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Emergence of universal scaling in isotropic turbulence
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Universal properties of turbulence have been associated traditionally with very high Reynolds numbers, but
recent work has shown that the onset of the power laws in derivative statistics occurs at modest microscale
Reynolds numbers of the order of 10, with the corresponding exponents being consistent with those for the
inertial range structure functions at very high Reynolds numbers. In this paper we use well-resolved direct
numerical simulations of homogeneous and isotropic turbulence to establish this result for a range of initial
conditions with different forcing mechanisms. We also show that the moments of transverse velocity gradients
possess larger scaling exponents than those of the longitudinal moments, confirming past results that the former
are more intermittent than the latter.
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I. BACKGROUND

Turbulence is characterized by strong amplitude fluctua-
tions over spatial scales that range, nominally, from large
scales O(L) to dissipating small scales O(η). A similar range
of temporal scales exists as well. Within the classical turbu-
lence phenomenology, large scales depend on the geometry
of the flow, or the generation mechanism of turbulent fluctu-
ations, while the small scales increasingly approach universal
behavior as the scale separation grows [1–6]. A measure of
scale separation in turbulent flows is the Reynolds number.
The universality of small scales at high Reynolds numbers
is an enduring notion in turbulence theory and forms the
bedrock of most modeling approaches [1,2,6–9]. This view
was formalized in Kolmogorov’s seminal work (K41) and its
subsequent modifications (see Refs. [4–6]), which character-
ize the statistical behavior of fluctuations at different scales, in
particular a Reynolds-number-independent state of the inertial
range (L � r � η). Universality of small scales is expected
to manifest more rigorously at high Reynolds numbers, which
has been the motivation for studying turbulence at ever in-
creasing Reynolds numbers.

The theory itself does not provide guidance on how high a
Reynolds number should be regarded as “high enough,” but
it is not uncommon to regard an Rλ of the order of a few
hundred or more as necessary for the inertial scaling to appear
[6,10–17]. Here,

Rλ ≡
√

5/(3〈ε〉ν)u2
rms,

where ε = 2νsi jsi j is the (instantaneous) energy dissipation
rate, ν is the kinematic viscosity, and urms is the root-mean-

square fluctuating velocity; si j is the rate of strain given by
(∂iu j + ∂ jui )/2 using Einstein’s summation convention, and
angular brackets indicate volume averages over an ensemble
of realizations in time. However, recent work has shown that
moments of the longitudinal velocity gradient, which char-
acterizes small-scale activity, transition to power-law scaling
at much lower Rλ than expected from standard scaling argu-
ments, with the same universal exponents that characterize
high Reynolds numbers [18]. For fluctuations forced by Gaus-
sian white noise at large scales, it was also shown that the
transition from the Gaussian state to the scaling state occurs
at very low Reynolds number, Rλ = O(10) [19,20].

II. MOTIVATIONS AND GOALS

This result, if true, is important because it implies that the
inertial range properties are incipient even when the actual
inertial range does not exist in its full splendor. It is unclear
from previous studies whether the onset of power-law scaling,
as well as its exponents, depend on the particular large-scale
forcing used to generate turbulence. If the results are inde-
pendent of the forcing, they provide added credibility for the
notion of universal scaling at low Rλ. So, we drive the system
at large scale using different forcing schemes and test the
universality of the transition of velocity gradients and their
scaling as discussed in Refs. [19,20]. Specifically, Yakhot and
Donzis [19] showed that even-order moments of longitudinal
velocity gradients

M ||
2n = 〈(∂αuα )2n〉/〈(∂αuα )2〉n (1)
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FIG. 1. Sketch depicting the transition from the low-Rλ Gaussian
asymptote to power-law scaling for moments of two different orders
(n2 > n1) with respect to (a) the standard Reynolds number and
(b) order-independent Reynolds number.

exhibit Gaussian behavior below a critical Rλ,tr (n), be-
yond which an order-dependent power-law scaling is
observed—that is, M ||

2n ∝ R2dn
λ for Rλ > Rλ,tr (n). The transi-

tion Reynolds number Rλ,tr (n) depends on the moment order

as Rλ,tr (n) ∝ R̂
2ndn

2dn+3

λ,tr , where the order-independent Reynolds

number R̂λ,tr (n) ≡ L2〈(∂αuα )n〉 1
n /ν is of order 10, though

slowly decreasing with increasing n [20]. Higher-order mo-
ments transition to power laws at lower Reynolds numbers,
presumably because they capture stronger fluctuations (which
are rare). This is sketched in Fig. 1. If the low-Rλ asymptote
(denoted by Pn) as well as the transition Reynolds number are
known, the (high-Rλ) scaling exponents can be deduced sim-
ply by matching the two asymptotes at the transition Reynolds
number (Fig. 1). Indeed, the scaling exponents so obtained are

dn = −2n log(R̂λ,tr ) − 3nC′ + 2 log(P2n)

4C′ +
√

[2n log(R̂λ,tr ) + 3nC′ − 2 log(P2n)]2 + 24nC′ log(P2n)

4C′ , (2)

where C′ = log(C) and C is a constant of about 90 [19,20].
As already stated, these derivative exponents are consistent
with the structure function exponents in the inertial range
[18], obtained from experiments and simulations at high
Reynolds numbers. Thus, although there is no inertial range
near Reynolds numbers marking the transition [8,20–22], its
signature is apparently present already at very modest Rλ.

A related question is whether longitudinal and transverse
gradients scale differently [13,23–26], which we assess here
within the context of the transition from Gaussian fluctuations
to those with power-law scaling. We also study gradient-
dependent quantities such as the enstrophy density � ≡ ωiωi,
where ω = ∇ × u is vorticity, as well as energy dissipation,
ε = 2νsi, j si, j . Enstrophy is more intermittent than dissipation
[24], but their mean values are related as 〈ε〉 = ν〈�〉. The
scaling of enstrophy is important for understanding finite-
time blow-up and uniqueness problems of fluid-dynamical
equations [27,28]. We relate the findings for enstrophy to
the recent work on the transition in the nature of dissipation
[18,29–31].

III. DIRECT NUMERICAL SIMULATIONS (DNS)

We study homogeneous, isotropic turbulence in a triply
periodic domain governed by forcing the incompressible
Navier-Stokes equations

∂ui

∂xi
= 0 (3)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x2
i

+ fi, (4)

where ui is the velocity component in the xi direction, and
p and ν are pressure and viscosity, respectively. The forcing
term fi adds energy into the system to balance dissipation
and achieve a statistically stationary state. Details of different
forcing mechanisms are described next and summarized in
Table I.

Gaussian forcing is widely used in the literature
[19,20,26,32]. We use three different forcing schemes f . First,
we modify the forcing such that forcing amplitudes have an
exponential distribution with a random phase, and term this as
exponential forcing. Both Gaussian and exponential forcing
schemes are white in time. Second, we use the so-called linear
forcing in which the forcing is proportional to the velocity
field, that is, f = Au where A is a constant. This forcing
has qualitative resemblance to that experienced in a turbu-
lent flow subjected to mean shear [30,33–36]. As with the
stochastic forcing, this forcing is applied at low wave numbers
[15,34,35]. Third, we implemented a modification by forcing
the momentum equations with vorticity (i.e., f = Aω), which
is intermittent, unlike the velocity, but do not present these
results here. We note that all the forcing functions are limited
to low wave numbers and exhibit nearly Gaussian statistics in
physical space. However, their dynamics differ qualitatively.

Equations (3) and (4) are solved using a standard
psuedospectral method [37,38] with very good small-scale
resolution kmaxη � 3. The time step is evolved using a
second-order Runge-Kutta algorithm with a constant time step
such that the Courant-Friedrichs-Lewy condition (CFL =
|umax|�t/�x) remains below 0.3. These high resolutions al-
low us to reliably measure higher-order moments of velocity

TABLE I. Details of forcing. Gauss and exponential are stochas-
tic forcing schemes that are white in time and follow Gaussian and
exponential distributions, respectively. A is a constant. The maximum
and minimum small-scale resolution in units of kη are 60 and 3,
depending on Rλ, for all types of forcing.

Type Forcing band

Gauss 0 < k � 2
Exponential 0 < k � 2
u(k) 5 � k � 6
ω(k) 5 � k � 6
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gradients [39,40]. All simulations are initialized with the same
velocity field. To guarantee convergence, we record at least
50 large-scale eddy turnover times in the stationary state.
Gradient moments are computed using at least 100 snapshots
separated by about half an eddy turnover time. We have ver-
ified that the skewness in the scaling range is -0.5, the ratio
of longitudinal and transverse integral length scales is 2, and
the kinematic constraint between the longitudinal correlation
function f (r) = 〈uα (xα )uα (xα + r)〉/〈u2

α〉 and the transverse
correlation function g(r) = 〈uβ (xα )uβ (xα + r)〉/〈u2

β〉, β being
orthogonal to α, namely, g(r) = f (r) + (r/2) f ′(r), is satis-
fied accurately.

IV. ASYMPTOTIC STATES AND SCALING

We are interested in the moments of the derivative q in
the form Mq

n = 〈qn〉/〈q〉n, where n is the order of the mo-
ment. The moments of longitudinal velocity gradients from
simulations with different forcing mechanisms are shown in
Fig. 2(a). They show a composite of a low-Rλ Gaussian
asymptote (dashed horizontal lines) and a transition to anoma-
lous scaling (dashed lines showing power laws). The Gaussian
asymptote for low Rλ, the onset of transition, and the expo-
nents of the power-law regime are all essentially independent
of forcing. The scaling for longitudinal gradients can be ac-
curately fitted by the analytical derivation of power laws in
Ref. [20] (dashed lines) assuming that the low-Rλ moments
are Gaussian and a universal transition occurs at R̂λ,tr = 9.89
[Eq. (2)]. Open circles for Gaussian forcing follow the earlier
result [19,20] quite well. Note that the power-law behavior
is traditionally expected at much higher Rλ than those found
here.

In Fig. 2(b), we have plotted the moments of transverse
velocity gradients (symbols) along with the scaling predicted
from Eq. (2) for longitudinal gradients (dashed lines). As
for the longitudinal gradients, the transverse velocity gradient
moments exhibit a low-Rλ Gaussian asymptote and transi-
tion to power-law scaling beyond a small value of Rλ, and
are also independent of the large-scale forcing mechanism.
However, two differences become clear when Figs. 2(a) and
2(b) are compared: the transition for high moments occurs
at a lower Rλ than 10, and the moments of transverse gra-
dients grow faster than longitudinal gradient moments, with
this tendency increasing with increasing moment order. This
is consistent with the claims of Refs. [13,23,25,26,41] that
transverse gradients are more intermittent than longitudinal
gradients. We emphasize that, while the scaling exponents
for different gradients are different, the behavior of a given
gradient is independent of forcing. The theory [20] allows for
this possibility, so the constants in Eq. (2) depend on whether
they refer to the longitudinal or transverse gradients.

To quantitatively support the observations just made, we
now compute the transition Reynolds number as well as ex-
ponents in the power-law regime. In the previous work [20],
only the power-law part was used for fitting purposes, but
this method is sensitive to the fitting range [26]. We mitigate
this problem by fitting the entire data by a single functional
form for Mq

2n that captures both the low-Rλ asymptote and the
power-law part. Such a procedure of using scaling functions,
rather than the power-law part alone, is more reliable for

(a)

(b)

FIG. 2. Moments of (a) longitudinal and (b) transverse velocity
gradients for 2n = 4 (blue), 6 (red), 8 (black), and 10 (magenta).
The horizontal dashed lines correspond to Gaussian moments, and
power laws correspond to R2dn

λ from Ref. [20], where the dn are given
by Eq. (2), with R̂λ,tr = 9.89. The transverse moments in (b) follow
steeper power laws than the longitudinal moments in (a).

obtaining scaling parameters [42]. Since we have no analytical
guidance on the full details of the transition, we can pragmat-
ically propose the following functional form that satisfies our
requirements:

Mq
2n = Cq

2n + α
q
2nC

q
2n

(
Rλ

Rλ,tr (2n)

)β
q
2n

. (5)

Here α
q
2n is expected to be of the order unity, and the other

three fitting parameters are the low-Rλ asymptote Cq
2n, the

transition Reynolds number Rλ,tr (2n), and the high-Rλ scaling
exponent β

q
2n. Since α

q
2n and Cq

2n appear as a product, there are
only three independent fitting parameters, so we rewrite the
above form as

Mq
2n = Cq

2n

[
1 +

(
Rλ

bq
2n

)β
q
2n

]
, (6)
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where bq
2n = Rλ,tr (2n)/(αq

2n)1/β
q
2n for a given quantity q and

order 2n. Stable and accurate fits are possible if the data
extend at least up to Rλ = O(100).

The low-Rλ asymptotes for the moments (= Cq
2n) so ob-

tained are plotted in Fig. 3(a) along with the appropriate
Gaussian values (dashed line). The two are very close to each
other for both longitudinal and transverse moments for all
forcing methods, consistent with the observation in Fig. 2.
The parameter bq

2n, which is proportional to the transition
Rλ, decreases with increasing moment order, supporting the
theoretical results of Ref. [19]. For the lowest order (n = 2),
the values of bq

2n are O(10). Obtaining accurate values of bq
2n at

low orders is challenging because this parameter is essentially
the intersection of the low-Rλ and high-Rλ asymptotes, which,
as seen in Fig. 2, become closer to being colinear, making the
problem ill conditioned. For a given forcing, the transition Rλ

is lower for transverse gradients (blue symbols) than for the
longitudinal (red symbols). Although small differences exist
for bq

2n at a given n for different forcing methods, they are
within statistical bounds. In Fig. 3(e), the average values of of
bq

2n over all three forcing schemes clearly show the persistence
of differences between transverse and longitudinal gradients.

The power-law exponent β
q
2n = 2dq

n is plotted in Fig. 3(f)
for the three different forcing methods. Again, the scaling
exponents are larger for transverse gradients. Those for lon-
gitudinal gradients are consistent with earlier measurements
made in isotropic turbulence, turbulent channel, and Rayleigh-
Bénard convection [18,25,26,31,43]. We also include Eq. (2)
(dashed line), which fits the data with R̂λ,tr = 9.89 (red) and 2
(blue) for longitudinal and transverse gradients, respectively.
Overall, the physical picture is that large transverse gradi-
ents acquire their high-Rλ asymptotic behavior at a lower
Reynolds number than longitudinal ones. The faster growth
of transverse moments implies smaller scaling exponents of
transverse structure functions in the inertial range. This re-
sult has recently been reported in Ref. [13] using data from
Rλ � 650, much larger than those reported here.

Yakhot and Donzis [20] allowed for different exponents for
longitudinal and transverse gradients, but did not provide a
physical reasoning. Recent work [8,13] argues that high-order
moments of velocity increments in the inertial range are de-
creasingly affected by pressure gradients, with two possible
consequences. First, it leads to stronger fluctuations and a
transition at a lower Rλ for high-order moments. Second, the
transverse fluctuations are even less susceptible to pressure
effects, possibly leading to differences in power-law scaling
between longitudinal and transverse gradients.

Velocity gradients are important, in part, because they
combine to form two quantities of particular interest in tur-
bulence theory—the energy dissipation rate and enstrophy
density (�i = |ω|2, where ω is the vorticity vector). While
the moments of dissipation were shown [18,26] to follow
power-law scaling even at moderate Rλ, not much is known
about enstrophy. We examine it here. In Fig. 4, we plot the
moments of enstrophy (symbols) for different Rλ and forc-
ing schemes. The dashed power laws correspond to those
observed in Refs. [18,26,31] and predicted by Refs. [19,20].
For Rλ � 10, the asymptotic values correspond to moments

(a)

(b) (c)

(d) (e)

(f)

FIG. 3. Fit parameters for moments of longitudinal (red) and
transverse (blue) velocity gradients. (a) The low-Rλ asymptotes, with
the orange line denoting Gaussian moments. The constant bq

2n ∝
Rtr

λ (n) are for the following forcing: (b) Gaussian, (c) exponential,
and (d) u(k). (e) The mean values of bq

2n for the three forcing schemes.
(f) Scaling exponents for the different forcing methods. The red and
blue lines correspond, respectively, to R̂λ,tr = 9.89 and 2 in Eq. (2).
We generate 50 synthetic data points from a normal distribution with
the same mean and variance as those observed for each realization
of the DNS data. We then perform the fit with Eq. (6) on these data
sets to generate a probability distribution function (PDF) for each
fitting parameter. The 95% confidence interval for each parameter is
generated from this PDF and shown in the figures. In many instances,
the error bars are not much bigger than the symbol size.
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FIG. 4. Moments of enstrophy for n = 2 (blue), 3 (red), and
4 (black). Horizontal lines correspond to moments of χ2 distribu-
tion with three degrees of freedom. The power laws correspond to
〈εn〉/〈ε〉n ∝ Rdn

λ .

of the χ2 distribution with three degrees of freedom (dashed
horizontal lines). The agreement towards the low-Rλ asymp-
tote is expected as enstrophy is the sum of squares of three
transverse gradients, each of which is Gaussian and indepen-
dent of the other two, given the weak coupling expected at
this low Reynolds numbers. Similarly, dissipation exhibits χ2

statistics with five degrees of freedom as the incompressibility
condition constrains only five gradients to be independent.
This feature is indeed observed in our data as well (not shown
here). Similar to individual gradients, the transition to the
anomalous regime for enstrophy appears to be independent
of the details of forcing. We also note that scaling exponents
for enstrophy are larger than those for dissipation (shown
as dashed-line power laws in Fig. 4). Enstrophy moments
grow faster than those of dissipation, increasingly so at higher
orders. These observations are consistent with the available
evidence at much higher Rλ that extreme events in enstrophy
are more probable than in dissipation [23,26,39]. We thus con-
clude that high-Rλ behaviors for dissipation and enstrophy are
also incipient at low Reynolds numbers Rλ ∼ O(10), which
marks the transition.

V. CONCLUSIONS

We have shown here that anomalous scaling for velocity
gradients and enstrophy emerges at Rλ ∼ O(10), much lower
than traditionally expected, consistent with Ref. [19]. Using
different driving mechanisms at large scales, we have further
shown that this scaling behavior is independent of the details
of forcing. Moments of longitudinal and transverse velocity
gradients, and those of dissipation and enstrophy, possess
different sets of scaling exponents. In particular, the scaling
exponents are larger for transverse gradients, consistent with
the literature [13,39,41,44]. All scaling exponents can be pre-
dicted by the theory [19] by knowing the transition Rλ. In
particular, the theory predicts that higher exponents will be
obtained if the transition occurs at a lower Rλ. This is indeed
what we observe.

Another interesting point is that the theory [20] relates ve-
locity gradient exponents to those of structure functions in the
inertial range. Note that all results here are for 1 � Rλ � 100,
which are lower than those needed for an inertial range to
emerge [16]. Yet, the inertial range exponents calculated from
the exponents β

q
2n obtained here, using the theory, are close

to those observed in simulations and experiments at high Rλ

where an inertial range does exist. A potential implication is
that certain high Reynolds features can be studied using data
from well-resolved DNS at low to moderate Rλ, and do not
need very high Rλ. From a physical point of view, the inertial
range anomalies are the result of intermittency at small scales
which appear at low Rλ even without an inertial range. In this
view, the inertial range emerges only as an intermediate con-
straint to match the Gaussian large scales with the anomalous
dissipative scales.

Finally, we have evidence to support the present view
in passive scalar advection and compressible turbulence
[26,45]—also for the Burgers equation that is studied, e.g.,
in Ref. [46]. These results will be reported elsewhere.
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