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The method of stress function in elasticity theory is a powerful analytical tool with applications to a wide
range of physical systems, including defective crystals, fluctuating membranes, and more. A complex coor-
dinates formulation of stress function, known as the Kolosov-Muskhelishvili formalism, enabled the analysis
of elastic problems with singular domains, particularly cracks, forming the basis for fracture mechanics. A
shortcoming of this method is its limitation to linear elasticity, which assumes Hookean energy and linear strain
measure. Under finite loads, the linearized strain fails to describe the deformation field adequately, reflecting
the onset of geometric nonlinearity. The latter is common in materials experiencing large rotations, such as
regions close to the crack tip or elastic metamaterials. While a nonlinear stress function formalism exists, the
Kolosov-Muskhelishvili complex representation had not been generalized and remained limited to linear elas-
ticity. This paper develops a Kolosov-Muskhelishvili formalism for the nonlinear stress function. Our formalism
allows us to port methods from complex analysis to nonlinear elasticity and to solve nonlinear problems in
singular domains. Upon implementing the method to the crack problem, we discover that nonlinear solutions
strongly depend on the applied remote loads, excluding a universal form of the solution close to the crack tip and
questioning the validity of previous studies of nonlinear crack analysis.
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I. INTRODUCTION

Elasticity theory is the main pillar in studying and analyz-
ing complex physical phenomena in solids, including defects
mediated plasticity in crystals [1], fracture [2], wrinkling,
and growth of living matter [3–5]. A central motif in these
examples is the need to find the stressed state of a system
prior to a more detailed analysis that accounts for additional
mechanisms. Under the requirement of mechanical equilib-
rium, finding the Cauchy stress field σ reduces to solving a
bulk force balance constitutive equation

div σ = 0, (1)

accompanied by conditions on the traction forces or displace-
ment on the boundaries [6]. For example, in the case of crack
propagation, upon solving Eq. (1), balancing relaxation of
elastic energy with fracture energy at the vicinity of the crack
tip determines crack trajectory [2].

One particularly useful method to solve Eq. (1) in two-
dimensional (2D) elasticity is by representing the stress in
terms of a single scalar elastic potential χ , formally denoted
as [7–9]

σ = curl curlχ, (2)

where “curl” stands for the two-dimensional curl operator
defined εμν∇ν (μ, ν = 1, 2) with ε being the Levi-Civita sym-
bol. The potential χ , also known as the Airy stress function,
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is determined by a geometric compatibility equation. Within
linear elasticity, this condition reduces to a differential rela-
tion of the strain tensor, leading to the famous biharmonic
equation [6]

∇2∇2χ = 0. (3)

Airy’s stress function approach is one of the main tools for
solving problems in linear elasticity, with a wide range of
applications, including statistical physics of fluctuating mem-
branes [10,11], assemblies of structural defects as screening
elastic fields [12], wrinkling patterns in thin sheets [13], and
granular matter [14].

For highly symmetric domains and loadings, the bi-
harmonic equation is analytically solvable. In contrast, in
problems with singular boundaries, e.g., the crack problem,
or problems with low symmetry, solving the biharmonic
equation is a daunting task. An elegant and advantageous
mathematical method for analyzing Eq. (3) is the use of
complex coordinates, known as the Kolosov-Muskhelishvili
formalism [2,15,16]. For example, the crack problem is
canonically solved within this formalism, resulting in the cel-
ebrated universal 1/

√
r stress singularity at the crack tip, and

forming the basis for linear elastic fracture mechanics [2].
The elastic energy functional for finite strains is gener-

ically nonlinear. Therefore, analytical methods for solving
linear elastic problems must be generalized accordingly. Ear-
lier attempts to develop analytical methods for finite elasticity,
including perturbative and complex analytical methods, fo-
cused on special cases, e.g., incompressible neo-Hookean
solids [17–19]. However, despite the success in developing
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new methods within finite elasticity, the case of non-Euclidean
solids, that is, solids with geometrically incompatible refer-
ence states, is still lacking.

Note that the stress function formalism, particularly the
Kolosov-Muskhelishvili formalism, is limited to linear elas-
ticity, which assumes two distinct linearizations: (i) Hookean
elasticity with small strains and (ii) strain that is linear in
deformation gradients. However, in the case of fracture, the
elastic solution for the stresses diverges at the crack tip, where
the fracture process occurs, and this questions the validity of
the linear elastic solution in this region.

Indeed, experiments directly identified deviations from
linear elasticity close to the crack tip and therefore called
for nonlinear analysis of the elastic crack problem [20].
Nonlinearity, in this case, is rooted in the appearance of
large rotations, for which a nonlinear measure of strain is
needed, and is geometric in nature. Furthermore, a series of
publications reported nonlinear perturbative analysis of the
asymptotic solution close to the crack tip [20–22]. Since
asymptotic analysis lacks the necessary and sufficient bound-
ary conditions (e.g., stress at infinity), a new type of boundary
condition was invoked to select the nonlinear solution [22].
This condition, the requirement of divergence-free stress on
the crack tip, determines a stress singularity of 1/r, stronger
than the singularity predicted by the linear theory. We claim
that the need for additional boundary conditions reflects the
absence of a systematic methodology for solving the complete
problem that accounts for the remote boundary conditions.

In this paper, we build on a previously suggested nonlin-
ear generalization of Airy’s stress function approach [23–25]
and reformulate it using a complex function representation.
Specifically, we show that the nonlinear stress function written
as the sum of ith-order corrections χ = ∑

i χ
(i) with each

order satisfying an equation that depends on lower-order terms
is of the form of the linear equation

��χ (i) = Fi(χ
(i−1), . . .). (4)

Thus, our method forms a nonlinear generalization of the
Kolosov-Muskhelishvili formalism, allowing us to calculate
nonlinear corrections to classical linear results. To demon-
strate our theory, we revisit the prototypical problem of a
finite crack in an elastic domain subject to remote stresses and
show that one can solve the complete problem to an arbitrary
level of accuracy. Furthermore, we explicitly show that our
solution, which is uniquely determined by remote boundary
conditions and free stresses on the crack lips, does not satisfy
the boundary conditions proposed in [21]. Furthermore, we
also discover that contrary to the linear case, the asymptotic
solution is not universal; different remote loads may result in
different stress singularities at the crack tip. We conclude by
discussing the nonlinear crack solution and its relevance in
certain recognized fracture mechanisms.

II. LINEAR ELASTICITY AND THE
KOLOSOV-MUSKHELISHVILI FORMALISM

A. Linear elasticity and the Airy potential

In elasticity, a deformation is quantified by the displace-
ment field d(x), which maps a point in an undeformed state
to its new position. Importantly, note that in our formulation x

labels material elements in a Lagrangian coordinate system,
which coincides with the position in the undeformed state.
Upon deforming the system, an element originally located at
x is shifted to x′ = x + d(x).

The change in the distance between neighboring material
elements is d�′2 − d�2 = 2uμνdxμdxν , where d� and d�′ are
the distances between two infinitesimally close points before
and after the deformation, and uμν is the strain tensor given by

uμν = 1
2 (∂μdν + ∂νdμ + ∂μdλ ∂νdλ). (5)

In what follows we are considering homogeneous and
isotropic Hookean elastic solids. This framework assumes
small deformations, meaning that stresses are linearly propor-
tional to strains:

σμν = Aμνρσ uρσ , (6)

and the elastic tensor A, which encodes material proper-
ties and symmetries, depends only on two parameters, e.g.,
Poisson’s ratio ν and Young’s modulus Y .

Furthermore, linear elasticity theory assumes small dis-
placement gradients and thus omits terms quadratic in ∂d:

u(1)
μν ≈ 1

2 (∂μdν + ∂νdμ). (7)

The superscript (i) stands for ith order. In equilibrium, the
net force on each material element vanishes, manifested by
σ being divergence free as imposed by Eq. (1), which in
coordinates, and assuming Eq. (7), takes the form ∂μσμν = 0.
According to Airy’s formalism, the solution to Eq. (1) is
represented in terms of a single stress function χ (1) [7,26]:

σαβ(1) = εαμεβν∂μνχ
(1), (8)

where ε is the antisymmetric Levi-Civita symbol [27]. The
stress function χ (1) is determined by enforcing a geometric
compatibility condition reflecting the differential relation be-
tween the strain and displacement fields:

εαμεβν∂αβu(1)
μν = 0. (9)

Upon extracting the strain from the constitutive relation
Eq. (6) and expressing the stress using Eq. (8), the compat-
ibility condition reduces to the biharmonic equation for the
stress function as in Eq. (3).

B. Kolosov-Muskhelishvili formalism

In complex coordinates, where z = x + iy, the Laplace
operator takes the form ∇2 = ∂zz̄. Therefore, real harmonic
functions can be represented as the real part of an analytic
function, and similarly, biharmonic functions, which are solu-
tions of Eq. (3), are represented as [16]

χ (1) = Re{z̄φ(1)(z) + η(1)(z)}
= 1

2 [z̄φ(1)(z) + zφ(1)(z) + η(1)(z) + η(1)(z)] (10)

where both φ(1)(z) and η(1)(z) are analytic functions,
and the overbar denotes the complex conjugate operator.
We see that in this formalism, often referred to as the
Kolosov-Muskhelishvili formalism, the force balance equa-
tion, as well as the biharmonic equation, are identically
satisfied. Therefore, it remains to determine φ(1)(z) and η(1)(z)
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by requiring appropriate boundary conditions. Upon defining
ψ (1)(z) = η′(1)(z), Kolosov-Muskhelishvili formulas for the
stress components are [16,28]

σ xx(1) + σ yy(1) = 2[φ′(1)(z) + φ′(1)(z)]

= 4Re{φ′(1)(z)}, (11a)

σ yy(1) − σ xx(1) + 2iσ xy(1) = 2[z̄φ′′(1)(z) + ψ ′(1)(z)]. (11b)

To complete the solution in a domain � one should enforce
boundary conditions on ∂�, which in a stress controlled setup
reads

σ · n̂|∂� = �τ (12)

with n̂ being a normal unit vector and �τ representing traction
forces on ∂�. Kolosov-Muskhelishvili equations form the
basis for solving multiple problems in elasticity, characterized
by complicated geometry, singular behavior (such as cracks),
and multiply connected domains by implementing methods
from complex analysis [29]. This is similar to the use of com-
plex analysis, and in particular conformal maps, in solving the
Laplace equation in the complex domain.

III. EXTENSION TO NONLINEAR ELASTICITY

A nonlinear extension of Airy’s stress function approach,
given with details in this section, is transparently derived
within a geometric formulation of elasticity developed in
[30–33]. In this formalism, the strain tensor is defined by
u = 1

2 (g − g0) where the reference and actual metrics g0 and
g represent the rest and actual distances between material
elements. While g is defined by g = (∇ f )T · (∇ f ) where f is
the embedding representing the configuration, g0 is a material
property and is fixed for purely elastic materials, which are
at the focus of the current paper. If the reference metric is
Euclidean, that is, a stress-free configuration exists, then the
definition of strain reduces to its classical nonlinear definition
Eq. (5). The nonlinear terms of the strain are extremely impor-
tant when the displacement gradients are larger than 1, even if
the strain itself is small. It occurs in systems that experience
large rotations, such as cracks [21] and metamaterials [25].
Within this approach, the force balance equation that gener-
alizes Eq. (1) is nonlinear and implicit, with the differential
operator being dependent on the yet unknown actual configu-
ration [32] (see Appendix A for a complete derivation)

∇μσμν + (
�0λ

λμ − �λ
λμ

)
σμν = 0, (13)

where � and �0 are the Christoffel symbols associated with g
and g0, and ∇ is the covariant derivative with respect to g, that
is [34],

∇μσμν = ∂μσμν + �
μ

μβσβν + �ν
μβσβμ. (14)

A representation of the stress in terms of a scalar func-
tion, including nonlinear corrections, takes the following form
[23–25]:

σμν = 1√
det g det g0

εμρενσ ∇ρσχ, (15)

where ε is the Levi-Civita symbol and 1√
g ε and 1√

g0
ε are

Levi-Civita tensors with respect to the different metrics. Note

that this representation is proved to be complete only in
multiply connected domains [26]. Nevertheless, while a math-
ematical proof is still lacking, the representation in terms of
χ is practically sufficient as it allows finding solutions that
satisfy the boundary conditions and topological constraints, as
in problems of defects, cracks, and more [1,16]. Equation (15)
is implicit since it is expanded in terms of the unknown metric
g, reflecting the implicit form of Eq. (13). Similar to Airy’s
stress function, the nonlinear stress function χ is determined
by imposing a geometric compatibility condition. Since the
actual metric g describes distances in the Euclidean plane,
which is flat, the compatibility condition is the vanishing of
the Gaussian curvature

K (g) = 0 (16)

where the Gaussian curvature is obtained from the metric
[34] by

K (g) = 1
2 gαβgγ δRαβγ δ (17)

and Rαβγ δ is the Riemann curvature tensor:

Rαβγ δ = 1
2 (∂βγ gαδ + ∂αδgβγ − ∂αγ gβδ − ∂βδgαγ )

+ gμν

(
�

μ

βγ �ν
αδ − �

μ

βδ�
ν
αγ

)
. (18)

In the case of small deformations relative to a Euclidean
reference metric g0, this condition coincides with Eq. (9).
The implicit form of Eq. (15) prevents a direct implementa-
tion of the condition K (g) = 0, hence an exact analog of the
biharmonic equation for the fully nonlinear problem is still
lacking. To avoid this difficulty, a perturbative approach is in-
voked under the assumption that the nonlinear stress function
can be expanded in powers of a formal small parameter δ:
χ = χ (1) + χ (2) + . . . with the small parameter encoded in
the nth-order stress function χ (n) ∝ δn. In the same way, the
stress can be written as

σ = σ (1) + σ (2) + σ (3) + . . . . (19)

In order to determine the importance of nth-order corrections
of the stress, one must examine the magnitude of σ (n).

Generally, one can determine the small parameter retro-
spectively, but in the case of an imposed remote stress σ , the
small parameter is δ = σ/Y where Y is Young’s modulus.
If the reference metric g0 is flat (in any desired coordinates
system), enforcing the geometric compatibility condition,
namely, K (g) = 0, order by order yields

∇2
g0∇2

g0χ
(1) = 0,

∇2
g0∇2

g0χ
(2) = F2(χ (1)), (20)

∇2
g0∇2

g0χ
(3) = F3(χ (1), χ (2) ),

... .

Here ∇2
g0 = 1√

det g0
∂μ(

√
det g0g0μν

∂ν ) is the Laplace operator

with respect to the reference metric g0, and Fn are known
(nonlinear) functions of stress functions of orders lower than
n. All the equations are explicit from this point, thanks to the
perturbative approach, enabling us to advance analytically.

Equation (20) provides a prescription for solving the non-
linear elastic problem to an arbitrary order of accuracy.
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The solution for χ (n) consists of a (homogeneous) generic
biharmonic function and a particular solution solving the non-
homogeneous equation. Again, the homogeneous parts are
determined by boundary conditions, as in the linear case. The
main difficulty arises from the nonlinearity of Fn, which pre-
vents analytical progress. The following section shows how
the complex formulation of this nonlinear formalism enables
significant analytical progress.

IV. NONLINEAR EXTENSION OF
THE KOLOSOV-MUSKHELISHVILI FORMALISM

In this section, we generalize the Kolosov-Muskhelishvili
complex formulation of Airy’s stress function approach. For
that purpose, we reformulate Eq. (20) together with its ac-
companying boundary conditions in complex coordinates. As
before, the solution of the first-order stress function is the most
general real biharmonic function given by Eq. (10).

For n > 1, the solution of the nth-order stress function
consists of the sum of a biharmonic solution and a particular
solution to Eq. (20) denoted by F̃n:

χ (n)(z, z̄) = Re{z̄φ(n)(z) + η(n)(z)} + F̃n(χ (1), . . . , χ (n−1)).

(21)

The analytic functions φ(n), η(n) can be determined once
boundary conditions are specified, hence expressions for the
stresses in terms of χ (n) are required.

We derive the expressions for the stresses and generalize
the Kolosov-Muskhelishvili equations (11) to the nonlinear
setting:

σ xx + σ yy =
∑
n=1

[4Re{φ′(n)(z)}

+�(n)(χ
(1), . . . , χ (n−1))], (22a)

1

2
(σ yy − σ xx ) + iσ xy =

∑
n=1

[z̄φ′′(n)(z) + ψ ′(n)(z)

+�̃(n)(χ
(1), . . . , χ (n−1))] (22b)

where �(n) and �̃(n) are known functions that represent the
contribution of stress functions of order smaller than n to the
stress field at order n. Therefore, �(1), �̃(1) = 0. Although
our method can be applied to any order in the expansion, to
demonstrate this rather abstract formalism we focus on the
second-order solution:

χ (2)(z, z̄) = Re{z̄φ(2)(z) + η(2)(z)} + F̃2(χ (1)). (23)

The particular solution for the nonlinear and nonhomoge-
neous correction of Eq. (20) is analytically solvable in closed
form and reads

F̃2(χ (1) ) = c1|φ(1)(z)|2 + c2|ψ (1)(z) + zφ(1)′(z)|2, (24)

where c1,2 are numerical factors that depend on material prop-
erties and are given in Appendix B. The particular solution F̃2

contributes to the right-hand side of Eq. (22) via the right-hand
side of Eq. (21), and thus induces effective traction forces that
determine the second-order functions φ(2)(z) and η(2)(z).

FIG. 1. Nonlinear stress at the vicinity of a circular hole sub-
jected to uniaxial tension. (a) A two-dimensional elastic medium
containing a circular hole and subjected to remote uniaxial stress.
(b) The second-order stress correction σ yy(2) evaluated along the pos-
itive x axis, normalized by the linear stress σ yy(1) (for zero Poisson’s
ratio). The horizontal axis is the distance from the hole boundary,
with the origin corresponding to the hole edge.

V. EXAMPLES

In this section we solve two prototypical problems in
2D elasticity using the nonlinear approach, namely, a cir-
cular hole and a finite crack subjected to constant remote
stresses. To emphasize the generality of the formalism in
each example we implement the nonlinear generalization of
Kolosov-Muskhelishvili equations (22) using a different tech-
nique. While the circular hole problem is presented mostly
for illustrating the method, the crack case is of physical im-
portance as it questions the validity of previously reported
analysis of a similar problem [21].

A. Circular hole under stress

Consider a circular hole of radius R = 1 in a 2D elastic
material subjected to remote uniaxial stress σ

yy
∞ = σ∞ [see

Fig. 1(a)], a problem that was first solved by Kirsch [35],
and later by Kolosov [28] and Muskhelishvili [16] within the
linear approximation. We express the normal traction force on
the hole boundary as τ = τx + iτy. Upon expressing τ in terms
of φ and η via Eqs. (11) and (12) the linearized boundary
condition reads [2]

τ (1)
x + iτ (1)

y = −i
d

dθ
[φ(1)(z) + zφ(1)′(z) + ψ (1)(z)] (25)

where z = exp(iθ ) and θ is the angle along the circular bound-
ary. In the case of traction free boundary conditions on the
hole, Eq. (25) reduces to

φ(1)(z) + zφ(1)′(z) + ψ (1)(z) = const. (26)

The solution that satisfies both zero normal stress on the hole
boundary Eq. (26), and the uniform stresses at infinity, is
given by

φ(1)(z) = σ∞
2

(
z

2
− 1

z

)
,

ψ (1)(z) = σ∞
2

(
z − 1

z
− 1

z3

)
. (27)

The stresses derived from this solution according to Eq. (11)
are given in Appendix C1.

To solve higher-order stress functions it is required to
extend the boundary conditions Eq. (25) to the nonlinear
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setup. Indeed, in analogy to deriving Eq. (25) from the lin-
ear expression for the stress field Eq. (11), we express the
nonlinear stress field (that is, the nonlinear corrections to the
stress emerging from nonlinear strains) in terms of complex
variables, using Eq. (22):

τx + iτy = − i
d

dθ

∑
n

[φ(n)(z) + zφ′(n)(z) + ψ (n)(z)]

+
∑

n

τ̃ (n)(χ (1), . . . , χ (n−1)). (28)

Since the first-order stress function satisfies the boundary
conditions, higher-order terms obey zero traction. Yet, we note
that the stress functions of order < n contribute to an effective
traction on the boundaries, to be balanced by solution at order
n � 2, that is,

i
d

dθ
[φ(n)(z) + zφ′(n)(z) + ψ (n)(z)] = τ̃ (n)(χ (1), . . . , χ (n−1)).

(29)

The general form of τ̃ (2) in the case of a circular boundary
(with arbitrary boundary conditions) is given in Mathematica
notebook [36]. We apply this formalism to the second-order
solution for the stress function, explicitly given by Eqs. (23)
and (24). In the following, we will assume for simplicity that
ν = 0, while a solution for the general Poisson’s ratio appears
in Appendix C2. We use the fact that on the hole boundary
z = eiθ and therefore z̄ = z−1, the second-order boundary con-
dition reads

i
d

dθ
[φ(2)(z) + zφ′(2)(z) + ψ (2)(z)]

= σ 2
∞

( − 5z8 + 42z6 − 22z4 + 14z2 + 3
)

16z4Y
, (30)

with the solution

φ(2)(z) = σ 2
∞

16Y

[
z + 5

z
+ 1

z3

]
,

ψ (2)(z) = 9 σ 2
∞

16Y

[
z + 20

9z
− 1

z3
+ 4

9z5

]
. (31)

This form of the solution recovers our formal small pa-
rameter to be δ = σ∞/Y upon comparison with the first-order
expression. This is in accord with our small-strains assump-
tion. Moreover, when compared with the linear solution φ(1)

and η(1), the nonlinear corrections φ(2) and η(2) contain a
higher-order term in 1/z. Consequently, the nonlinear stress
field contains higher-order angular modes, and higher powers
of 1/r. Specifically, the ratio between the largest value of the
stress on the hole boundary and the remote stress, also known
as the stress concentration factor Kt = σmax/σ∞, is corrected
at the second order, as obtained by estimating σ yy on the hole
boundary at θ = 0:

Kt = 3

(
1 − 5

4

σ∞
Y

)
. (32)

Figure 1(b) shows the ratio between the second-order correc-
tion of σ yy and the first-order solution, i.e., δσ yy(2) along the
θ = 0 line. We emphasize that the solutions Eqs. (31) and (32)

are valid for ν = 0, and expressions for the arbitrary Poisson’s
ratio are given in Appendix C2.

B. Finite straight cracks

In this section we consider a finite straight crack embed-
ded in an infinite medium, and subjected to uniform remote
stresses. Specifically, we solve a nonlinear mode I problem,
and give the nonlinear mode II solution in Appendix D2. The
crack problem is characterized by its geometry C = {(x, y) :
−1 < x < 1 ∧ y = 0}, by the traction forces acting at infinity
σ∞, and by the traction free boundary conditions on the crack
faces. We note that the displacements may be discontinuous
across the crack. Correspondingly, it is necessary to enforce
boundary conditions on the top and bottom crack faces sepa-
rately. At the linear level we follow the Westergaard method
[2,16]. Using Eq. (11) and defining � = ψ ′, � = φ′, and
� = � + � + z�′, we find

σ yy(1) + iσ xy(1) = �(1)(z) + �(1)(z) + (z̄ − z)�′(1)(z). (33)

Upon approaching the crack from above or below, we denote
z = x ± iε, and the normal stress in complex form reads

(σ yy(1) + iσ xy(1) )
∣∣
C = �(1)(x ± iε) + �(1)(x ∓ iε), (34)

where the third term in Eq. (33) vanishes as ε → 0.
Adding and subtracting the upper and lower limits of

Eq. (34), and defining �(1)(z) = 1
2 [I (1)(z) + J (1)(z)] and

�(1)(z) = 1
2 [I (1)(z) − J (1)(z)], yields

0 = I (1)(x + iε) + I (1)(x − iε),

0 = J (1)(x + iε) − J (1)(x − iε),
(35)

where the left-hand side vanished due to traction free bound-
ary conditions. These equations for I (1)(z) and J (1)(z) replace
the equations for �(1)(z) and �(1)(z), and correspondingly for
ψ (1)(z) and φ(1)(z). Once the equations for I (1)(z) and J (1)(z)
are solved, we can directly derive the solution for the stress
function and the stress fields.

Soon we will see that the form of the equation for
J (1)(z) in Eq. (35) is analytically solvable. Therefore, we
would prefer to rewrite the equation for I (1)(z) in the
same form as that for J (1)(z). For that, we define L(1)(z) =
G(z)I (1)(z) with G(z) an analytic function that, on the
crack boundary, satisfies G(x + iε) = −G(x − iε). Indeed,
we note that the specific choice G(z) = √

(z + 1)(z − 1) sat-
isfies this condition, and a direct substitution in Eq. (35)
yields

L(1)(x + iε) − L(1)(x − iε) = 0,

J (1)(x + iε) − J (1)(x − iε) = 0. (36)

Since L(1)(z) and J (1)(z) have the same value on both sides of
the branch cut, they are analytic everywhere.

From the relation L(1)(z) = G(z)I (1)(z) and from the
relation between I (1)(z) and J (1)(z) and �(1)(z) and �(1)(z)

045002-5



SZACHTER, KATZAV, ADDA-BEDIA, AND MOSHE PHYSICAL REVIEW E 107, 045002 (2023)

we find

�(1)(z) = 1

2

[
L(1)(z)√
z2 − 1

+ J (1)(z)

]
,

�(1)(z) = 1

2

[
L(1)(z)√
z2 − 1

− J (1)(z)

]
. (37)

Since L(1)(z) and J (1)(z) are analytic functions, the cele-
brated 1/

√
r singularity at the crack tip can already be seen

by direct substitution in Eq. (33). The analytic functions
L(1)(z) and J (1)(z) are determined by enforcing the bound-
ary conditions on the remote stresses at infinity, as well as
the continuity of the elastic fields at y = 0 out of the crack
domain. In the case of mode I crack, where the stress at
infinity is

σ∞ =
(

σ xx
∞ 0

0 σ
yy
∞

)
, (38)

the solution for L(1)(z) and J (1)(z) is given by

L(1)(z) = σ yy
∞ z,

J (1)(z) = σ
yy
∞ − σ xx

∞
2

. (39)

To solve the second-order stress function we first gen-
eralize Eq. (33) to the nonlinear setup. For that we derive
a nonlinear generalization of Eq. (33) using the nonlinear
Kolosov-Muskhelishvili equations (22):

σ yy + iσ xy

= σ yy(1) + iσ xy(1) +
∑
n=2

[�(n)(z) + �(n)(z)

+ (z̄ − z)�′(n)(z)] +
∑
n=2

[1

2
�(n)(χ

(1), . . . , χ (n−1))

+ �̃(n)(χ
(1), . . . , χ (n−1))

]
. (40)

We denote

�σ yy(n) = Re 1
2�(n)(χ

(1), . . . , χ (n−1))

+ �̃(n)(χ
(1), . . . , χ (n−1)),

�σ xy(n) = Im 1
2�(n)(χ

(1), . . . , χ (n−1))

+ �̃(n)(χ
(1), . . . , χ (n−1)) (41)

and interpret them as the nth-order tensile and shear stresses
induced by lower-order solutions.

As in the circular hole case, the first-order solution for
the stress function balances the imposed boundary conditions.
Therefore, higher-order stresses should identically vanish on
the boundaries. Specifically, upon requiring zero traction
forces on the crack faces we find at all orders

�(n)(x ± iε) + �(n)(x ∓ iε)

= −�σ yy(n)(x ± iε) − i�σ xy(n)(x ± iε). (42)

We express the boundary conditions at second order by a
direct substitution of the first-order solution in Eq. (41) with

n = 2 on the crack faces and find

�σ yy(2)(x ± iε) =ξ1(ν)

(
σ xx

∞
)2 − 2σ xx

∞σ
yy
∞ − 3

(
σ

yy
∞

)2

Y
,

i�σ xy(2)(x ± iε) = ± σ
yy
∞

(
σ xx

∞ − σ
yy
∞

)
Y (x2 − 1)3/2

[ξ2(ν)x + ξ3(ν)x3],

(43)

where ξi are numerical factors that depend on Poisson’s ratio
(see Appendix D1). As before, our goal is to solve for �(2)(z)
and �(2)(z). For that we repeat the technique from the first-
order analysis. Upon adding and subtracting the upper and
lower limits of Eq. (42), and defining �(2)(z) = 1

2 [I (2)(z) +
J (2)(z)] and �(2)(z) = 1

2 [I (2)(z) − J (2)(z)], we find

I (2)(x + iε) + I (2)(x − iε) = − 2�σ yy (2)(x + iε),

J (2)(x + iε) − J (2)(x − iε) = − i[�σ xy (2)(x + iε)

− �σ xy (2)(x − iε)]. (44)

At this stage, upon defining L(2)(z) = G(z)I (2)(z), we can
transform the first equation to the form of the second one,
similar to the transition from Eq. (35) to Eq. (36). Instead,
here we perform a stronger transformation with which the
equations become homogeneous:

G2(z) = ±σ
yy
∞

(
σ xx

∞ − σ
yy
∞

)
Y (z2 − 1)3/2

(ξ2z + ξ3z3),

L(2)(z) = G(z)[I (2)(z) + �σ yy(2)],

M (2)(z) = G2(z) + J (2)(z),

(45)

where G2(z) is a nonhomogeneous solution for J (2)(z)
as reflected from the complex continuation of �σ xy(2) in
Eq. (43). Indeed, we identify i�σ xy(2)(x ± iε) = G2(x ± iε),
with which Eqs. (44) now read

L(2)(x + iε) − L(2)(x − iε) = 0,

M (2)(x + iε) − M (2)(x − iε) = 0. (46)

The choice of L(2)(z) and M (2)(z) transformed Eq. (44) into a
set of homogeneous equations.

It follows from Eq. (46) that the second-order correction to
the stress function is

�(2)(z) = 1

2

[
−G2(z) + L(2)(z)√

z2 − 1
+ M (2)(z) − �σ yy(2)

]
,

�(2)(z) = 1

2

[
G2(z) + L(2)(z)√

z2 − 1
− M (2)(z) − �σ yy(2)

]
,

(47)

where L(2)(z) and M (2)(z) are analytic functions determined
by the remote boundary conditions and the displacement con-
tinuity outside the crack. As in the linear case, also here we
can identify the stress singularity at the crack tip regardless
of the exact form of L(2)(z) and M (2)(z). Since �(2)(z) and
�(2)(z) are linearly dependent on G2(z), upon expanding it
near the crack tip (z = ±1), its form reveals stronger singu-
larities, which include terms like 1/r and 1/r3/2.
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FIG. 2. Nonlinear stress at the vicinity of a a mode I crack
subjected to biaxial stress. (a) Illustration of a mode I crack under
biaxial load. (b) σ yy(2), the second-order correction to σ yy normalized
by the magnitude of the remote stress σ∞, of a mode I crack for three
different loadings: isotropic stress σ xx

∞ = σ
yy
∞ (red), uniaxial stress

with σ xx
∞ = 0 (blue), and traceless symmetric stress σ xx

∞ = −σ
yy
∞ cor-

responding to pure shear (orange). The horizontal axis measure the
distance from the hole with the origin corresponding to the hole edge.
Close to the crack tip the pure shear dominates over the isotropic
stress contribution, reflecting its stronger singularity and emphasiz-
ing the lack of a universal solution.

To find the explicit form of L(2)(z) and M (2)(z) we note that
the first-order solution contributes to the second-order stresses
a uniform stress at infinity:

�σ (2)
∞ =

(
sxx(2) 0

0 syy(2)

)
, (48)

where the constants entries are given in Appendix D1. The
solution for L(2)(z) and M (2)(z) is

L(2)(z) = p1z,

M (2)(z) = p2,
(49)

where p1 and p2 are constants given by

p1 = (�σ yy(2) − syy(2) ),

p2 = 1

2
(sxx(2) − syy(2) ) − (ν + 1)2

8Y

(
σ xx

∞ − σ yy
∞

)
σ yy

∞ (50)

and �σ yy(2) is a constant given by Eq. (43).
Interestingly, while the stress singularity at the crack tip

in the linear approximation is proportional to 1/
√

r for any
externally imposed loads, the singularity at the second order
depends on the specific loading. This is seen from the explicit
form of G2(z) given in Eq. (45), which vanishes for isotropic
loading σ xx

∞ = σ
yy
∞ .

We deduce that the 1/r singularity is generic at the second
order, while the stronger singularity 1/r3/2 disappears when
the imposed loading is biaxial. The second- and higher-order
singularities become important as one approaches the crack
tip. Far from the crack tip, the linear solution is clearly
valid. In Fig. 2(b), one can see the correction to σ yy, namely,
σ yy(2), in three cases: isotropic stress, traceless symmetric
stress, and a simple superposition of the two where σ xx

∞ = 0.
We see that as we approach the crack tip, the effect of the
traceless symmetric stress dominates because of its stronger
singularity.

An important consequence of our analysis is the limitation
on methods that aim at solving for the asymptotic behavior
at the vicinity of the crack tip. In the linear approximation,
the asymptotic behavior near the tip of the crack can be found

without imposing the remote stress boundary conditions, al-
though without determining the coefficients, such as the stress
intensity factor [37]. Here we find that a second-order solution
cannot be found purely asymptotically because the remote
stress determines the order of the singularity close to the crack
tip. This observation questions the validity of the asymptotic
analysis presented in [21,22].

VI. SUMMARY AND DISCUSSIONS

In this paper, based on an earlier geometric extension
of the Airy stress function approach, we developed a geo-
metrically nonlinear version of the Kolosov-Muskhelishvili
formulas for analyzing 2D elastic problems. Our method
allows us to port tools from complex analysis to study non-
linear elasticity of 2D solids, with either regular or singular
boundaries. Such problems are essential for understanding
natural phenomena such as fractures in solids under large
deformations. Motivated by fracture mechanics, we focus on
the problem of a straight finite crack and use our generalized
Kolosov-Muskhelishvili equations to study the nonlinear elas-
tic solution. While in this paper the calculations performed up
to second order, our method is applicable to any desired level
of accuracy.

Another exciting consequence that arises from the second-
order correction to the mode II crack, known to be unstable
compared with mode I crack, is a feature strongly related
to the celebrated principle of local symmetry [38]. This
phenomenon coheres with our theory, where a prominent
distinction between mode I and mode II cracks is observed:
Nonlinear corrections to the mode II stress field in the vicin-
ity of the crack tip contain contributions with symmetries
characteristic of mode I, consistent with [39]. This is con-
trary to nonlinear corrections to mode I, which preserve its
symmetries. This is shown in Appendix D2, and suggests
a future research direction for the derivation of the princi-
ple of local symmetry within the framework of nonlinear
crack analysis. In particular the relevance of mode I contri-
butions to seemingly pure mode II fracture should be further
studied.

It is important to note that the relevance of our work to
fracture mechanics is not always obvious. While the non-
linear corrections to the stress field become important only
very close to the crack tip, in this region, new physics such
as plasticity may dominate. Therefore, judgment regarding
the relevance of our results to fracture mechanics reduces to
comparing two different length scales: λY , the scale below
which fracture occurs, and λNL, the scale below which non-
linear elastic corrections are non-negligible. If λY < λNL then
nonlinear corrections are important. A dimensional analysis
argument clarifies this comparison of scales. On one hand, the
scale λY reflects the balance of linear stresses with the micro-
scopic yield stress σY ≈ σ∞√

a/λY where a is the length of
the crack, hence λY ≈ a(σ∞/σY )2 [40]. On the other hand,
the scale where nonlinear correction becomes non-negligible
reflects equal contribution from the 1/r and 1/

√
r terms

σ∞/
√

λNL/a ≈ (σ∞)2/[Y (λNL/a)], hence λNL ≈ a(σ∞/Y )2.
The conditions for nonlinear correction to be non-negligible,
λY < λNL, reduce to σY > Y . This result is reasonable, as
it suggests that materials that support large strain before
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FIG. 3. The importance of nonlinearity at the onset of fracture.
Nonlinear contributions to the elastic fields are important in the
region bounded by the red dashed line r < λNL. Plastic deformations
occur inside the yellow region r < λY . (a) When σY < Y the material
fails at small strains, thus nonlinear corrections are significant only
on scales smaller than the plastic zone size, and therefore irrelevant.
(b) When σY > Y the material can support large strains prior to
failure, hence at the onset of failure strains are sufficiently large,
with non-negligible nonlinear corrections on scales larger then the
process zone.

failure will require nonlinear corrections. This is summarized
in Fig. 3.

An important test for any new theory is the comparison
with previous results. The most prominent nonlinear analysis
of the asymptotic elastic fields in the vicinity of a crack
was published in a series of papers [20–22,41–43]. In these
works, like in our paper, the authors recovered the 1/r and
1/r3/2 singularities but excluded the latter based on a newly
suggested boundary condition at the crack tip, that is requiring
the elastic force f = divσ , to vanish on the crack tip. This
new boundary condition aimed to replace the remote bound-
ary conditions that are absent from the asymptotic problem.
Contrary to the asymptotic analysis, our analysis does not
require any additional boundary condition other than the stan-
dard normal forces on the boundaries. Our results show that
the 1/r3/2 singularity can survive, depending on the specific
remote loading, and therefore show that the problem cannot be
solved only asymptotically. This shows the failure of the extra
boundary condition of zero force on the crack tip. To settle this
disagreement, we emphasize that the bulk equation divσ = 0
should hold in the bulk material. A nonzero value on the
boundary is in no contradiction with the free boundary con-
ditions that are reflected by σ · n̂ = 0. Indeed, while in the
linear approximation at the crack tip, the condition divσ = 0
holds, it does not hold along the crack faces, and as mentioned
is not in contradiction with the bulk equation and boundary
conditions. Our results, which satisfy the boundary conditions
and bulk equation to first and second order, question the va-
lidity of asymptotic nonlinear crack analysis published in the
past and call for revisiting the comparison with experimental
results.

The nonlinear geometric approach to elasticity, which is
the basis for the nonlinear Kolosov-Muskhelishvili formalism
developed in this paper, has many advantages, among which is
the ability to calculate nonlinear interactions between sources
of stresses [25] and nonlinear residually stressed solids [23]
in the presence of large deformation gradients. Similarly, one
can use the geometrically nonlinear Kolosov-Muskhelishvili
formalism we propose to calculate the nonlinear interaction
of cracks with singular sources of stresses, such as topological
defects, and with the background stress in residually stressed

solids, such as living growing matter. Another possible ex-
tension of this paper may include inelastic deformations. By
taking them into account, the strain tensor takes the form
Ee = 1

2 F−T
0 (C − C0)F−1

0 where F0 is the inelastic deforma-
tion and C and C0 are equivalent to g and g0, respectively.
We leave these promising directions of research for future
study.
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APPENDIX A: EQUILIBRIUM EQUATIONS

In this section we derive the nonlinear equilibrium equa-
tions Eq. (13).

An elastic solid is modeled as a manifold M equipped with
a reference metric g0. A configuration is an embedding φ :
M → R2 from which an actual metric, denoted g, is defined
on M as the pullback of the euclidean metric on R2.

The equilibrium equations are derived from an energy
variation with respect to the embedding φ describing the con-
figuration. The elastic energy to be minimized is

U =
∫
M

W (g, g0) dSg0 (A1)

where dSg0 ≡
√

det(g0)dudv. Upon defining the strain ε =
1
2 (g − g0) and the stress

σαβ = ∂W
∂εαβ

(A2)

we find

δφU =
∫
M

1

2
σαβδφgαβ dSg0 . (A3)

Writing the metric variation in terms of the configuration and
using δφgαβ = (∂αφ)(∂βδφ) + (∂αδφ)(∂βφ) we find

δφU =
∫
M

σαβ (∂αφ)(∂βδφ) dSg0

=
∮

∂M
σαβnβ (∂αφ)δφ dlg0

−
∫
M

1√
det g0

∂β (σαβ (∂αφ)
√

det g0)δφ dSg0 . (A4)

We note that the second integrand can be written as

divβσ αβ∂αφ ≡ 1√
det g0

∂β (σαβ (∂αφ)
√

det g0)

= (∇βσ αβ + (
�0ν

νβ − �ν
νβ

)
σαβ

)
∂αφ. (A5)

Therefore the variation takes the form

δφU=
∮

∂M
σαβnβ (∂αφ)δφ dlg0 −

∫
M

divβσ αβ∂αφ δφ dSg0 .

(A6)
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We conclude that the equilibrium equation is

∇̄μσμν + (
�ν

αβ − �̄ν
αβ

)
σαβ = 0, (A7)

along with the boundary conditions

nασ αβ = 0 (A8)

and in the presence of external loads

nασαβ = tβ. (A9)

APPENDIX B: SECOND ORDER INCOMPATIBLE STRESS
FUNCTION

Our treatment of the nonlinear elastic problem is based on
a perturbative solution to the nonlinear stress function, where
we expand the stress function in terms of a small parameter.
A flat reference metric g0 gives a set of nonhomogeneous har-
monic equations, in which the nonhomogeneous part depends
only on lower-order solutions of the stress function, as shown
in Eq. (20). For example, the equation for the second-order

correction is (see Mathematica notebook [36])

Y

2
∇2

g0∇2
g0χ

(2)(z, z̄)

= (25 − 22ν + ν2)|φ(1)′′ |2 − (1 + ν)2(2zφ(1)′′′φ(1)′′

+ 2z̄φ(1)′′φ(1)′′′ + 2ψ (1)′φ(1)′′′ + 2ψ (1)′φ(1)′′′ + |z̄φ(1)′′′

+ ψ (1)′′ |2). (B1)

The general solution is

χ (2)(z, z̄) = 1

2
[z̄φ(2)(z) + zφ(2)(z) + η(2)(z) + η(2)(z)]

− 1

8Y
(−29 + 14ν − 5ν2)|φ(1)(z)|2

− 1

8Y
(1 + ν)2|z̄φ′(1)(z) + ψ (1)(z)|2. (B2)

APPENDIX C: RADIAL SYMMETRY

1. Circular hole: First order

Equation (27) shows the linear stress function of a unit circular hole subjected to uniaxial stress σ∞ along the y axis. The
derived stresses are

σ xx(1) = σ∞
1

2r2

[
cos 2θ +

(
2 − 3

r2

)
cos 4θ

]
, (C1a)

σ xy(1) = σ∞
1

2r2

[
− sin 2θ +

(
2 − 3

r2

)
sin 4θ

]
, (C1b)

σ yy(1) = σ∞

[
1 + 3

2r2
cos 2θ +

(
3

2r4
− 1

r2

)
cos 4θ

]
, (C1c)

where r is the distance from the hole center and θ is the angle relative to the x axis.

2. Circular hole: Second-order correction

The homogeneous part of the second-order correction to the stress function with an arbitrary Poisson’s ratio is

φ(2)(z) = σ 2
∞

16Y

[
−(ν − 1)z + (5 − 2ν + ν2)

z
+ (1 + ν)2

z3

]
, (C2a)

ψ (2)(z) = σ 2
∞

16Y

[
(ν − 3)2z + 4(5 − 2ν + ν2)

z
− (ν − 3)2

z3
+ 4(1 + ν)2

z5

]
(C2b)

and the full derivation is given in Mathematica notebook [36]. From these functions one can derive the second-order correction
to the stress, which takes the following form:

σ xx(2)(r, θ ) = σ 2
∞

16Y
[ f1(r) + f2(r) cos 2θ + f3(r) cos 4θ + f4(r) cos 6θ ], (C3a)

σ xy(2)(r, θ ) = σ 2
∞

16Y
[ f5(r) cos 2θ + f6(r) cos 4θ + f7(r) cos 6θ ], (C3b)

σ yy(2)(r, θ ) = σ 2
∞

16Y
[ f8(r) + f9(r) cos 2θ + f10(r) cos 4θ − f4(r) cos 6θ ] (C3c)

where the functions fi(r) are

f1(r) = 3(ν − 6)ν + 11

256r4
+ (5ν + 9)(ν + 1)

128r6
− 9(ν + 1)2

256r8
, (C4a)

f2(r) = (ν − 1)ν

32r2
+ (14 − 3ν)ν − 31

128r4
+ −9ν2 + 6ν + 39

128r6
+ 3(ν − 3)(ν + 1)

64r8
, (C4b)
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f3(r) = ν(5ν − 2) − 23

128r2
+ (4 − 3ν)ν + 9

32r4
+ 3(ν − 3)(ν + 1)

64r6
, (C4c)

f4(r) = 3(ν − 3)(ν + 1)

128r2
+ 1 − 3(ν − 2)ν

32r4
+ 5(ν − 1)2

64r6
, (C4d)

f5(r) = ν2 − 2ν + 5

128r2
− 3(ν2 − 2ν + 13)

128r4
− 3(ν2 − 2ν − 7)

64r6
+ 3(ν − 3)(ν + 1)

64r8
, (C4e)

f6(r) = ν2 − 2ν − 19

128r2
− 3(ν2 − 2ν − 7)

64r4
+ 3(ν − 3)(ν + 1)

64r6
, (C4f)

f7(r) = 3(ν − 3)(ν + 1)

128r2
+ −3ν2 + 6ν + 1

32r4
+ 5(ν − 1)2

64r6
, (C4g)

f8(r) = −9(ν + 1)2

256r8
+ 3(ν − 7)(ν + 1)

256r4
+ 3(ν + 5)(ν + 1)

128r6
, (C4h)

f9(r) = −3(ν − 3)(ν + 1)

64r8
+ 3[(ν − 6)ν − 15]

128r6
+ −[(ν − 4)ν] − 15

64r2
+ ν(3ν + 2) + 47

128r4
, (C4i)

f10(r) = −ν − 6

16r4
− 3(ν − 3)(ν + 1)

64r6
+ ν(3ν + 2) + 15

128r2
. (C4j)

One can observe several features of the second-order solution. First, the angular dependencies of the first order were of 2θ

and 4θ . In the second-order solution we get a new angular dependency, of 6θ . Another feature is related to the radial dependency
of the solution. In the first-order solution one can find different elements of the stress scales like 1

r2 or 1
r4 , and in the second-order

solution one can also find elements of 1
r6 and 1

r8 .
We also get a correction to the stress concentration factor:

Kt = 3

(
1 − 5 − 2ν + ν2

4

σ∞
Y

)
. (C5)

The main characteristic properties of the second-order stress tensor are already reflected from the form Eq. (C3) and the new
singularities in fi. Explicit expressions for the stress tensor are derived in the Mathematica notebook [36].

APPENDIX D: NONLINEAR CRACK

1. Mode I

The linear stress function of the mode I crack is

φ(1)(z) = σ
yy
∞
4

(−z + 2
√

z2 − 1) + σ xx
∞
4

z, (D1a)

ψ (1)(z) = σ
yy
∞
2

(
z − 1√

z2 − 1

)
− σ xx

∞
2

z (D1b)

where σ xx
∞ and σ

yy
∞ are the stresses imposed at infinity.

We want to examine the contribution of the second order
to the stress around the tip of the crack. Therefore we expand
the elements of the stress around the tip, i.e., around the point

(1 + r cos θ, r sin θ ) in orders of r, and we get that asymptotic
stresses take the form

σ xx(1)(r, θ ) = σ
yy
∞

4
√

2r

[
3 cos

θ

2
+ cos

5θ

2

]
, (D2a)

σ xy(1)(r, θ ) = σ
yy
∞

2
√

2r

[
− sin

θ

2
+ sin

5θ

2

]
, (D2b)

σ yy(1)(r, θ ) = σ
yy
∞

4
√

2r

[
5 cos

θ

2
− cos

5θ

2

]
. (D2c)

As we showed before, the stresses at each order are affected
by the stresses of lower orders. In the case of the mode I crack,
the second-order stresses induced on the crack faces by the
first-order stresses are

�σ yy(2)(x ± iε) = (7 − 4ν + ν2)[(σ xx
∞ )2 − 2σ xx

∞σ
yy
∞ − 3(σ yy

∞ )2]

16Y
,

i�σ xy(2)(x ± iε) = ± σ
yy
∞ (σ xx

∞ − σ
yy
∞ )

8Y (x2 − 1)3/2
[6(ν − 1)x − (1 + ν)2x3]. (D3)

The second-order stresses at infinity that are induced by the first-order stresses are

sxx(2) =−(ν2 − 8ν + 11)(σ xx
∞ )2 + (ν2 − 4ν + 7)(σ yy

∞ )2 + 4ν(ν + 3)σ xx
∞σ

yy
∞

16Y
,

syy(2) = (ν2 − 4ν + 7)(σ xx
∞ )2 − (ν2 − 8ν + 11)(σ yy

∞ )2 + 4ν(ν + 3)σ xx
∞σ

yy
∞

16Y
. (D4)
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Here we show the asymptotic stresses for ν = 0. Explicit derivation and expressions of the second-order correction to the stress
field are given in Mathematica notebook [36].

The asymptotic stress field takes the form

σ xx(2)(r, θ ) = σ
yy
∞
Y

[
gI

1(θ )√
r

+ gI
2(θ )

r
+ gI

3(θ )

r3/2

]
, (D5a)

σ xy(2)(r, θ ) = σ
yy
∞
Y

[
gI

4(θ )√
r

+ gI
5(θ )

r
+ gI

6(θ )

r3/2

]
, (D5b)

σ yy(2)(r, θ ) = σ
yy
∞
Y

[
gI

7(θ )√
r

+ gI
8(θ )

r
+ gI

9(θ )

r3/2

]
(D5c)

where r = 0 denotes the crack tip and

gI
1(θ ) = 9 cos θ

2 (61σ
yy
∞ − 125σ xx

∞ ) + cos 5θ
2 (95σ

yy
∞ − 287σ xx

∞ ) + 72 cos 9θ
2 (σ xx

∞ − σ
yy
∞ )

512
√

2
, (D6a)

gI
2(θ ) = − 1

128
(96 cos θ − 32 cos 2θ + 64 cos 3θ + 9 cos 4θ − 57)σ yy

∞ , (D6b)

gI
3(θ ) = 15

(
cos 3θ

2 + 3 cos 7θ
2

)(
σ

yy
∞ − σ xx

∞
)

128
√

2
, (D6c)

gI
4(θ ) = 3 sin θ [cos 3θ

2 (29σ
yy
∞ − 93σ xx

∞ ) + 24 cos 7θ
2 (σ xx

∞ − σ
yy
∞ )]

256
√

2
, (D6d)

gI
5(θ ) = − (−42 sin 2θ + 64 sin 3θ + 9 sin 4θ )σ yy

∞
128

, (D6e)

gI
6(θ ) = 45 sin θ cos

(
5θ
2

)
(σ yy

∞ − σ xx
∞ )

64
√

2
, (D6f)

gI
7(θ ) = − cos θ

2

(
403σ xx

∞ + 557σ
yy
∞

) + cos 5θ
2 (415σ xx

∞ − 223σ
yy
∞ ) − 72 cos 9θ

2 (σ xx
∞ − σ

yy
∞ )

512
√

2
, (D6g)

gI
8(θ ) = cos2

(
θ
2

)
(−153 cos θ + 46 cos 2θ + 9 cos 3θ + 82)σ yy

∞
32

, (D6h)

gI
9(θ ) = 15

(
7 cos 3θ

2 − 3 cos 7θ
2

)(
σ

yy
∞ − σ xx

∞
)

128
√

2
. (D6i)

2. Mode II

The linear stress function of the mode II crack is

φ(1)(z) = − iσ∞
2

√
z2 − 1, (D7a)

ψ (1)(z) = iσ∞
2

(
2 z2 − 1√

z2 − 1

)
, (D7b)

which gives the following asymptotic behavior around the
crack tip:

σ xx(1)(r, θ ) = − σ∞
4
√

2r

[
7 sin

θ

2
+ sin

5θ

2

]
, (D8a)

σ xy(1)(r, θ ) = σ∞
2
√

2r

[
3 cos

θ

2
+ cos

5θ

2

]
, (D8b)

σ yy(1)(r, θ ) = σ∞
4
√

2r

[
− sin

θ

2
+ sin

5θ

2

]
. (D8c)

Analogous to mode I, the second-order stresses induced
on the crack faces and at infinity by the first-order stresses
are

�σ yy(2)(x ± iε) = −σ 2
∞

4Y
(7 − 4ν + ν2), (D9a)

i�σ xy(2)(x ± iε) = 0, (D9b)

sxx(2) = −σ 2
∞

4Y
(−5 + 8ν + ν2), (D9c)

syy(2) = σ 2
∞

4Y
(7 − 4ν + ν2). (D9d)

The second-order correction to the stress function of the
mode II crack is given by

�(2)(z) = 1

2

[
L(2)(z)√
z2 − 1

+ M (2)(z) − �σ yy(2)

]
, (D10a)

�(2)(z) = 1

2

[
L(2)(z)√
z2 − 1

− M (2)(z) − �σ yy(2)

]
(D10b)

where �(2) and �(2) are defined by � = ψ ′, � = φ′, and
� = � + � + z�′. L and M are determined by the boundary
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conditions at infinity and by demanding the continuity of the
displacement outside of the crack:

L(2)(z) = (�σ yy(2) − syy(2) )z, (D11a)

M (2)(z) = 1

2
(sxx(2) − syy(2) ). (D11b)

Here we show the asymptotic stresses for ν = 0. Ex-
plicit derivation and expressions of the second-order cor-
rection to the stress field are given in Mathematica
notebook [36].

The asymptotic stress field takes the form

σ xx(2)(r, θ ) =
(
σ

yy
∞

)2

Y

[
gII

1 (θ )√
r

+ gII
2 (θ )

r

]
, (D12a)

σ xy(2)(r, θ ) =
(
σ

yy
∞

)2

Y

[
gII

3 (θ )√
r

+ gII
4 (θ )

r

]
, (D12b)

σ yy(2)(r, θ ) =
(
σ

yy
∞

)2

Y

[
gII

5 (θ )√
r

+ gII
6 (θ )

r

]
(D12c)

where r = 0 denotes the crack tip and

gII
1 (θ ) = − (5 + 52π )

(
3 cos θ

2 + cos 5θ
2

)
64

√
2π

, (D13a)

gII
2 (θ ) = 1

128
(96 cos θ + 96 cos 2θ + 64 cos 3θ

+27 cos 4θ − 43), (D13b)

gII
3 (θ ) = − (5 + 52π ) sin θ cos 3θ

2

32
√

2π
, (D13c)

gII
4 (θ ) = 1

128
(66 sin 2θ + 64 sin 3θ + 27 sin 4θ ),(D13d)

gII
5 (θ ) = (5 + 52π ) cos3

(
θ
2

)
(2 cos θ − 3)

16
√

2π
, (D13e)

gII
6 (θ ) = 1

32
cos2

(
θ

2

)
(11 cos θ − 10 cos 2θ

−27 cos 3θ + 42). (D13f)
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