorthogonal [11–16].

V. MODAL STABILITY ANALYSIS

In this section, we shall investigate the modal stability anal-
ysis of the infinitesimal disturbance superimposed on the base
flow. To this end, we recast the time evolution perturbation
equations into a generalized matrix eigenvalue problem by
assuming the solution in the following form [44]:

q̂(y, t ) = q̃(y) exp[−iωt], (44)

where q̃ = [ṽ, �̃, h̃]T is the column matrix, ω = αc = ωr +
iωi is the angular frequency, and c is the complex wave speed
of the infinitesimal disturbance. After substitution of Eq. (44)
into the perturbation time evolution equation (42), one can
obtain the generalized matrix eigenvalue problem,

Aq̃ = −iωBq̃, (45)

where i = √−1 is the imaginary number. Obviously, the an-
gular frequency ω is the eigenvalue of the generalized matrix
eigenvalue problem (45). If at least one of the eigenvalues lies
in the unstable upper-half plane (ωi > 0), one can perceive an
exponential temporal growth of the infinitesimal disturbance.
Otherwise, the infinitesimal disturbance will be linearly stable
if all the eigenvalues lie in the stable lower-half plane (ωi <

0). Now the eigenvalue problem (45) is solved numerically
with the help of the Chebyshev spectral collocation method
[13]. A brief discussion of the Chebyshev spectral collocation
method can be found in Appendix B. In order to check the
accuracy of the numerical code, we first perform the conver-
gence analysis. Following the works of Tilton and Cortelezzi
[45] and Samanta [46], we compute the relative error
defined by

EN = ‖ωN+1 − ωN‖2/‖ωN‖2, (46)

where ‖ · ‖2 represents the L2 norm. Here, ωN is the column
vector of the 20 least stable eigenvalues, which are taken
from the spectrum in the numerical computation of the rel-
ative error when the number of Chebyshev polynomials is N .
Figure 2(a) demonstrates the variation of the relative error
EN as the number of Chebyshev polynomials rises. We can
see that the relative error approximately saturates between
the order of 10−6 and the order of 10−8 for N � 100 when
Re = 10 000, α = 1, β = 0, θ = 1◦, EWe = 1, and  = 4899.
Therefore, 100 Chebyshev polynomials will be sufficient to
get accurate numerical results. Here, the above flow parameter
values can be acquired for a water film at 20 ◦C with thickness
d = 0.01 m, density ρ = 1000 kg/m3, gravity g = 9.81 m/s2,
dynamic viscosity μ = 10−3 kg/(m s), and surface tension
γ = 72.8 × 10−3 N/m flowing down an inclined plane with
slope angle θ = 0.1◦ [5]. According to the definition, the
calculated value of the Reynolds number is approximately
Re ≈ 8560. However, its value can be changed by varying the
value of the viscous flat film layer thickness d when the values
of the other flow parameters are fixed. It is noteworthy to point
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FIG. 2. (a) Variation of the relative error EN as the number N of the Chebyshev polynomials alters. (b) Spectrum of the eigenvalue problem
(45). (c) Variation of the absolute values of the normalized eigenfunctions |v(y)| as a function of the cross-stream coordinate y. Solid and
dashed lines represent the eigenfunctions for the shear mode and the surface mode, respectively. The flow parameter values are Re = 10 000,
α = 1, β = 0, θ = 1◦, EWe = 1, and  = 4899.

out that two dominant unstable modes are identified numeri-
cally, which are called the surface mode and the shear mode.
More specifically, the surface mode is detected in both the low
and high Reynolds number regimes, while the shear mode is
detected only in the high Reynolds number regime with a low
inclination angle. These two dominant modes are displayed in
Fig. 2(b), where the spectrum of the eigenvalue problem (45)
is depicted when Re = 10 000, α = 1, β = 0, θ = 1◦, EWe =
1, and  = 4899 [5]. We can see that two dominant unstable
modes emerge in the diagram of the spectrum where the phase
speed of the shear mode is lower than that of the surface mode.
However, the temporal growth rate of the shear mode is higher
than that of the surface mode for the given parameter values.
Hence, the surface mode propagates faster than the shear
mode, but it is linearly less unstable than the shear mode. On
the other hand, Fig. 2(c) illustrates the shapes of the absolute
values of the normalized eigenfunctions corresponding to the
surface mode and the shear mode, respectively. Although both
the eigenfunctions increase monotonically from a zero value
at the inclined plane to a maximum value at the fluid surface,
they have distinct shapes from each other. More specifically,
the amplitude of the velocity perturbation for the surface mode
has a large variation in the vicinity of the fluid surface, but
the amplitude of the velocity perturbation for the shear mode
has a large variation close to the rigid wall rather than the
fluid surface [see Fig. 2(c)]. Before exploring the effect of the
electric field on the three-dimensional flow configuration, we
first reproduce the results for the two-dimensional electrified
flow configuration [30], which, in fact, justify the accuracy
of the current numerical code. As a consequence, we set the
spanwise wave number β = 0 in the numerical computation.
Figure 3(a) illustrates the variation of the neutral curve for
the surface mode as the electric Weber number changes when
θ = 45◦, β = 0, and Ca = 2 [30]. It is found that all the
neutral curves for the surface mode intersect the Re axis at the
known value (5/4) cot θ in the limit k → 0 or, equivalently,
in the limit α → 0 (k = α as β = 0) for different values of
the electric Weber number EWe. This result implies that the
onset of instability for the surface mode corresponding to
the electrified falling film remains the same even though the
electric Weber number alters, which is fully consistent with

the analytical result given by Blyth [30] in the long-wave
regime, where it was shown that the onset of the surface mode
instability is independent of the electric Weber number. Actu-
ally, the electric Weber number appears in the normal stress
boundary condition (40) in the order O(k3) term. For this rea-
son, it has no contribution to the critical Reynolds number for
the onset of the surface mode instability because the critical
Reynolds number is calculated from the first-order O(k) equa-
tions in long-wave expansion. However, the unstable region
induced by the surface mode magnifies gradually with the
rising values of the electric Weber number EWe in the finite
streamwise wave number regime. More specifically, some
portion of the neutral curve is tweaked towards the α axis
in the finite streamwise wave number regime with increasing
EWe, and, suddenly, the neutral curve is divided into two dis-
tinct unstable zones bounded by two separate neutral curves at
EWe = 1.005, as demonstrated by Blyth [30]. In fact, the new
unstable zone emerges in the finite streamwise wave number
regime and the associated neutral curve intersects the α axis
rather than the Re axis, which results in an unstable range of
finite streamwise wave number α, where the inertialess flow
(Re = 0) is unstable. It is evident that the inertialess instability
begins in the finite streamwise wave number regime before
initiating the inertia-dependent long-wave surface mode insta-
bility. If the electric Weber number is further increased, these
two neutral curves generate two new branches at EWe = 1.03
[see Fig. 3(b)]. In this case, we have one unstable zone
rather than two. It should be noted that as EWe increases,
the unstable range of the streamwise wave number for the
inertialess instability expands. If we continue to increase the
magnitude of EWe, the lower branch of the neutral curve moves
in a downward direction, while the upper branch moves in
an upward direction. This fact is followed by an increase in
the unstable range of the streamwise wave number for the
inertialess instability as the electric Weber number increases.
In other words, the stable region for the surface mode decays
successively with increasing EWe. From the above results, one
can opine that the electric field or, equivalently, the electric
Weber number has a destabilizing effect on the primary insta-
bility induced by the surface mode. Actually, the base flow
solution for pressure [see Eq. (17)] shows that the impact
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Re Re Re

FIG. 3. (a) Variation of the neutral curve for the surface mode in the (Re, α) plane when θ = 45◦, β = 0, and Ca = 2 [30]. Different
point symbols are the results of Blyth [30]. (b) Variation of the upper and lower branches of the neutral curve for the surface mode as the
electric Weber number EWe changes. The arrow points out the direction of the increasing unstable region with increasing EWe. (c) Variation of
the neutral curve for the shear mode in the (Re, α) plane when θ = 1◦, β = 0, and  = 4899 [5]. The arrow points out the direction of the
decreasing unstable region with increasing EWe. “U” and “S” indicate unstable and stable zones.

of basic hydrostatic pressure responsible for the stabilizing
effect reduces as the magnitude of the uniform electric field
rises. As a result, less fluid moves towards the trough from the
crest of the deformed fluid surface due to the basic hydrostatic
pressure in comparison with the case of no electric field [47],
and this causes a destabilizing effect on the primary insta-
bility. Moreover, all the results shown in Figs. 3(a) and 3(b)
are identical to those of Blyth [30] when the spanwise wave
number is set to zero (β = 0). On the other hand, Fig. 3(c)
displays the variation of the neutral curve for the shear mode
in the (Re, α) plane as the electric Weber number rises when
θ = 1◦, β = 0, and  = 4899 [5]. In this case, the interesting
result is that the critical Reynolds number for the onset of
the shear mode instability is dependent on the electric Weber
number because the critical Reynolds number increases with
the increasing value of the electric Weber number. This fact is
opposed to the result of the surface mode instability, where the
critical Reynolds number after which the instability initiates
is independent of the electric Weber number. Obviously, there
appears only one unstable region in the (Re, α) plane for the
shear mode, which attenuates slightly with an increase in the
value of the electric Weber number. Therefore, the electric
Weber number has a stabilizing influence on the shear mode
instability when θ = 1◦, β = 0, and  = 4899. This result is
in contrast to the result of the surface mode instability, where
the unstable region magnifies with the increasing value of the
electric Weber number.

A. Effect of the spanwise wave number on the surface mode and
the shear mode for three-dimensional disturbance

Now, if the spanwise wave number is included in the nu-
merical simulation (β 
= 0), the unstable region created by
the surface mode changes dramatically. To exhibit this re-
sult, the numerical simulation is carried out for two different
values of the electric Weber number EWe. If we set EWe =
1.005, the unstable region that intersects the Re axis shrinks
significantly with increasing spanwise wave number β [see
Fig. 4(a)]. The interesting result is that the onset of the surface
mode instability gradually shifts towards the finite streamwise

wave number regime, as was pointed out by Samanta [44] for
a three-dimensional fluid flowing over a compliant substrate.
Furthermore, the unstable region that intersects the α axis
shrinks slightly with increasing β. This result implies that
the spanwise wave number has a stabilizing effect on the
surface mode instability. Furthermore, as the spanwise wave
number rises, we observe that the long-wave surface mode
instability disappears because the neutral curve for the surface
mode no longer intersects the Re axis in the limit α → 0
[see Fig. 4(a)]. More specifically, this is the situation when
both the streamwise and spanwise wave numbers are finite.
In addition, we can predict that the unstable range of the
streamwise wave number α for the inertialess instability will
decay if the spanwise wave number β is increased. Next, the
numerical simulation is accomplished at EWe = 1.03. In this
case, the unstable region bounded by two branches of the neu-
tral curve attenuates as the spanwise wave number rises [see
Fig. 4(b)]. This result also supports the stabilizing influence
of the spanwise wave number on the surface mode instability.
In order to compare with the study of the nonelectrified falling
film, the numerical experiment is further repeated at EWe = 0.
Clearly, the neutral curve for the inertialess instability, which
intersected the α axis in the electrified case, vanishes at EWe =
0 [see Fig. 4(c)]. In other words, we have not found any
range of the streamwise wave number where the inertialess
instability occurs. There exists only one neutral curve for the
surface mode, which touches the Re axis when β = 0.005.
As soon as the spanwise wave number increases, the neutral
curve for the surface mode no longer touches the Re axis but
forms a tonguelike shape, and the associated unstable region
decreases, as was noticed for the electrified case. A similar
stabilizing effect of the spanwise wave number on the surface
mode instability was reported by Chang et al. [7] for the non-
electrified falling film by using the governing equations based
on the boundary layer approximation. On the other hand,
Fig. 4(d) displays the variation of the neutral curve for the
shear mode as the spanwise wave number rises when EWe = 1.
It should be noted that the spanwise wave number exhibits a
similar behavior in the shear mode as was observed for the
surface mode. In particular, the unstable region induced by
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Re Re Re

Re Re

FIG. 4. Variation of the neutral curve for the surface mode in the (Re, α) plane for different values of the spanwise wave number β when
θ = 45◦ and Ca = 2. (a) EWe = 1.005, (b) EWe = 1.03, and (c) EWe = 0. Variation of the neutral curve for the shear mode in the (Re, α)
plane for different values of the spanwise wave number β when θ = 1◦ and  = 4899. (d) EWe = 1 and (e) EWe = 0. The arrow points out the
direction of the decreasing unstable region with increasing β. “U” and “S” indicate unstable and stable zones.

the shear mode decreases successively with an increase in the
value of β, which is followed by the successive increment of
the critical Reynolds number for the onset of the shear mode
instability. Hence, the spanwise wave number has a stabilizing
influence on the shear mode instability. To compare with the
results of the nonelectrified falling film, we further produce
the results for the shear mode when EWe = 0. In this case, the
neutral curve for the shear mode varies exactly in a similar
fashion as was perceived in the electrified case [see Figs. 4(d)
and 4(e)]. However, the onset of the shear mode instability
for the nonelectrified falling film is slightly lower than that
of the electrified falling film because the electric field has a
stabilizing influence on the shear mode instability. The above
results, computed based on the modal stability analysis, are
completely in favor of the statement of Squire’s theorem that
the two-dimensional infinitesimal disturbance is linearly more
unstable than the three-dimensional ones [48]. The analytical
derivation of Squire’s theorem for the electrified falling film
is further discussed in Appendix A.

B. Effect of the electric field on the surface mode and the shear
mode for three-dimensional disturbance

In order to explore the influence of the electric field on
the surface mode in the wave number plane, we choose the
following flow parameters: Re = 2, Ca = 2, and θ = 45◦, as
was suggested by Blyth [30] for the two-dimensional electri-
fied falling film. Figures 5(a)–5(d) demonstrate the shape of

the neutral curve for the surface mode in the (α, β) plane
as the electric Weber number EWe alters. We can see that
there appears only one unstable region I at EWe = 1, where
the associated neutral curve intersects the α axis and passes
through the origin [see Fig. 5(a)]. As soon as the electric
Weber number is increased to EWe = 1.005, two additional
unstable regions II and III emerge in the (α, β) plane [see
Fig. 5(b)]. It should be noted that the neutral curve, which
encloses the unstable region II, intersects the α axis but does
not pass through the origin, while the neutral curve, which
encloses the unstable region III, intersects the β axis and
also does not pass through the origin. Moreover, the unstable
region I slightly magnifies with increasing EWe. If the electric
Weber number is further increased, we see that the unstable
regions II and III are no longer separated from each other,
but they merge at EWe = 1.03 and generate a new unstable
region in the finite wave number regime [see Fig. 5(c)]. In this
case, there are two branches of the neutral curve that enclose
the new merged unstable region. Moreover, a stable region
is created between the unstable region I and the new merged
unstable region. If we continue to increase the magnitude of
the electric Weber number, the lower branch of the merged
unstable region coalesces with the unstable region I and, ulti-
mately, they form a single unstable region which significantly
enhances as the electric Weber number rises [see Fig. 5(d)].
The topology of the neutral curve for the surface mode is
shown in the (α, EWe, β) plane [see Fig. 5(e)], which is fully
consistent with the variation of the neutral curve displayed in
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FIG. 5. Variation of the neutral curve for the surface mode in the (α, β) plane for different values of the electric Weber number EWe when
θ = 45◦, Ca = 2, and Re = 2. (a) EWe = 1, (b) EWe = 1.005, (c) EWe = 1.03, and (d) EWe = 1.05. (e) The isosurface plot of the neutral curve
for the surface mode in the (α, EWe, β) plane. “U” and “S” indicate unstable and stable zones.

Figs. 5(a)–5(d). Figures 6(a)–6(d) illustrate the shape of the
neutral curve for the shear mode in the wave number plane as
the electric Weber number varies when θ = 1◦,  = 4899, and
Re = 8000 [5]. In this case, we see only one unstable region
for the shear mode in the (α, β) plane for different values of
the electric Weber number, where the associated neutral curve
intersects the α axis, but does not pass through the origin.
Furthermore, we can see that the unstable region becomes
slightly smaller as the electric Weber number increases, which
can also be figured out from the isosurface plot of the neu-
tral curve in the (α, EWe, β) plane [see Fig. 6(e)]. Hence,
the shear mode instability cannot be altered significantly by
varying the electric Weber number when θ = 1◦,  = 4899,
and Re = 8000.

VI. NONMODAL STABILITY ANALYSIS

As discussed by Butler and Farrell [11], Trefethen et al.
[12], Schmid and Henningson [13], Farrell [49], and Schmid
[50], short-time or transient disturbance energy growth

exists for the wall-bounded shear flows because the associated
eigenvalue operator is non-normal for such flows. As a result,
the critical Reynolds number for the onset of the shear mode
instability cannot be accurately predicted by the traditional
modal stability analysis. Recently, Olsson and Henningson
[14] and Samanta [15,16] also demonstrated the existence
of transient disturbance energy growth for the free surface
flows. For this reason, we are also motivated to study the
nonmodal stability analysis for an electrified falling film.
The interesting fact of the nonmodal stability analysis is that
the flow configuration may not be stable in the subcritical
regime (Re < Rec) due to the occurrence of transient distur-
bance energy growth even though all eigenvalues lie in the
stable lower-half plane (ωi < 0), where Rec is the critical
Reynolds number for the onset of the shear mode instability.
Therefore, one can make a wrong judgment regarding the
stability or instability of a given flow configuration based on
the traditional modal stability analysis. Hence, the study of
nonmodal stability analysis is more relevant for characterizing
a flow configuration if the associated eigenvalue operator is
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FIG. 6. Variation of the neutral curve for the shear mode in the (α, β) plane for different values of the electric Weber number EWe when
θ = 1◦,  = 4899, and Re = 8000. (a) EWe = 1, (b) EWe = 5, (c) EWe = 10, and (d) EWe = 15. (e) The isosurface plot of the neutral curve for
the shear mode in the (α, EWe, β) plane. “U” and “S” indicate stable and unstable zones.

non-normal. In the present flow configuration, the coupling
terms in Eq. (42) make the eigenvalue operator non-normal
because the evolutions of normal vorticity and fluid surface
deformation depend on normal velocity [see Eq. (43)]. As a
result, the superposition of eigenvectors becomes nonorthog-
onal and yields a short-time disturbance energy growth
[13]. For instance, Fig. 7 displays the spectrum of the
eigenvalue problem (45) obtained from the modal stabil-
ity analysis when Re = 2000 < Rec [see, also, Fig. 4(d)].
We see that all eigenvalues lie in the stable lower-half
plane (ωi < 0), which indicates a stable flow configuration
for the given parameter values. But the numerical range
[15,16,50] obtained from the nonmodal stability analysis en-
ters the unstable upper-half plane (ωi > 0), which indicates
the existence of short-time disturbance energy growth for
an electrified falling film. How to compute the numerical
range is discussed later in this section. Therefore, the non-
modal stability analysis is adequate for the electrified falling
film. In particular, Fig. 7(a) depicts a symmetric shape of
the spectrum with respect to Squire’s branch (S branch)
when α = 0 and β = 1. Obviously, all eigenvalues in the S
branch have a zero angular frequency (ωr = 0) in the ab-

sence of the streamwise wave number in the perturbation.
Furthermore, all eigenvalues in the S branch are highly

FIG. 7. Spectrum of the eigenvalue problem (45) specified by
blue points, pseudospectra specified by thin solid lines, and numer-
ical range specified by a thick solid line in the (ωr , ωi) plane when
θ = 1◦,  = 4899, Re = 2000, and EWe = 1. (a) α = 0 and β = 1.
(b) α = 2 and β = 0.25.
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damped because ωi < 0. That is why the S branch is also
referred to here as the Squire branch. However, if the stream-
wise wave number is incorporated in the perturbation (α 
= 0),
two new branches (A and P branches) along with the S branch
appear in the diagram of the spectrum with different angular
frequencies (ωr 
= 0) when α = 2 and β = 0.25, which results
in an asymmetric shape of the spectrum with respect to the S
branch [see Fig. 7(b)]. In the nonmodal analysis, the energy
norm is the physically important quantity for measuring the
growth of the disturbance, which can be expressed as [14–16]

E (q̂) = ‖q̂‖2
E = Ekin + Eg + Eσ + EWe, (47)

where

Ekin = 1

2k2

∫ 1

0

(∣∣∣∣∂ v̂

∂y

∣∣∣∣
2

+ k2|v̂|2 + |�̂|2
)

dy,

Eg = cos θ

2Fr2 |ĥ|2,

Eσ = k2We

2
|ĥ|2,

EWe = −kEWe

Re
|ĥ|2,

where Ekin represents the kinetic energy density norm per
unit volume, which is the total kinetic energy of the pertur-
bation after integration in a Fourier space, Eg represents the
gravitational energy density norm per unit volume appearing
due to the normal component of gravity, Eσ represents the
surface energy density norm per unit volume appearing due
to surface tension, and EWe represents the Maxwell energy
density norm appearing due to the presence of the electric
field. In fact, these three energy norms, Eg, Eσ , and EWe, are
absent from the energy norm for the wall-bounded shear flows
because there is no deformed fluid surface. More specifically,
these three energy density norms, Eg, Eσ , and EWe, arise in
the electrified falling film because the film surface is de-
formed due to perturbation, and thus the works done by the
perturbation are required against the depthwise gravitational
force, surface tension, and the electric field. Basically, these
three energy norms are obtained by integrating the respective
surface energies caused by the depthwise gravitational force,
surface tension, and the electric field in a Fourier space. Now,
for computing the disturbance energy norm E (q̂), we need
the solution q̂(t ) of the temporal matrix initial value problem
(42), which can be deduced by using the initial condition
q̂0(t = 0) as

q̂(t ) = Cq̂0, (48)

where C = exp[(B−1A)t] = exp[Ht] (H = B−1A) is the
linear temporal evolution operator acting on the initial pertur-
bation q̂0 to evolve forward in time. Clearly, the behavior of
solution q̂(t ) with time depends on the variation of the linear
temporal evolution operator exp[Ht]. Hence, it is essential
to figure out the behavior of the linear temporal evolution
operator as time progresses. To do that, we compute the upper
and lower bounds of exp[Ht] [13],

eλmax(H)t � || exp[Ht]|| = || exp[S�S−1t]||
� ||S||||S−1||eλmax(H)t , (49)

where � is the diagonal matrix, λmax(H) is the largest eigen-
value of H, and Cond(S ) = ‖S‖‖S−1‖(� 1) is the condition
number of the matrix S . The expression (49) implies that all
times behavior of the linear temporal evolution operator is
driven by the least stable eigenvalue λmax(H) if Cond(S ) = 1,
which is exactly the situation when the matrix operator H
is normal. In this case, the study of eigenvalues is sufficient
to characterize the stability or instability of a flow configu-
ration at all times. However, if Cond(S ) > 1, the least stable
eigenvalue λmax(H) governs only the asymptotic or long-time
behavior of the linear temporal evolution operator, which is
exactly the situation for the non-normal matrix operator H.
In this case, we require investigation of both the eigenvalues
and eigenvectors of the matrix operator H. Therefore, the
computation of the numerical range is more appropriate than
the computation of eigenvalues for the non-normal matrix
operator. The numerical range is defined as [51][

p̂ ∈ C : p̂ = 〈Hq̂, q̂〉
〈q̂, q̂〉 = q̂HHq̂

q̂H q̂

]
, (50)

where the inner product is defined as 〈q̂, q̂〉 = q̂H q̂. Here, C is
the set of complex numbers. The superscript “H” denotes the
conjugate transpose. Based on the above definition (50), the
numerical range is computed for the set of flow parameters
θ = 1◦,  = 4899, Re = 2000, and EWe = 1, and illustrated
in Fig. 7. We can see that the numerical range specified by the
thick solid line enters the upper-half plane (ωi > 0), which en-
sures the appearance of transient disturbance energy growth.
Following the studies of Reddy and Henningson [52] and
Barkley et al. [53], we define the optimal energy amplification
function G(t ) as

G(t ) = max
q̂0 
=0

E (q̂)

E (q̂0)
= max

q̂0 
=0

‖q̂‖2
E

‖q̂0‖2
E

= max
q̂0 
=0

〈Cq̂0, Cq̂0〉
〈q̂0, q̂0〉

= max
q̂0 
=0

〈q̂0, C∗Cq̂0〉
〈q̂0, q̂0〉 = λmax(C∗C), (51)

where λmax(C∗C) is the largest eigenvalue of C∗C and C∗ is
the adjoint operator of C, while the energy norm is defined
as ‖q̂‖2

E = 〈q̂, q̂〉. It should be noted that the optimal energy
amplification function G(t ) is maximized over all initial con-
ditions q̂0. Indeed, Eq. (51) implies that the computation of
the optimal energy amplification function G(t ) is equivalent
to the computation of the largest eigenvalue of the matrix
C∗C or, equivalently, the computation of the largest singular
value of the matrix C. Using the definition of singular-value
decomposition, one can write

CU = V�, (52)

where U and V are the unitary matrices, and � is the diagonal
matrix whose elements are the singular values of the matrix C.
Suppose that σ0 is the largest singular value of the matrix C,
and u0 and v0 are the associated left and right singular vectors.
Then one can write

Cu0 = σ0v0. (53)

Equation (53) indicates that the temporal evolution operator C
modifies the initial state of perturbation q̂0 = u0 to its final
state of perturbation q̂ = v0 at time t accompanied by an
optimal energy amplification G(t ) = σ0. In Fig. 8, we have
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FIG. 8. Variation of the optimal energy amplification function
G(t ) with time t for different values of the electric Weber number
EWe when θ = 1◦,  = 4899, and Re = 2000. (a) α = 0 and β = 1.
(b) α = 2 and β = 0.25.

depicted the variation of the optimal energy amplification
function G(t ) with time t as the electric Weber number rises.
As predicted before, the transient disturbance energy growth
appears and intensifies slightly with an increase in the value
of the electric Weber number. In the first case, we assume that
the disturbance is independent of the streamwise wave number
(α = 0, β = 1), while in the second case, we assume that
the disturbance contains both the streamwise and spanwise
wave numbers (α = 2 and β = 0.25). Obviously, the transient
disturbance energy growth becomes higher in comparison
with the disturbance, which includes both the streamwise
and spanwise wave numbers. Following the studies of Olsson
and Henningson [14] and Samanta [15,16], we also compute
the contours of GT

max in the (α, β) plane when the Reynolds
number changes. It should be useful to point out that GT

max =
maxt>0G(t ), which is maximized over time. In Fig. 9(a), we
see that the transient disturbance energy growth occupies the
entire wave number plane when Re = 500, where the shaded
region represents the zone for the surface mode instability,

FIG. 9. Contours of the maximum energy amplification func-
tion over time, GT

max, in the (α, β) plane for different values of
the Reynolds number Re when θ = 1◦,  = 4899, and EWe = 1.
(a) Re = 500. (b) Re = 1000. The shaded region represents the un-
stable zone for the surface mode computed from the modal stability
analysis.

which is computed by using the modal stability analysis.
As a result, the infinitesimal disturbance will grow exponen-
tially with time due to the surface mode instability if the
streamwise and spanwise wave numbers are selected from
this shaded zone for the given infinitesimal disturbance. By
contrast, in the region of transient disturbance energy growth,
the disturbance grows monotonically up to a certain value of
time, where the transient disturbance energy growth reaches
its maximum value, and then it decays as time progresses
(see Fig. 8). Now, if the Reynolds number is increased and
fixed at Re = 1000, the shaded region for the surface mode
instability magnifies [see Fig. 9(b)]. From the values on the
isolines, we see that GT

max enhances with increasing Re, but
gradually attenuates as the isoline approaches close to the
shaded zone. This result is also in favor of the result shown
in Fig. 8 because the transient disturbance energy growth
decays at large time. Furthermore, the maximum value of the
transient disturbance energy growth emerges in the vicinity
of the spanwise wave number axis rather than the streamwise
wave number axis, which is also consistent with the results
demonstrated in Fig. 8.

Pseudoresonance phenomenon

Now, we shall examine the behavior of the response sub-
jected to an external harmonic force applied on the electrified
flow configuration. Consequently, we recast the initial value
problem (42) in the following form by adding an additional
external forcing term in the right-hand side of Eq. (42):

∂t q̂ = Hq̂ + f̂ eiλt , (54)

where f̂ and λ are the amplitude and frequency of the ex-
ternal harmonic force, respectively, and H = B−1A. Then,
the amplitude of the particular solution of Eq. (54) can be
expressed as

q̂ = (iλI − H)−1 f̂ , (55)

where I is the identity matrix. As discussed by Trefethen et al.
[12] and Schmid [54], the maximum response of the flow
configuration can be determined by the ratio of two energy
norms,

R(λ) = max
f̂

‖q̂‖E

‖ f̂ ‖E
= ‖(iλI − H)−1‖E

= ‖[S (iλ − �)−1S−1]‖E , (56)

where � is the diagonal matrix, and R(λ) is also called
the resolvent norm, which is maximized over all permissible
initial forcing amplitudes f̂ . Actually, the resolvent norm op-
erates on the initial forcing amplitude f̂ with frequency λ and
converts it to the final response [see Eq. (55)]. For a wall-
bounded shear flow, Trefethen et al. [12] and Schmid [54]
performed the resolvent analysis and showed that the pseu-
doresonance phenomenon occurs for the non-normal matrix
operator, where the amplitude of the response subjected to an
external harmonic force is very large even though the forcing
frequency λ is different from the eigenvalue of the matrix
operator H. Such a pseudoresonance scenario is demonstrated
in Fig. 10, which corresponds to the electrified falling film for
two different sets of streamwise and spanwise wave numbers.
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FIG. 10. Variation of the resolvent norm R(λ) as a function of forcing frequency λ when EWe = 1. (a) α = 0 and β = 1. (b) α = 2 and
β = 0.25. Thick and thin lines represent the results for the pseudoresonance and resonance phenomena, respectively. (c) Variation of the
resolvent norm R(λ) as a function of forcing frequency λ when the electric Weber number EWe changes. Solid and dashed lines represent the
results for EWe = 1 and EWe = 5, respectively. The other flow parameter values are θ = 1◦,  = 4899, and Re = 2000.

In Figs. 10(a) and 10(b), the results for the pseudoresonance
event are specified by the thick solid lines. In both cases, the
resolvent norm displays strong peaks in the response curve.
However, if the streamwise wave number is included in the
disturbance, the maximum value of the pseudoresonance peak
decreases significantly in comparison with the disturbance
without the streamwise wave number. This fact is fully con-
sistent with the results of transient disturbance energy growth
shown in Fig. 8. Furthermore, the response curve correspond-
ing to the resonance event exhibits a lower peak than that
of the pseudoresonance event. In Figs. 10(a) and 10(b), the
results for the resonance event are specified by the thin solid
lines, which are computed numerically by using the norm
‖(iλ − �)−1‖. Figure 10(c) reveals that the electric field has
no discernible impact on the pseudoresonance phenomenon.

VII. DISCUSSION AND CONCLUSIONS

The present study focuses on the modal and nonmodal
stability analyses of an incompressible gravity-driven three-
dimensional viscous fluid flowing down an inclined plane,
where a uniform electric field is applied in the normal direc-
tion to the inclined plane at infinity. To explore the modal
and nonmodal stability analyses, we develop the time evo-
lution equations for normal velocity, normal vorticity, and
fluid surface deformation, respectively. The Chebyshev spec-
tral collocation method is implemented to solve the time
evolution equations numerically. The modal stability analysis
identifies two dominant modes, the so-called surface mode
and the shear mode. For the two-dimensional disturbance
(β = 0), the neutral curve varies drastically as the electric
Weber number rises. For instance, the single unstable region
bounded by the neutral curve is suddenly divided into two
distinct unstable zones bounded by two distinct neutral curves
at EWe = 1.005, as revealed by Blyth [30]. In particular, the
new unstable zone appears in the finite streamwise wave num-
ber regime, and the associated neutral curve intersects the α

axis instead of the Re axis, which causes an unstable range
of the finite streamwise wave number where the electrified
falling film experiences inertialess instability. Moreover, this
unstable range of the streamwise wave number for the in-
ertialess instability magnifies as the electric Weber number
increases. For the three-dimensional disturbance, the results
computed from the modal stability analysis demonstrate that
there exist three unstable regions for the surface mode in the
wave number plane when the electric Weber number is fixed
at a low value. However, these unstable regions coalesce as
soon as the electric Weber number is increased. The merged
unstable region becomes larger with an increase in the value
of the electric Weber number. By contrast, only one unstable
region is found for the shear mode in the wave number plane,
which depletes slightly as the electric Weber number rises.
Furthermore, the streamwise wave number exhibits a stabi-
lizing impact on both the surface and shear modes, which is
consistent with the statement of Squire’s theorem, where the
three-dimensional infinitesimal disturbances are linearly less
unstable than the two-dimensional ones. In addition, we see
that the long-wave surface mode instability no longer exists,
but shifts towards the finite wavelength regime as the spanwise
wave number rises. On the other hand, from the results of
the nonmodal stability analysis, we predict that the transient
disturbance energy growth exists for the electrified falling
film, and it becomes stronger for the spanwise disturbance
than the disturbance that contains both the streamwise and
spanwise wave numbers. Furthermore, its maximum value
arises in the vicinity of the spanwise wave number axis instead
of the streamwise wave number axis. However, we have not
found a significant effect of the electric Weber number on
the transient disturbance energy growth. The pseudoresonance
event occurs when an external harmonic force is imposed on
the given flow configuration. Again, the peak of the response
curve for the spanwise disturbance is larger than that of the
disturbance, which includes both the streamwise and spanwise
wave numbers.
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APPENDIX A: SQUIRE’S THEOREM FOR THE
ELECTRIFIED FALLING FILM

In order to develop an equivalent set of two-dimensional
perturbation equations from the set of three-dimensional per-
turbation equations (19)–(29) for the electrified falling film,
we shall propose some transformations as suggested by Blyth
[30], Drazin and Reid [48], and Squire [55]. First, using the
normal mode solution, we express the three-dimensional per-
turbation equations (19)–(29) in the following forms:

iαû + ∂yv̂ + iβŵ = 0, (A1)

iα(U − c)û + ∂yU v̂ + iα p̂ − [∂yy − (α2 + β2)]û/Re = 0,

(A2)

iα(U − c)v̂ + ∂y p̂ − [∂yy − (α2 + β2)]v̂/Re = 0, (A3)

iα(U − c)ŵ + iβ p̂ − [∂yy − (α2 + β2)]ŵ/Re = 0, (A4)

[∂yy − (α2 + β2)]φ̂ = 0, (A5)

û = 0, v̂ = 0, ŵ = 0 at y = 0, (A6)

∂yû + iαv̂ + ĥ∂yyU = 0 at y = 1, (A7)

∂yŵ + iβv̂ = 0 at y = 1, (A8)

φ̂ − ĥ = 0 at y = 1, (A9)

− p̂ + (2/Re)∂yv̂ + (2EWe/Re)∂yφ̂ + We(α2 + β2)ĥ

+ (cos θ/Fr2)ĥ = 0 at y = 1, (A10)

iα(U − c)ĥ = v̂ at y = 1. (A11)

φ̂ = 0, ∂yφ̂ = 0 at y → ∞. (A12)

Now, the following forms of the extended Squire’s transfor-
mations [30,48] are used: αû + βŵ = k̃ũ, v̂ = ṽ, k̃ p̂ = α p̃,
k̃ =

√
α2 + β2, c = c̃, αRe = k̃R̃e, αφ̂ = k̃φ̃, k̃2We = α2W̃e,

α2Fr2 = k̃2F̃r
2
, k̃EWe = αẼWe, and αĥ = k̃h̃. Using the above

transformations, we can obtain a similar set of perturbation
equations for the two-dimensional disturbance with a normal
mode solution (∝exp[ik̃(x − c̃t )]),

ik̃ũ + ∂yṽ = 0, (A13)

ik̃(U − c̃)ũ + ∂yU ṽ + ik̃ p̃ − (∂yy − k̃2)ũ/R̃e = 0, (A14)

ik̃(U − c̃)ṽ + ∂y p̃ + (∂yy − k̃2)ṽ/R̃e = 0, (A15)

[∂yy − k̃2]φ̃ = 0, (A16)

ũ = 0, ṽ = 0 at y = 0, (A17)

∂yũ + ik̃ṽ + h̃∂yyU = 0 at y = 1, (A18)

φ̃ − h̃ = 0 at y = 1, (A19)

− p̃ + (2/R̃e)∂yṽ + (2ẼWe/R̃e)∂yφ̃ + W̃e k̃2h̃

+ (cos θ/F̃r
2
)h̃ = 0 at y = 1, (A20)

ik̃(U − c̃)h̃ = ṽ at y = 1, (A21)

φ̃ = 0, ∂yφ̃ = 0 at y → ∞, (A22)

where k̃ is the wave number and c̃ is the wave speed
of the two-dimensional infinitesimal disturbance. The other
“tilde” quantities are the variables for the two-dimensional
disturbed flows. Clearly, the Reynolds number Re for the
three-dimensional disturbance is greater than the Reynolds
number R̃e for the two-dimensional disturbance because Re =
(k̃/α)R̃e > R̃e, where β 
= 0. Hence, the modal instability
corresponding to the three-dimensional infinitesimal distur-
bance occurs at a higher Reynolds number than that of the
two-dimensional infinitesimal disturbance. In other words,
compared to three-dimensional disturbances, we can conclude
that the two-dimensional infinitesimal disturbance is linearly
more unstable.

APPENDIX B: CHEBYSHEV SPECTRAL
COLLOCATION METHOD

In this method, we first expand the perturbation amplitude
functions ṽ and �̃ in a truncated series of the Chebyshev
polynomials [56,57],

ṽ(y) =
N∑

j=0

v jTj (y), �̃(y) =
N∑

j=0

� jTj (y), (B1)

where v j and � j are unknown coefficients to be deter-
mined numerically. Since the Chebyshev polynomials of the
first kind Tj (y) = cos( j cos−1 y) are defined over the domain
[−1, 1], we shift the fluid layer domain [0,1] to [−1, 1] using
the transformation y = (x + 1)/2, where x ∈ [−1, 1]. As a
consequence, it is necessary to change the different order
derivatives in the following way: ∂y → 2∂y, ∂yy → 4∂yy, . . . .
Next, inserting Eq. (B1) into the eigenvalue problem (45),
the Chebyshev functions are evaluated at the Gauss-Lobatto
collocation points xi = cos(π i/N ), which are the extrema of
the Chebyshev polynomials, where i = 0, . . . , N .
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