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Longitudinal and transverse modes of temperature-modulated inclined layer convection
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A parametric instability of an incompressible, viscous, and Boussinesq fluid layer bounded between two
parallel planes is investigated numerically. The layer is assumed to be inclined at an angle with the horizontal.
The planes bounding the layer are subjected to a time-periodic heating. Above a threshold value, the temperature
gradient across the layer leads to an instability of an initially quiescent state or a parallel flow, depending upon
the angle of inclination. Floquet analysis of the underlying system reveals that under modulation, the instability
sets in as a convective-roll pattern executing harmonic or subharmonic temporal oscillations, depending upon
the modulation, the angle of inclination, and the Prandtl number of the fluid. Under modulation, the onset of the
instability is in the form of one of two spatial modes: the longitudinal mode and the transverse mode. The value of
the angle of inclination for the codimension-2 point is found to be a function of the amplitude and the frequency
of modulation. Furthermore, the temporal response is harmonic, or subharmonic, or bicritical depending upon
the modulation. The temperature modulation offers good control of time-periodic heat and mass transfer in the
inclined layer convection.
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I. INTRODUCTION

Inclined layer convection (ILC) is the hydrodynamic prob-
lem of instability in a differentially heated layer of a viscous,
incompressible, and Newtonian fluid bounded between two
parallel planes inclined at some angle with the horizontal
[1–8]. The onset of ILC is generally of two types:

(i) The buoyancy-dominated instability associated with the
well-studied Rayleigh-Bénard convection (RBC) in an ini-
tially quiescent horizontal fluid layer [9–12].

(ii) The dynamic shear-dominated natural convection in a
vertical layer (VLC) [13–18].

As the angle of inclination of the fluid layer with the
horizontal varies from zero, the mechanism of the onset of
ILC is of RBC type up to an inclination of about 71◦ beyond
which the instability mechanism is of VLC type [19].

In [3], Sparrow and Husar carried out experimental studies
on ILC and found that for the considered range of inclinations,
the onset of ILC in air is in the form of longitudinal rolls.
Further, in another experimental work, Lloyd and Sparrow [4]
determined the dependence of the Rayleigh number for the
onset of ILC on the inclination of the fluid layer. It was found
that for the inclination of the fluid layer with the horizontal up
to 73◦, the instability is characterized by longitudinal vortices,
while for an inclination beyond 76◦, the instability is charac-
terized by transverse vortices, where for inclinations between
73◦ and 76◦ a transition occurs between the two modes of the
instability.

These results were further confirmed by experimental and
detailed theoretical work of Hart [19] on ILC with an excellent
agreement between theory and experiment.

*https://sites.google.com/view/sonumaths3/home;
sonumaths@gmail.com

Clever and Busse [7] performed a numerical study on the
stability analysis of longitudinal rolls in ILC and found a
possibility of three types of transitions from the longitudinal
rolls to the three-dimensional form of convection, depending
upon the inclination of the fluid layer.

Hideo [8] studied experimentally the flow and heat transfer
behavior of ILC in a finite box of large aspect ratio revealing
a good agreement with the past theoretical studies.

Daniels et al. [20] performed experiments on ILC for
a fluid of Prandtl number 1 and found many new inter-
esting nonlinear chaotic states. These findings have been
found to be in agreement with the recent numerical work
of Subramanian et al. [21], Reetz and Schneider [22],
Reetz et al. [23], and Tuckerman [24] on ILC, where a
variety of spatiotemporal patterns have been found to be
exhibited by ILC for fluids having Prandtl number near
unity.

A rich variety of patterns exhibited by ILC as evident from
the aforementioned experimental and theoretical research
demonstrates the importance of ILC for further scientific in-
vestigations. Moreover, ILC has served as a model problem
for practical utility from microscale to megascale in a num-
ber of heat transfer, material processing, and other industrial
applications [25].

The heat and mass transfer characteristics of thermal con-
vection in ILC can be controlled by an external time-periodic
forcing of the bounding planes. The practical utility of the
temperature-modulated ILC (TMILC) offers a good control
of time-periodic heat and mass transfer. In fact, TMILC has
a wide range of applications in the processes where rapid
heat and mass transfer are required (e.g., designing heat
sinks for cooling of electronic devices, heat exchangers in
nuclear reactors, air conditioning, microwaves, etc.) In view of
this, the parametric excitation of Faraday instability [26–29],
RBC under time-periodic temperature modulation [12,30–
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36] or gravity modulation [37–40], and time-periodic tem-
perature or gravity modulation of VLC [41–43] are known
to execute harmonic or subharmonic oscillations at the on-
set of the instability, depending upon the modulation and
Prandtl number of the fluid. Rayleigh-Bénard convection is
known to exhibit quasiperiodic patterns under gravity mod-
ulation [38]. The literature on these themes is vast, and
the reader is referred to the excellent review in [12,44,45].
Each of these time-periodic modulation types can lead to
advancement or delay of the onset of convection in differ-
ent parametric ranges of the frequency and the amplitude of
modulation.

Using Floquet theory, Singh and Bajaj [42] performed a
linear instability analysis of VLC under time-periodic mod-
ulation of the temperatures of the vertical planes bounding
the layer for fluids with Prandtl number <12.5. In addi-
tion to the destabilizing and stabilizing effects of modulation
parameters on the onset of the instability, the onset of the
instability was found to be either a harmonic or a subharmonic
mode, where the mode switching always occurs through an
intermediate bicritical state. For a particular combination of
amplitude and frequency of forcing, the bicritical state may
correspond to coexistence of a pair of either purely har-
monic modes, or purely subharmonic modes, or one harmonic
and one subharmonic mode. Furthermore, for fluids with
Prandtl number <12.5, Singh et al. [43] have found a much
wider parameter space for observing bicritical states exhib-
ited by the temperature-modulated VLC under two-frequency
forcing of the temperatures of the vertical planes bounding
the layer.

Only the two particular configurations of TMILC, that
is, the temperature-modulated RBC and the temperature-
modulated VLC, have been investigated in detail in the recent
past [42,43], which restricts its application in the case of a
tilted configuration of the layer. This serves as a motivation for
the present work for investigating the hydrodynamic behavior
of TMILC for all possible configurations. So, in the present
paper, within the framework of linear instability theory, we
examine TMILC for fluids with Prandtl number <12.5 under
single-frequency time-periodic excitation of the temperatures
of the two planes bounding the fluid layer. Floquet theory is
utilized for this purpose.

The paper is organized as follows. The problem and the
basic state are discussed in Sec. II, where a linear instability
analysis of the basic state is carried out. In Sec. III, Floquet
analysis of the underlying linear system is performed, and the
problem is reduced to an equivalent generalized eigenvalue
problem for the control parameter. Most of the numerical
results are discussed in Sec. IV for the Prandtl number of air.
The effect of Prandtl number on the angle of inclination cor-
responding to the codimension-2 point in TMILC is discussed
separately in Sec. V. The conclusions are presented in Sec. VI.

II. MATHEMATICAL FORMULATION

We consider a layer of thickness d > 0 of a viscous, in-
compressible, and Newtonian fluid between two rigid parallel
planes inclined at an angle β with respect to the horizontal.
Aligning the coordinate system with the fluid layer as shown
in Fig. 1, the planes bounding the layer are z = −d/2 and

FIG. 1. Geometry of TMILC.

d/2, which are maintained at temperatures T ∗
1 − ε∗ cos(ω∗t∗)

and T ∗
2 + ε∗ cos(ω∗t∗), respectively, with the base frequency

ω∗ > 0 and amplitude of modulation ε∗ � 0, such that T ∗
1 >

T ∗
2 � 0.

We introduce the scales to measure length, time, veloc-
ity, pressure, and temperature as d , d2/κ , κ/d , ρ0κ

2/d2,
and �T ∗ = T ∗

1 − T ∗
2 , respectively, where κ is the thermal

diffusivity of the fluid, and ρ0 is the density of the fluid at tem-
perature T ∗

0 = (T ∗
1 + T ∗

2 )/2. Using these scales in the laws of
conservation of mass, momentum, and energy, we obtain the
Grashof number Gr = αd3ρ2

0 g�T ∗/η2, the Prandtl number
σ = η/(ρ0κ ), the amplitude of modulation ε = ε∗/�T ∗, and
the basic frequency of modulation ω = d2ω∗/κ as the four
dimensionless parameters governing the flow, where g and η

denote the gravitational acceleration and the dynamic viscos-
ity of fluid, respectively. The Grashof number is related to the
Rayleigh number Ra by Ra = σGr. In addition, α = 1

ρ0

∂ρ

∂T ∗ ,
where the fluid density ρ at any temperature T ∗ is given by
the equation of state as follows:

ρ = ρ0{1 − α(T ∗ − T ∗
0 )}. (1)

In view of the aforementioned scaling, we further scale the
temperature field within the layer so that

T = (T ∗ − T ∗
0 )/�T ∗ (2)

is the dimensionless form of the temperature. So, mathe-
matically the working domain of the fluid layer is the set
D = R × R × (− 1

2 , 1
2 ). The basic state in dimensionless form

consists of the basic velocity field (σGrVe(z, t ) sin β, 0, 0)
obeying zero net flux

∫ 1/2
−1/2 Ve(z, t )dz = 0, the basic temper-

ature field T = Te(z, t ), and the basic pressure P = Pe(x, z, t )
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associated with the fluid layer, which are given as follows:

Ve(z, t ) = z

6

(
z2 − 1

4

)
+ εσ Re

{
f1(z, ω) − fσ (z, ω)

(1 − σ )ιω
eιωt

}
,

(3a)

Te(z, t ) = −z + ε Re{ f1(z, ω)eιωt }, (3b)

Pe(x, z, t ) = Pe(−1/2) − d3g

κ2
(z cos β + x sin β )

−σ 2Gr cos β

∫ z

−1/2
Te(s, t )ds, (3c)

where Re[·] denotes the real part of [·], and

fσ (z, ω) = sinh{
√

ιω/σ z}/sinh{(1/2)
√

ιω/σ }, (4)

where we have f1 = fσ|σ=1.
Considering small perturbations in (3a)–(3c) so that the

perturbed velocity (σGrVe sin β, 0, 0) + (u, v,w), the per-
turbed temperature Te + θ and the perturbed pressure Pe + P
satisfy the governing equations subject to the no-slip condi-
tions at the rigid walls; the small perturbations u, v,w, θ, P
after retaining linear terms and eliminating u, v, and the pres-
sure term P from the governing equations lead to the following
partial differential equations (PDEs) along with the relevant
boundary conditions:

1

σ

∂∇2w

∂t
+ Gr sin β

(
Ve∇2 − ∂2Ve

∂z2

)
∂w

∂x
= ∇4w − σGr sin β

∂2θ

∂x∂z
+ σGr cos β

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
, (5a)

∂θ

∂t
+ w

∂Te

∂z
+ σGr sin βVe

∂θ

∂x
= ∇2θ,

(
w,

∂w

∂z
, θ

)∣∣∣∣
z=± 1

2

= (0, 0, 0), (5b)

where (5a)–(5b) depend on z and t via the boundary condi-
tions and the basic-state velocity Ve and temperature Te.

III. METHOD OF SOLUTION

In view of the fact that the perturbations remain bounded
on D and periodic in x and y, and t , we expand w and θ in the
following appropriate Fourier-Floquet form [9,46]:

w =
L∑

�=−L

N∑
n=1

{an��n(z) + ιbn��n(z)}E�(t, x), (6a)

θ =
L∑

�=−L

N∑
n=1

{ιcn�Sn(z) + dn�Cn(z)}E�(t, x), (6b)

where

E�(t, x) = eι(s+�)ωt eιk·x, x = (x, y, 0),

and k = (k cos γ , k sin γ , 0) for 0◦ � γ � 90◦ is the wave
vector of perturbations with the wave number k > 0, and the
number of Galerkin terms N in the above expansions is chosen
large enough to achieve numerical convergence within speci-
fied tolerance. Furthermore, s = 0 and 1/2 correspond to the
harmonic and the subharmonic responses of the perturbations,

respectively, wherein the growth rate has been set to zero in
order to obtain the critical value for the control parameter for
the onset of the instability. For each n, the functions �n, �n,
Sn, and Cn, which are known as Chandrasekhar functions [9],
obey the given Dirichlet and Newman boundary conditions
imposed on w and Dirichlet boundary conditions imposed on
θ , and they are defined as

�n(z) = cosh λnz

cosh λn
2

− cos λnz

cos λn
2

,

�n(z) = sinh μnz

sinh μn

2

− sin μnz

sin μn

2

,

Sn(z) = sin{2nπz}, Cn(z) = cos{(2n − 1)πz},
where λn and μn satisfy the following:

tan
λn

2
+ tanh

λn

2
= 0, cot

μn

2
− coth

μn

2
= 0.

Substituting the truncated expansions for w and θ from (6a)–
(6b) into (5a)–(5b) and performing Galerkin operations by
taking unity as the weight function, we obtain the following:

{L� − σGr(U1 cos β + U2 sin β cos γ )}ζ� − ε(V + σGr sin β cos γ W)ζ�−1 − ε(V̄ + σGr sin β cos γ W̄)ζ�+1 = 0, (7)

where each of L�, U1, U2, V, and W is a square matrix
as defined in the Appendix, and V̄ (respectively W̄) is the
complex conjugate of V (respectively W). Further, for each �

ζ� = (a1�, . . . , aN�, b1�, . . . , bN�, c1� . . . , cN�, d1�, . . . , dN�)t

is the 4N vector of unknowns. The system (7) leads to the
following generalized eigenvalue problem:

Lζ = σGr(Z1 cos β + Z2 sin β cos γ )ζ , (8)

where L, ζ , Z1, and Z2 are block matrices given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...

· · · −L−1 εV O · · ·
· · · εV −L0 εV · · ·
· · · O εV −L1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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ζ =

⎛
⎜⎜⎜⎜⎜⎜⎝

...

ζ−1

ζ0

ζ1
...

⎞
⎟⎟⎟⎟⎟⎟⎠

, Z1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...

· · · U1 O O · · ·
· · · O U1 O · · ·
· · · O O U1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Z2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...

· · · U2 εW̄ O · · ·
· · · εW U2 εW̄ · · ·
· · · O εW U2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We solve the generalized eigenvalue problem (8) numerically
in order to obtain Gr as the real eigenvalue after feeding a trial
value of k in the interval [0,8] for fixed values of the other
parameters. The procedure is repeated for the other values of
k. The critical Grashof number for the onset of the instability
is then computed using the following formula:

Grc = min
s

inf
k,γ

Gr(σ, ε, ω, β, γ , s, k). (9)

The critical wave number kc is the value of k corresponding to
Grc. We also define

Grc(γ ) = min
s

inf
k

Gr(σ, ε, ω, β, γ , s, k). (10)

The method described here resembles that of Kumar and
Tuckerman [46], with a few exceptions. First, the solution in
the present problem in the finite direction z is not available
in closed form and must be approximated as a truncated
series of Chandrasekhar functions. This makes the problem
considerably more difficult and is an interesting generalization
of the method of Kumar and Tuckerman [46]. Second, we
have formulated the generalized eigenvalue problem (8) to
choose the Grashof number as its eigenvalue instead of the
amplitude of oscillation ε. This choice enables us to carry
out effective numerical computations for obtaining marginal
curves and hence the critical value of the control param-
eter. The present numerical method has been used in past
research on temperature-modulated RBC in Refs. [34,35] and
temperature-modulated VLC in Refs. [42,43].

For numerical computations, we have taken 0◦ � β <

180◦, 0◦ � γ � 90◦, 0 � ε � 0.6, and 0 < ω � 200. In this
work, most of the numerical calculations have been performed
for σ = 0.71 (air). The dependence of the onset and the nature
of TMILC on σ are discussed separately.

IV. NUMERICAL RESULTS AND DISCUSSION

The two types of instability modes discussed in the present
instability problem are (a) the temporal modes and (b) the
spatial modes. The temporal modes are characterized by the
forcing frequency ω. Floquet analysis computes the two tem-
poral modes of the instability: the harmonic response in which
the fluid layer oscillates time-periodically with the frequency
ω, or the subharmonic response in which the fluid layer os-
cillates time-periodically with the frequency ω/2. In a similar
manner, the spatial modes are the orientations γ of a spatially

TABLE I. Comparison of the present numerical results with
those obtained in Ref. [19] for the transverse mode of unmodulated
ILC.

Gr Gr
β σ (Present) Ref. [19]

0◦ 6.7 254.8898 254.9253
12◦ 6.7 278.3455 275.9701
24◦ 6.7 509.8482 500.0000
12◦ 0.71 2587.028 2569.014

periodic pattern of convective rolls in the xy-plane at the onset
of TMILC. Among these orientations, the two most important
spatial modes correspond to γ = 0◦ and 90◦, which are called
transverse and longitudinal modes, respectively.

Notation. Throughout, we shall denote by kH
c and kS

c the
critical wave numbers corresponding to harmonic and subhar-
monic types of modes, respectively, in TMILC. We shall use
the notation kL

c and kT
c for the wave numbers corresponding to

longitudinal and transverse modes of the unmodulated ILC.
Under modulation we shall denote by kLH

c or kLS
c the critical

wave numbers for the longitudinal harmonic and subharmonic
modes, respectively. Similarly, kTH

c or kTS
c will correspond

to transverse harmonic or transverse subharmonic mode of
TMILC. Finally, the symbol βc will denote the value of β cor-
responding to the codimension-2 point in TMILC. Thus, for a
given set of other parameter values, the preferred mode of the
onset of TMILC is longitudinal for β < βc and transverse for
β > βc.

Equation (9) has been solved numerically with MATLAB in
order to obtain the critical value of the control parameter for
a given set of the other dimensionless parameters. To verify
the correctness of the code, we have compared the numeri-
cal results obtained using the present scheme with those of
Hart [19] in Table I for the unmodulated ILC for the Prandtl
number of water and air. Clearly, the values of Gr as obtained
using the present numerical method are in good agreement
with the corresponding values given in Ref. [19]. The slight
deviation in the numerical values of Gr might be due to finite
aspect-ratio effects considered in Ref. [19]. Moreover, for
ε = 0 and σ = 1.07, the angle of inclination corresponding
to the codimension-2 point has been found to occur for(

kL
c , kT

c , Grc
) = (3.117 875, 2.830 625, 7526.231 081),

where βc = 77.7567◦ for N = 10, which is very close to
the corresponding value βc = 77.7560◦ as obtained recently
in [21].

Finally, for ε > 0, we have the following numerical values
for (σ, β ) = (0.71, 90◦):(
ε, ω, kH

c , kS
c , Grc

) = (0.3406, 5, 3.033, 2.648, 8561.187812)

for N = 10 and L = 30, which are in close agreement with the
corresponding values obtained by Singh and Bajaj [42]. These
observations verify the correctness of our numerical code.

After several numerical experiments, we have found that
the present numerical scheme converges for N � 10 and
L � 20, where for β > 150◦ larger values of N � 15 and
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L � 30 are required to obtain numerical convergence. We
have chosen N and L according to these constraints.

A. Marginal instability curves

For the Prandtl number of air (σ = 0.71), it is known that
in the unmodulated ILC (ε = 0), the critical value of the
Grashof number corresponds to either a longitudinal mode
(γ = 90◦) or a transverse mode (γ = 0◦), where the angle
of inclination for the codimension-2 point is 71.4483◦. So,
the two most important configurations of ILC correspond to
β = 0◦ and 90◦.

Under modulation, for the case of temperature-modulated
RBC (β = 0◦), Eq. (8) reduces to the eigenvalue problem

Lζ = σGrZ1ζ , (11)

which is independent of γ . In this case, all spatial modes of the
instability are equivalent. It is natural, of course, that the RBC
solutions should be independent of γ , since homogeneous
directions x and y are equivalent.

In contrast, in the case of VLC (β = 90◦), gravity is along
the x direction, and so the x and y directions are not equivalent
and γ is significant. For the temperature-modulated VLC,
Eq. (8) yields the eigenvalue problem

Lζ = (σGr cos γ )Z2ζ , (12)

with eigenvalue σGr cos γ as a function of other parameters.
So, in this case, Gr is proportional to sec γ . Consequently, Grc

corresponds to the minimum value of sec γ for 0◦ � γ � 90◦,
which occurs for γ = 0◦. Thus, the onset of temperature-
modulated VLC is always in the form of a transverse mode.

For the remaining configurations of the fluid layer, that is,
for 0◦ < β < 90◦, the behavior of TMILC is not at all evident
from Eq. (8). In view of this, we have obtained Fig. 2, which
shows the variation of Grc(γ ) with γ for different values
of β; σ = 0.71, ε = 0.5, and ω = 5. The curves are labeled
as H or S accordingly as Grc(γ ) corresponds to a harmonic
or a subharmonic response. The curve β = 80◦ consists of
two parts: a dashed subharmonic part for 0◦ � γ � 58.02◦
and a solid harmonic part for 58.02 � γ � 90◦. For each of
the curves in Fig. 2, the critical value Grc corresponds to
the point marked •. Clearly, for each value of β, the critical
value of Gr corresponds to either γ = 0◦ or 90◦. Here, the
angle of inclination for the codimension-2 point is 64.806◦.
We conclude that under modulation, the onset of TMILC is
either a longitudinal mode or a transverse mode. It can be
observed from Fig. 2 that for β = 90◦, we have Grc(γ ) → ∞
as γ → 90◦, which is in accordance with Eq. (12). This con-
figuration (β = 90◦) of the fluid layer is stable with respect to
all spatially longitudinal perturbations.

Figure 3 shows marginal curves in the (k, Gr)-plane for
σ = 0.71, ε = 0.5, and ω = 5. Each subfigure in Fig. 3 has
been obtained for one value of β. In each of the subfigures, the
dashed curve in blue corresponds to the longitudinal harmonic
(LH) mode. The thicker (red) and thinner (black) curves in
each case correspond to the transverse harmonic (TH) and
transverse subharmonic (TS) instability responses, respec-
tively. The point marked • on a particular marginal curve
corresponds to the minimum for the particular type of insta-
bility mode. The marginal curve for β = 0◦ and ε = 0.5 is

FIG. 2. Grc(γ ) vs γ for different values of β; σ = 0.71, ε = 0.5,
and ω = 5. Each point of minimum on a given curve is marked
as •. The curves are labeled as H and S to denote harmonic and
subharmonic responses, respectively. The curve β = 80◦ consists
of two parts: a dashed subharmonic branch and a solid harmonic
branch.

FIG. 3. The neutral instability curves in the (k, Gr)-plane for
σ = 0.71, ε = 0.5, and ω = 5. The dashed (blue) curves correspond
to LH mode. The thicker (red) and thinner (black) curves correspond
to TH and TS instability responses, respectively. The point marked
as • in each case denotes the minimum for the particular type of
instability mode.
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known to consist of a single harmonic tongue (see Ref. [34]).
However, even for the small value of β = 5◦, the marginal
instability curves for the transverse mode consist of alternate
harmonic and subharmonic tongues, where a comparatively
wide harmonic instability tongue is followed by a narrow
pattern of alternate subharmonic and harmonic closed curves.
The basic flow is unstable with respect to any type of pertur-
bations for the points within a particular closed curve (island),
and stable for the points outside it. It is interesting to note that
the marginal curves in the form of isolated closed islands are
found to occur in the Faraday instability under two-frequency
modulation as obtained in Ref. [27]. The lowest value of Gr
for the transverse mode occurs on the wider harmonic branch
of the marginal curves. On the other hand, the marginal curve
for the longitudinal mode consists of a single wide harmonic
tongue (here, only the lower part of the marginal curve is
shown for the LH mode) on which Grc is attained and no
subharmonic response is found to occur for (ε, ω) = (0.5, 5).
This can be explained from the analysis of the underlying
perturbation equations. For the longitudinal roll solution for
TMILC, we have ∂

∂x ≡ 0 or equivalently γ = 90◦. In view of
this, (5a) and (5b) reduce to the following:

1

σ

∂∇2w

∂t
= ∇4w + σGr cos β

∂2θ

∂y2
, (13a)

∂θ

∂t
+ w

∂Te

∂z
= ∇2θ, (13b)(

w,
∂w

∂z
, θ

)∣∣∣∣
z=± 1

2

= (0, 0, 0). (13c)

Note that the perturbation equations (13a)–(13c) are es-
sentially those that were obtained for the problem of
temperature-modulated RBC in Ref. [33] in the absence of
magnetic field and in Ref. [34] except that σGr cos β appears
in (13a) in place of σGr. So, the nature of the onset of the
instability in TMILC in the form of a longitudinal mode for
any inclination β can be expressed in terms of the control
parameter and the wave number for temperature-modulated
RBC, that is,

Gr|0◦�β<90◦ = Gr|β=0◦ × sec β, γ = 90◦, (14a)

k|0◦�β<90◦ = k|β=0◦ , γ = 90◦. (14b)

We find that (14a) and (14b) in particular recover the result of
Greshuni and Zhukhovitskii [47] corresponding to the unmod-
ulated ILC. Since subharmonic marginal curves do not appear
in temperature-modulated RBC [34] for ε = 0.5 and ω = 5 in
the considered range of the control parameter, the same must
be true for TMILC for γ = 90◦ in Fig. 3.

Returning to Fig. 3, we observe that for β = 5◦, the critical
value of the control parameter for TMILC corresponds to
a longitudinal-harmonic (LH) mode. The pattern of closed
TH and TS curves appears for up to β = 10◦, where the
number of such closed marginal curves decreases on incre-
menting β. The leftmost wide TH marginal curve becomes
narrower on increasing β. The closed marginal curves do not
appear for 10◦ < β � 90◦ in the considered range of Gr. For

(a) 0 ≤ k ≤ 7

(b) 4 ≤ k ≤ 4.6

FIG. 4. Neutral instability curve in the (k, Gr)-plane for β =
64.806◦. The other parameter values are the same as in Fig. 3. The
black, red, and blue solid circles denote the minimum for TS, TH,
and LH responses respectively.

β = 30◦, a small TS branch appears to the left of the wider TH
branch of the marginal curves. The entire pattern of TH, TS,
and LH marginal curves shifts upwards in the (k, Gr)-plane
on incrementing β from 0◦ to 90◦, which indicates that in
TMILC, the critical Grashof number increases with increasing
β. This is natural since an increase in the inclination of the
layer causes an increase in the flow shear, which stabilizes
the basic flow field, and so a larger temperature gradient is
required in order to observe TMILC. The critical mode for the
onset of TMILC remains LH for 0◦ � β � 64.806◦, where the
angle of inclination β = βc denotes the codimension-2 point
for mode switching between longitudinal and transverse types
with the following critical values:(

βc, kLH
c , kTH

c , Grc
) = (64.806◦, 3.0578, 2.8475, 6693.30).

We provide a more detailed description of the marginal curves
for βc = 64.806 separately in Fig. 4(a).

A meandering pattern of marginal curve is observed in a
neighborhood of k = 4.1 as shown in Fig. 4(b). This meander-
ing pattern is found to be a characteristic of marginal curves
not only for β = βc but also for all other positive inclinations.
Furthermore, the marginal curves for TH or LH responses are
found to occur for larger wave numbers, whereas TS response
is not observed to occur for large wave numbers in the consid-
ered limits of Gr.

Returning to Fig. 3, we find that for β � βc, the critical
Grashof number always corresponds to a TH or a TS mode.
On further incrementing β, a bicritical point is observed to
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FIG. 5. The neutral instability curves in the (k, Gr)-plane for the
fixed parametric values and other parameters as in Fig. 3.

occur for β ≈ 71.585◦ with(
kTH

c , kTS
c , Grc

) = (2.9675, 2.4675, 7025.85).

The instability tongues corresponding to this bicritical point
are of comparable sizes. For β = 80◦ (the graph not shown
here), the critical mode of instability is in the form of a
pattern of transverse convective rolls executing subharmonic
oscillations.

The marginal instability curves for β � 90◦ have been
shown in Fig. 5 for the fixed parametric values as in Fig. 3. For
90◦ � β < 180◦ and ε = 0.5, the longitudinal mode has not
been found to occur in TMILC. This is natural since for β in
the range from 90◦ to 180◦, the upper plane bounding the layer
is hotter than the lower one, which causes the modulation ef-
fects to act against buoyancy effects, whereas the longitudinal
mode of the instability is buoyancy-dominated. Consequently,
the instability response is either TH or TS, depending upon
β. The lowest value of Grashof number occurs on the middle
subharmonic marginal curve for β = 90◦, 100◦, and 110◦. In
each of these cases, the marginal curves alternate between
the middle subharmonic branch accompanied by two left and
right harmonic branches. The leftmost harmonic branch is
narrow but widens as β is incremented, and for β = 120◦,
Grc occurs on the leftmost harmonic marginal curve in the
(k, Gr)-plane. For β = 120◦, 140◦, and 150◦, the instability
response remains harmonic, whereas for β = 160◦, the lowest
value of Gr occurs on the middle subharmonic branch. A
switching between the two temporal modes occurs through an
intermediate bicritical state in which the fluid layer oscillates
time-periodically with the coexistence of two distinct wave
numbers. For β = 180◦, we are back at the case of RBC, but

FIG. 6. Neutral instability curve in the (k, Gr)-plane for σ =
0.71, ε = 0.6, ω = 5, γ = 90◦, and β = 0◦. Each • denotes the
minimum for LH or LS response.

in the stable configuration (the upper plane hotter than the
lower colder plane). Two bicritical points are found to occur
for β ≈ 112.63◦ and 153.047◦, and the details are given in
Fig. 8.

We have obtained marginal curves for a slightly larger
value of ε = 0.6 in Fig. 6 for σ = 0.71, ω = 5, γ = 90◦,
β = 0◦. Here, the instability sets in first as a LS mode with
the following critical values:(

kLS
c , Grc

) = (3.3916, 3319.02).

Consequently using (14a) and (14b), the onset of the instabil-
ity in TMILC for the Pradtl number of air remains in the form
of a LS mode for 0◦ < β < βc for ε = 0.6 and ω = 5.

We conclude that the onset of TMILC is one of LS or
LH modes for 0◦ < β < βc, depending upon the modulation
parameters.

Under high-frequency modulation and small inclinations
of the fluid layer, we have observed a beautiful “Boot-pattern”
of the marginal curves corresponding to the transverse mode.
Figure 7 shows such a pattern for the Prandtl number of air,
ε = 0.5 and ω = 50. It is known that for β = 0◦, the case
of RBC, there is a single wide TH instability tongue in the
(k, Gr)-plane within which the basic flow is unstable and
stable otherwise [42].

For the parts of Fig. 7 corresponding to β = 1◦, mul-
tiple (disjoint) marginal curves alternate between harmonic
and subharmonic branches. The largest and leftmost branch
is a boot-shaped harmonic branch, and Grc occurs on this
marginal curve. The leftmost largest harmonic branch is
followed by alternate disjoint subharmonic and harmonic
small closed curves, as is more evident from the subfig-
ures corresponding to β = 2◦–5◦. The entire pattern shifts
towards lower wave-numbers on incrementing β. For β =
7◦, a single larger leftmost harmonic instability tongue
appears along with multiple smaller marginal curves alter-
nating between harmonic and subharmonic types and also
a pattern of closed curves alternating between harmonic
and subharmonic types. With a further increase of β, the
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FIG. 7. Marginal curve in the (k, Gr)-plane for the transverse
mode of TMILC for σ = 0.71, ε = 0.5, and ω = 50. The thicker
(red) and thinner (black) parts of the curve correspond to TH and
TS responses, respectively. Each of the points marked ∗ denotes a
minimum for the underlying temporal mode.

entire pattern of the smaller instability tongues and the closed
loops come closer, and eventually merge together for β ≈
10◦. Marginal curves exhibiting a pattern alternating between
subharmonic and harmonic “islands” have not been reported
in any Floquet problem in the past, although “islands” have
been found to occur in the marginal curves for two-frequency
excitation of Faraday instability in Ref. [27].

B. Effect of angle of inclination on critical values of Gr and k

Figure 8 shows the variation of Grc with β for σ = 0.71,
ε = 0, 0.5, and ω = 5. For the unmodulated ILC, that is, for
ε = 0, the instability response is a longitudinal mode for β

in the range 0◦–71.44◦, whereas the instability response is a
transverse mode for 71.44◦ < β < 180◦. In addition, Grc is
an increasing function of β, where Grc → ∞ as β → 180◦.
This is due to the fact that β = 180◦ is the stable RBC config-
uration of the fluid layer heated from above and cooled from
below.

A similar variation of Grc with β is found to occur un-
der modulation for ε = 0.5 and ω = 5. Here, the preferred
mode for the onset of TMILC is a LH mode for 0◦ � β <

64.806◦. The angle of inclination 64.806◦ corresponds to the
codimension-2 point (also see Fig. 4). For 64.806◦ < β <

71.585◦, the instability response is a TH mode, and a bicritical
point is observed to occur for β ≈ 71.585◦ with the following
critical values:(

kTH
c , kTS

c , Grc
) = (2.9675, 2.4675, 7025.846).

FIG. 8. Grc vs β for σ = 0.71, ε = 0, 0.5, and ω = 5. The blue
and black curves correspond to ε = 0 and 0.5, respectively. The
thicker curves correspond to (kc, Grc ) for the most unstable mode
for a given value of ε and β. For ε = 0.5, the critical curve consists
of LH, TS, TH, and TS parts separated by a bicritical point marked
as •. The points marked � on curves ε = 0 and 0.5 correspond to βc.

For 71.585◦ < β < 112.63◦, the instability response in
TMILC is a TS mode until another bicritical point occurs for

(
β, kTS

c , kTH
c , Grc

) = (112.63◦, 2.9143, 2.4300, 9011.171).

For 112.63◦ < β < 153.047◦, the instability response is a TH
mode. Yet another bicritical point is found to occur for β ≈
153.047◦ with

(
kTH

c , kTS
c , Grc

) = (2.9060, 2.4690, 26076.20).

Beyond β = 153.047◦, the instability response is found to be
a TS mode. It is interesting to observe that

Grc|ε=0

{
<Grc|ε=0.5 for 0◦ � β < 70◦,

>Grc|ε=0.5 for 70◦ < β < 180◦.

This shows that the onset of TMILC gets delayed by modula-
tion for 0◦ � β < 71.585◦, which is in accordance with (14a),
and the onset gets advanced under modulation for 71.585◦ <

β < 180◦.
The corresponding variation of kc with β is shown in Fig. 9.

The critical wave-number kL
c or kLH

c for the onset of TMILC
is independent of β in the absence as well as the presence
of the modulation, which is in accordance with (14b). How-
ever, the critical wave-number corresponding to the transverse
mode depends strongly on β. For ε = 0, kT

c is a decreasing
continuous function of β up to approximately 168◦, beyond
which kT

c increases sharply with β on further increase of β.
Under modulation, kc is discontinuous at the value βc at which
the bicritical point occurs in TMILC. The mode switches at a
bicritical point between harmonic and subharmonic types. Be-
tween any two consecutive bicritical points, kc is an increasing
function of β.
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FIG. 9. kc vs β for the same parameter values and other details
as in Fig. 8.

C. Effect of modulation on mode switching

The angle of inclination for the codimension-2 point in the
steady ILC is βc ≈ 71.4483◦ for the Prandtl number of air,
with the following critical values:(

kL
c , kT

c , Grc
) ≈ (3.116, 2.838, 7560.02199).

Under modulation, the parameter βc is a function of the mod-
ulation parameters. In view of this, we have obtained Fig. 10,
which shows the variation of βc with ε for σ = 0.71, and for
ω = 5, 10. The solid (red), solid (black), and dashed (black)
parts of the curve correspond to TH-LH, TS-LH, and TH-LS
modes, respectively. Each of the points marked • corresponds
to a bicritical point.

First we explain the curve ω = 5. The parameter βc de-
creases slightly from 71.4483◦ to 71.03◦, when ε is varied
from 0 to approximately 0.3, where the instability response
of TMILC is harmonic. For 0.3 � ε � 0.3428, the parameter
βc increases slightly with ε, and a bicritical point is observed

FIG. 10. βc vs ε for σ = 0.71 and ω = 5, 10. The solid (red),
solid (black), and dashed (black) parts of each curve correspond to
TH-LH, TS-LH, and TH-LS modes, respectively. Each of the points
marked • corresponds to a bicritical point.

FIG. 11. βc vs ω for σ = 0.71 and ε = 0.5, 0.3428. The red and
black parts of the curve correspond to TH-LH and TS-LH responses,
respectively. Each of the points marked • corresponds to a bicritical
point.

to occur for ε ≈ 0.3428 and βc = 71.094◦ with the following
critical values:(

kTH
c , kTS

c , kLH
c , Grc

) ≈ (3.019, 2.579, 3.104, 7903.3).

For 0.3428 < ε < 0.4593, the instability response is subhar-
monic and βc decreases significantly to 67.83◦ for ε = 0.4528
when another bicritical point occurs for the following critical
values:(

kTS
c , kTH

c , kLH
c , Grc

) ≈ (2.486, 2.980, 3.081, 7264.6).

Beyond ε = 0.4593, βc decreases rapidly with ε and the insta-
bility response remains harmonic for 0.4593 < ε < 0.5837.
For ε ≈ 0.5837, a bicritical point is found to occur for βc ≈
57.642 with the following critical values:(

kTH
c , kLH

c , kLS
c , Grc

) ≈ (2.663, 2.617, 3.567, 6478.6).

For 0.5837 < ε � 0.6, the instability response is subhar-
monic. These observations show that under modulation, the
inclination corresponding to the codimension-2 point is either
harmonic, or subharmonic, or bicritical, depending upon the
amplitude of modulation. A similar variation of βc with ε

occurs for ω = 10 with a difference that the TH-LS mode is
not found to occur for the considered range of ε. Further, for
ω = 10, the instability region for the onset of the longitudinal
mode expands in comparison with that for ω = 5.

To see the dependence of βc on ω, we have obtained Fig. 11
for two distinct values of ε = 0.3428, 0.5 and σ = 0.71. The
red and black parts of each of the curves in Fig. 11 corre-
spond to harmonic and subharmonic responses, respectively.
It is evident from Fig. 11 that the locus of the angle of
inclination corresponding to the codimension-2 point in the
(ω, Grc)-plane for TMILC consists of alternating TH-LH and
TS-LH branches connected through an intermediate bicritical
point. First we explain the curve ε = 0.3428. For 2 � ω < 5,
the codimension-2 point occurs through a TS-LH response,
where βc decreases with ω for 2 � ω < 4, attains a minimum
for ω ≈ 4, and increases with ω for 4 < ω < 5. For ω = 5,
the codimension-2 point corresponds to a bicritical point as
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discussed earlier for βc ≈ 71.094◦. For ω > 5, the value of βc

corresponds to a TH-LH response, where βc increases with ω

for 5 < ω < 50 and attains a maximum value βc ≈ 72.0620◦
for ω ≈ 50. Only 1.36% increase in βc with ω is observed to
occur for ω > 5, which shows that in TMILC, high-frequency
modulation will have little effect on the angle of inclination
corresponding to the codimension-2 point. Beyond ω = 50, βc

decreases slowly with a further increase of ω and eventually
approaches the following:

lim
ω→∞ βc(ω) = 71.4483◦ = lim

ε→0
βc. (15)

A similar dependence of βc on ω can be observed for ε =
0.5, where the dependence is significant for 2 � ω � 22.254.
Here, βc corresponds to a TH-LH response for 2 � ω <

12.469, and a bicritical point is observed for ω ≈ 12.469,
where βc ≈ 69.237◦ corresponding to the following numeri-
cal values:(

kTH
c , kTS

c , kLH
c , Grc

) = (3.018, 2.239, 3.071, 7715.8).

For ε = 0.5, the parameter βc decreases with ω for 2 � ω �
3, attains a minimum for ω = 3, and then βc increases rapidly
with ω for 3 � ω � 22.254. For 12.469 < ω < 22.254, βc

corresponds to a TS-LH response, when another bicritical
point occurs for ω ≈ 22.254 and βc ≈ 72.829◦, which corre-
spond to the following values:(

kTS
c , kTH

c , kLH
c , Grc

) = (2.023, 3.009, 3.081, 8837.8).

Beyond ω = 22.254, the variation in βc with ω for ε = 0.5 is
similar to that in the case of ε = 0.3428.

D. Flow field and isotherms

For computing the projection of the flow field in the (x, z)-
plane, it is necessary to compute the velocity components u
and w at each point (x, z) for a given value of t and y. For
longitudinal as well as transverse modes, the component w is
given by (6a). For the transverse mode, u can be calculated in
terms of w from the equation of continuity.

On the other hand, for the longitudinal mode, the velocity
component u can be computed as a function of w and θ as
follows. First, we observe that the momentum balance along
the x-direction gives

1

σ

∂u

∂t
+ Gr sin β

(
∂Ve

∂z
w + Ve

∂u

∂x

)

= − 1

σ

∂ p

∂x
+ ∇2u + (σGr sin β )θ. (16)

For the longitudinal mode, we have ∂/∂x ≡ 0. This in view of
(16) gives(

∇2 − 1

σ

∂

∂t

)
u = Gr sin β

(
w

∂Ve

∂z
− σθ

)
, (17)

along with the boundary conditions u|z=±1/2 = 0. Thus the
preceding two-point boundary value problem can be solved
for u in terms of the solutions for w and θ .

Figure 12 shows the stream function for the disturbances
in the velocity field of the perturbed flow and the isolines
for the disturbance θ in the temperature field, each nor-
malized to unity in (a) (y, z)-plane for LH mode, and (b)
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FIG. 12. Normalized disturbance stream function, and isolines
for normalized θ for β = 64.806◦, ε = 0.5, ω = 5, σ = 0.71, and
t = 0.2513 in (a) (y, z)-plane for LH mode, and (b) (x, z)-plane for
TH mode, at the onset of TMILC.

(x, z)-plane for TH mode, at the onset of TMILC, for the
inclination corresponding to the codimension-2 point, that
is, β = 64.806◦; ε = 0.5, ω = 5, σ = 0.71, and t = 0.2513.
We observe from the first subfigure of Fig. 12(a) that the
longitudinal perturbations manifest themselves in the form
of an alternating periodic pattern of identical cells extending
along the y direction. The flow-field perturbations in adjacent
cells have opposite orientations, and the boundary separat-
ing them corresponds to the location where the temperature
perturbation has the highest magnitude. The pattern of the
isolines θ = const is similar, as can be seen from the second
subfigure in Fig. 12(a). On the other hand, the corresponding
pattern of the disturbance stream function corresponding to
the perturbations (u,w) and the isolines for θ in the case of
TS mode is shown in Fig. 12(b), where we observe that the
transverse disturbances in the flow field manifest themselves
in the form of an alternating periodic pattern of identical tilted
cells extending along the x direction. A similar pattern for the
isolines θ = const can be seen from the second subfigure of
Fig. 12(b).

Finally, for a given mode, the total flow field has been taken
to be (Ve + δ × v,w) for the LH mode and (Ve + δ × v,w)
for the TH mode, where each of Ve, u, v, and w has been
normalized to 1, and δ with 0 < δ < 1 is used to scale the
perturbation in the basic flow field. Similarly, the temperature
field has been taken to be Te + δ × θ , where Te and θ are
normalized to 1. The pattern of the flow field (upper subfigure)
and the isotherms (lower subfigure) has been shown for the
LH mode in Fig. 13(a) in the (y, z)-plane, and for the TH
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FIG. 13. Velocity vector field and isotherms for β = 64.806◦,
δ = 0.5, ε = 0.5, ω = 5, and σ = 0.71 for t = 0.2513 in (a) the
(y, z)-plane for LH mode, (b) the (x, z)-plane for TH mode.

mode in Fig. 13(b) in the (x, z)-plane at the onset of TMILC
for β = 64.806◦, δ = 0.5, ε = 0.5, ω = 5, and σ = 0.71 for
t = 2π/(5ω) and y = 0. The vector plot in the first subfigure
of each of Figs. 13(a) and 13(b) shows the direction of the
velocity vector field. We observe that the flow in each case
(LH or TH) is up the slope in the hotter part of the fluid
layer, and the flow is down the slope in the cooler part of the
fluid layer. The longitudinal rolls have their axis parallel to the
x-axis. On the other hand, the transverse rolls have their axis
parallel to the y-axis. So, the transverse rolls are visible in the
(x, z)-plane where the flow is identical within adjacent rolls.
Further, we observe that as expected, the longitudinal-roll
pattern as in Fig. 13(a) is identical to that of the RBC but with
a difference that in RBC, the flow alternates between clock-
wise and anticlockwise within adjacent rolls, whereas the
flow within adjacent rolls is identical in the longitudinal-roll
pattern for β = 64.806◦. On the other hand, the transverse-roll
pattern in Fig. 13(b) is identical to that of VLC. We have
observed that in each case (LH or TH), the pattern of the
flow field remains almost the same as shown in Fig. 13 for
all values of t , however movements of the isotherms for the

FIG. 14. βc vs σ for ε = 0, 0.5 and ω = 5, 10. The dotted curve
corresponds to ε = 0. The solid red and black parts on the curve
(ε, ω) = (0.5, 5) correspond to TH-LH and TS-LH responses, re-
spectively. Similarly, the dashed-dotted blue and black parts on
the curve (ε, ω) = (0.5, 10) correspond to TH-LH and TS-LH re-
sponses, respectively. Each of the points marked • corresponds to a
bicritical point.

total temperature field in the layer are observed to occur over
a time period, which allows a time-periodic heat transfer from
the hotter boundary to the cooler boundary of the layer.

V. PRANDTL NUMBER DEPENDENCE

Figure 14 shows the variation of βc with σ for ε =
0, 0.5 and ω = 5, 10. The dotted, solid, and dashed-dotted
curves correspond to ε = 0, (ε, ω) = (0.5, 5), and (ε, ω) =
(0.5, 10), respectively.

The solid red and black parts on the curve (ε, ω) = (0.5, 5)
correspond to TH-LH and TS-LH responses, respectively.
Similarly, the dashed-dotted blue and black parts on the
curve (ε, ω) = (0.5, 10) correspond to TH-LH and TS-LH
responses, respectively. In the absence of modulation (ε =
0), the parameter βc is a monotonically increasing function
of σ , where the rate of increase of βc with respect to σ

is sharp for small values of σ and the rate is negligible
for large values of σ . It is well known that for the un-
modulated ILC, βc = 0◦ for all fluids with σ < 0.26 and
βc > 0 for σ � 0.26 approximately [48,49]. This can be ex-
plained as follows. For the fluids with small Prandtl number,
the kinetic energy of the mean flow is larger than the po-
tential energy associated with the density stratification, and
the transverse perturbations receive energy from the mean
flow, thereby leading to a hydrodynamic origin of the in-
stability in the form of transverse modes for all angles of
inclinations [48].

Under modulation (ε = 0.5), a similar observation pre-
vails. In fact, the variation of βc with σ is similar in the two
typical cases ε = 0 and 0.5 except that for ε = 0.5, the nature
of the onset of the instability for βc can be one of the three
modes TH-LH, TS-LH, and TH-TS-LH. More precisely, for
ε = 0.5 and ω = 5, βc > 0◦ for all σ � 0.24 and βc = 0◦
otherwise. In addition, βc corresponds to the TH-LH mode for
0 < σ < 0.7766 and a bicritical point (a TH-TS-LH mode)
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with (σ, βc) ≈ (0.7766, 67.996◦) and the following critical
values:(

kTH
c , kTS

c , kLH
c , Grc

) ≈ (2.971, 2.492, 3.051, 6921.34).

For 0.7766 < σ < 1.0308, the parameter βc corresponds to a
TS-LH mode. The value σ = 1.0308 corresponds to another
bicritical point with βc ≈ 73.4314◦ and the following critical
values:(

kTS
c , kTH

c , kLH
c , Grc

) ≈ (2.900, 2.478, 3.038, 6719.5).

For σ > 1.0308, βc corresponds to a TH-LH mode, where for
all sufficiently large values of σ , the rate of change of βc with
σ is negligible.

A similar variation of βc with σ occurs for ε = 0.5 and
ω = 10 (dashed-dotted curves), where we note that βc = 0◦
for σ < 0.279 and βc > 0◦ otherwise. Furthermore, βc cor-
responds to a TH-LH mode for 0 < σ < 0.7414, a TS-LH
mode for 0.7414 < σ < 1.4815, and a TH-TS-LH mode for
σ = 0.7414, 1.4815. The curves ω = 5 and 10 are practically
indistinguishable for σ > 1, which indicates that under mod-
ulation, an increase of ω has a negligible effect on βc for high
Prandtl number fluids.

VI. CONCLUDING REMARKS

Floquet analysis of TMILC reveals interesting features
about the nature of the onset of instability. The marginal
instability curves (and hence the type of instability response)
for the longitudinal perturbations in TMILC are completely
determined from those that exist in the temperature-modulated
RBC for the corresponding parametric values. Thus, the tem-
poral response of the spatial longitudinal mode in TMILC is
temporally harmonic, or subharmonic, or bicritical accord-
ingly as the temporal response of the modulated RBC is
harmonic, or subharmonic, or bicritical.

Although the marginal instability curves for the transverse
perturbations in TMILC are found to consist of a pattern of
alternating harmonic and subharmonic regions in the space of
the wave number of the perturbations and the Grashof number,
the temporal response of TMILC in this case in the form
of harmonic, or subharmonic, or bicritical responses further
depends upon the angle of inclination of the layer with respect
to the horizontal.

The onset mode of TMILC is found to occur in the form
of a time periodically oscillating pattern of convective rolls,
which corresponds to any of the following modes: LH, LS,
TH, TS, TH-LH, TS-LH, TH-LS, TH-TS-LH, TH-LS-TH,
depending upon the orientation of the layer with respect to
the horizontal and modulation parameters. Modulation effects
are significant for low to moderate forcing frequencies, and
they are negligible for sufficiently large frequencies.

Except in a neighborhood of the angle of inclination for
the codimension-2 point, modulation delays the onset of the
longitudinal mode of TMILC and modulation favors the onset
of the transverse mode of TMILC.

The angle of inclination for the codimension-2 point is also
a function of the modulation parameters and Prandtl number
of the fluid. The rate of variation of the angle of inclination for
the codimension-2 point with the Prandtl number is significant
for low Prandtl number fluids.

The present analysis of TMILC is mainly focused on inves-
tigating the effect of modulation on the value of the angle of
inclination of the fluid layer with respect to the horizontal be-
low which the preferred onset mode of TMILC is longitudinal
and above which the preferred onset mode is transverse. For
such an inclination, Floquet theory allows us to further clas-
sify the nature of the onset of the instability in the form of a
time-periodic flow among the harmonic and the subharmonic
types.
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APPENDIX

To define various matrices and block matrices, we proceed
as follows: Let O and I , respectively, denote the zero matrix
and the identity matrix each of order N × N . Furthermore, for
Xn, Yj ∈ L2(− 1

2 , 1
2 ) with 1 � n, j � N , we define 〈Xn,Yj〉 as

the N × N matrix whose (n, j)th entry is equal to∫ 1
2

− 1
2

Xn(z)Yj (z)dz.

Having said this, the block matrix L� for each � = −L,−L +
1, . . . , L − 1, L appearing in Eq. (7) is given by

L� =

⎛
⎜⎜⎝

L1(�) − A1 O O O
O L2(�) − B2 O O

O −〈�n,S j〉 L3(�) − C3 O

−〈�n, C j〉 O O L4(�) − D4

⎞
⎟⎟⎠,

(A1)

where h(z) = z(z2 − 1
4 ) and

L1(�) = ιω(s + �)

σ
(〈�′′

n,� j〉 − k2I ), (A2)

L2(�) = ιω(s + �)

σ
(〈� ′′

n , � j〉 − k2I ), (A3)

L3(�) = L4(�) = ιω(s + �)

2
I. (A4)

Further, the block matrices U1, U2, V, and W as in Eq. (7) are
given by

U1 = k2

⎛
⎜⎜⎜⎜⎝

O O O 〈Cn,� j〉
O O 〈Sn, � j〉 O

O O O O
O O O O

⎞
⎟⎟⎟⎟⎠, (A5)

U2 = k

6

⎛
⎜⎜⎜⎜⎝

O A2 6A3 O

B1 O O 6B4

O O O −〈h(z)Cn,S j〉
O O −〈h(z)Sn, C j〉 O

⎞
⎟⎟⎟⎟⎠, (A6)
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V =

⎛
⎜⎜⎜⎝

O O O O
O O O O
O G2 O O
H1 O O O

⎞
⎟⎟⎟⎠, (A7)

W = k

2ιω(1 − σ )

⎛
⎜⎜⎜⎝

O E2 O O
F1 O O O
O O O σG4

O O σH3 O

⎞
⎟⎟⎟⎠ (A8)

for σ = 1. Furthermore, the following matrices have been
used in (A1)–(A6):

A1 = 〈(
λ4

n + k4
)
δn j

〉 − 2k2〈�′′
n,� j〉, (A9)

A2 = 1

σ
{〈h(z)� ′′

n ,� j〉 − 〈h′′(z)�n,� j〉
−k2〈h(z)�n,� j〉}, (A10)

A3 = 2π〈n cos{2nπz},� j〉, (A11)

B1 = 1

σ
{〈h′′(z)�n, � j〉 − 〈h(z)�′′

n, � j〉
+k2〈h(z)�n, � j〉}, (A12)

B2 = 〈(
μ4

n + k4
)
δn j

〉 − 2k2〈� ′′
n , � j〉, (A13)

B4 = π〈(2n − 1) sin{(2n − 1)πz}, � j〉, (A14)

C3 = −1

2
〈(4π2n2 + k2)δn j〉, (A15)

D4 = −1

2
〈((2n − 1)2π2 + k2)δn j〉. (A16)

For σ > 0 and Xn, Yj in L2(− 1
2 , 1

2 ), we define
〈Mσ (Xn,Yj )〉 and 〈Nσ (Xn,Yj )〉 as the N × N matrices
whose (n, j)th entries are

∫ 1/2
−1/2 fσ (z, ω)Xn(z)Yj (z)dz and∫ 1/2

−1/2 Xn(z)( ∂
∂z fσ (z, ω))Yj (z)dz, respectively. Consequently,

each of the following N × N matrices is used in (A7)
and (A8):

E2 =
( ιω

σ
+ k2

)
〈Mσ (�n,� j )〉 − 〈Mσ (� ′′

n ,� j )〉
+〈M1(� ′′

n ,� j )〉 − (ιω + k2)〈M1(�n,� j )〉, (A17)

F1 = −
( ιω

σ
+ k2

)
〈Mσ (�n, � j )〉 + 〈Mσ (�′′

n, � j )〉
+(ιω + k2)〈M1(�n, � j )〉 − 〈M1(�′′

n, � j )〉, (A18)

G2 = − 1
2 〈N1(�n,S j )〉, (A19)

G4 = −〈M1(Cn,S j )〉 + 〈Mσ (Cn,S j )〉, (A20)

H1 = − 1
2 〈N1(�n, C j )〉, (A21)

H3 = 〈M1(Sn, C j )〉 − 〈Mσ (Sn, C j )〉. (A22)
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