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Normal and anomalous diffusion in a bouncing ball over an irregular surface
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The problem of a bouncing ball on a nonplanar surface is investigated. We discovered that surface undulation
adds a horizontal component to the impact force, which acquires a random character. Some aspects of Brownian
motion are found in the horizontal distribution of the particle. On the x axis, normal and superdiffusion are
observed. For the probability density’s functional form, a scaling hypothesis is presented.
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I. INTRODUCTION

Diffusion is a common natural phenomenon and generally
occurs when a system moves toward the equilibrium state
[1]. Many domains employ the notion of diffusion, includ-
ing physics (particle diffusion), chemistry, biology, sociology,
economics, and finance [2–4]. They all represent the funda-
mental concept of diffusion, which asserts that a substance or
collection expands away from a point or location where that
material or collection is more concentrated. In a diffusion pro-
cess in a set of moving elements—energy, linear momentum,
atoms, molecules, cells, animals, etc.—each element performs
a random trajectory. As a result of this highly irregular in-
dividual movement, the ensemble diffuses. Many nonlinear
systems also present a diffusive behavior in your phase space.
Modeling such a dynamic system has become one of the most
challenging subjects among scientists. The modeling helps to
understand in many cases how the system evolves in time
[5–7].

On a macroscopic level, the average collective behavior, in
contrast to the microscopic individual movement, shows great
regularity and follows well-defined dynamic laws. The non-
linear dynamic formulation of these transport phenomena, as
well as the diffusion equation, are two ways to describe the
diffusion phenomena. The form of the temporal dependence
of the mean-squared distance (MSD), 〈x2〉 ∝ t2μ, or, equiva-
lently, of the variance, allows classifying the type of diffusion.
For μ = 1/2 we have the usual or normal diffusion, which can
be described by Fick’s laws. Otherwise, we have an anoma-
lous diffusion (or non-Fickian diffusion). When μ > 1/2 the
case is classified as superdiffusive [8,9] and for μ < 1/2 we
have the subdiffusive case [10,11]. Indeed, a wide diversity
of systems presents a nonlinear growth of the mean-squared
displacement.

In this work, we explore the diffusive behavior that occurs
in a free-falling particle colliding with a nonplanar surface.
Compared to a flat surface, on which the falling particles
maintain their velocity in the horizontal direction, a nonpla-
nar surface introduces changes in the horizontal component
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of velocity after each collision. This creates a spread in the
absolute value of the horizontal component of velocity as well
as in its signal. Thus, in Sec. II we study the dynamics of the
model, in which the equations of motion are established, and
how the iterative process takes place. Some special points are
explored in Sec. II C, for which no diffusion is observed. In
Sec. III, the randomness of the horizontal component of the
collision force is studied. Also, the diffusion in the signal of
the horizontal component of velocity and its relation to the
random walk problem are explored. Section IV is devoted
to discussing the behavior of the mean-squared displacement
in relation to the initial collision point and the probability
distribution function (PDF) numerically and analytically. In
Sec. V, the conclusions and final considerations about the
problem addressed are presented.

II. THE MODEL

We now discuss how to construct the equations of the map-
ping that describe the dynamics of the particles. The model
under study consists of an ensemble of noninteracting classi-
cal particles of mass m traveling in the presence of a constant
gravitational field g and colliding with a nonflat ground via
elastic collisions. The parametric equations that describe the
ground are

x(p) = αp,

y(p) = β[1 + cos(p)].
(1)

Figure 1 shows an example with α = 0.01 and β = 0.005.
Here it is worth noting that if the β parameter is null, then the
floor becomes flat, recovering the traditional bouncer model
[12] with a static floor. However, different from the traditional
bouncer model, if β �= 0, the particles gain an extra degree of
freedom, with movement in the x direction too. Also, as in the
bouncer model, the action of the constant gravitational field
g is responsible for the return mechanism of the particle for
the next collision with the floor. The conservation of energy
during the collision is controlled by a parameter which is
called the coefficient of restitution and it is denoted by γ .
For γ = 1 the conservative dynamics is observed. However, if
0 < γ < 1 we found a dissipative behavior. A model similar
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FIG. 1. Graph obtained from Eqs. (1) using the parameters
α = 0.01 and β = 0.005.

to the one described in this paper was investigated in Ref. [13]
to explain how anomalous diffusion happens as a result of
orbital stickiness to islands of stability.

A. The map

We now explore the time evolution of particles, determin-
ing the coordinates of the collision points and their respective
velocities. The dynamic evolution of the particle can be de-
scribed by Newton’s equation of motion

m
dv

dt
= Fgrav + Fcol, (2)

where Fgrav = mg is the gravitational force acting on the par-
ticle and Fcol represents the instantaneous force of collision
with the ground. We will assume that the collision force only
changes the velocity component orthogonal to the surface.
It is also an acceptable assumption that during the collision
process the force Fcol has an extremely rapid variation.

A typical path taken by the particles is shown in Fig. 2.
After the nth collision at the point defined by the parameter pn,
the particle travels in the gravitational field until it collides at
the point pn+1. This journey takes a δtn,n+1 time and continues
incessantly if no dissipation is taken into account. The normal
vectors at each collision point are also shown. The unit normal
and tangent vectors at the point pn can be written in terms of
the Cartesian vectors as

n̂n = (−λn i + j)√
1 + λ2

n

and t̂n = (i + λn j)√
1 + λ2

n

, (3)

where λn is the local inclination of the ground, which for the
functions in (1), is given by

λn = (dy/d p)pn

(dx/d p)pn

= −β

α
sin(pn). (4)

Since motion in the gravitational field is a well-known
problem, the fundamental question in determining the dy-
namic evolution of the particle will be to find the points of
collision with the ground. To proceed with this determination,

FIG. 2. Schematic drawing of the trajectory of a particle, with its
collision points and the respective normal vectors.

we define the following two functions:

GX (p, t ) = x(p) − [
x(pn) + v(r)

xn
t
]
,

GY (p, t ) = y(p) −
[

y(pn) + v(r)
yn

t − g

2
t2

]
,

(5)

where (v(r)
xn

, v(r)
yn

) is the velocity of the particle after it col-
lides at point pn. The next point pn+1 and the travel time
δtn,n+1 = (tn+1 − tn) spent by the particle between pn and pn+1

are obtained by solving the system of transcendental equations

GX (pn+1, δtn,n+1) = 0,

GY (pn+1, δtn,n+1) = 0.
(6)

In such a way, if the particles make a trip with N collisions,
the total time spent will be

tN =
N∑

n=1

δtn−1,n with t0 = 0. (7)

In our model, we assume that only the component of the
velocity normal to the surface at the collision point is altered
(inverted) [14]. Then, at the instant of collision, the law of
reflection relating the incident velocity vector v(i)

n to the re-
flected velocity vector v(r)

n is

v(r)
n = (

v(i)
n · t̂n

)
t̂n − γn

(
v(i)

n · n̂n
)
n̂n. (8)

Obviously, the velocity vector, incident at a point pn+1, is
related to the velocity vector reflected at the previous point
pn as

v
(i)
n+1 = v(r)

xn
i + (

v(r)
yn

− gδtn,n+1
)

j.

Now we can define the following dimensionless variables
x̄(p) = x(p)/gt2

N , ȳ(p) = y(p)/gt2
N , v̄(r)

n = v(r)
n /gtN , and φn =

tn/tN , where tN is defined in (7). Therefore, the compact time
φ ∈ [0, 1] and the dimensionless velocity vector components
in (8) take the form

v̄(r)
xn+1

=
(
1− γn+1λ

2
n+1

)
v̄(r)

xn
+ λn+1(1+ γn+1)

(
v̄(r)

yn
− δφn,n+1

)
1 + λ2

n+1

,

v̄(r)
yn+1

= λn+1(1 + γn+1)v̄(r)
xn

+ (
λ2

n+1 − γn+1
)(

v̄(r)
yn

− δφn,n+1
)

1 + λ2
n+1

.

(9)

So the system (6) becomes

pn+1 = pn + v̄(r)
xn

ᾱ
δφn,n+1,

cos(pn+1) = cos(pn) + v̄(r)
yn

β̄
δφn,n+1 − 1

2β̄
δφ2

n,n+1,

(10)

where ᾱ = α/gt2
N and β̄ = β/gt2

N . Given the values of pn, v̄(r)
xn

,
and v̄(r)

yn
of the nth iteration, the set of equations (10) produce

the values of pn+1 and the travel time δφn,n+1 which allows
us to find v̄(r)

xn+1
and v̄(r)

yn+1
through (9). After that, the iterative

process restarts.

B. Conservative case

We shall only consider the conservative scenario, when
γn = γn+1 = 1. Since we choose β̄ � 1, it is appropriate to
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consider that the point of collision with the ground has a
height ȳ(pn) � ȳ(pn+1) � 0, but with local slope not necessar-
ily zero. This approach avoids transcendental equations and
simplifies the calculation. As a consequence, the second of
the equations in (10) yields δφn,n+1 = φn,n+1 − φn = 2v̄(r)

yn
.

Finally, a simplified form of the map equations used to explain
motion is expressed as

v̄(r)
xn+1

= F1
(
v̄(r)

xn
, v̄(r)

yn
, pn

)
, (11a)

v̄(r)
yn+1

= ∣∣F2
(
v̄(r)

xn
, v̄(r)

yn
, pn

)∣∣, (11b)

pn+1 = F3
(
v̄(r)

xn
, v̄(r)

yn
, pn

)
, (11c)

where

F1
(
v̄(r)

xn
, v̄(r)

yn
, pn

) =
(
1 − λ̄2

n

)
v̄(r)

xn
− 2λ̄nv̄

(r)
yn

1 + λ̄2
n

, (12a)

F2
(
v̄(r)

xn
, v̄(r)

yn
, pn

) = 2λ̄nv̄
(r)
xn

+ (
1 − λ̄2

n

)
v̄(r)

yn

1 + λ̄2
n

, (12b)

F3
(
v̄(r)

xn
, v̄(r)

yn
, pn

) = pn + 2

α
v̄(r)

xn
v̄(r)

yn
, (12c)

and were defined as

λ̄n = λn+1 = − β̄

ᾱ
sin

(
pn + 2

α
v̄(r)

xn
v̄(r)

yn

)
. (13)

The ground was assumed to be flat; as a consequence
there is a possibility that v̄(r)

yn+1
= F2 < 0. This nonphysical

situation is bypassed by introducing the modulus in Eq. (11b).
This means that if such a case happens, the particle is rein-
jected back to the dynamics with the same velocity but with
a positive direction. The system stays conservative with the
flat floor approximation, as proven by finding the determi-
nant of the Jacobian matrix for this system and ensuring
that it equals 1. Mathematical details are presented in the
Appendix.

C. Periodic orbits

We can anticipate the occurrence of some exceptional
points using the physics of the problem. These are known as
fixed points, to which the dynamical system returns after one
iteration (period-one orbit), two iterations (period-two orbit),
or n iterations (period-n orbit). Figure 3 illustrates two fixed
points: (a) period-one and (b) period-two orbits.

1. Period-one orbit

It is evident that period-one orbits, as shown in portion
(a) of Fig. 3, have a zero local slope. So, as long as the x
component of the initial velocity is zero, the system will not
experience any diffusion in the horizontal axis. A period-one
orbit is obtained by solving the following equations: v̄(r)

xn+1
=

v̄(r)
xn

= 0, v̄(r)
yn+1

= v̄(r)
yn

, and pn+1 = pn with λ̄n = 0 (zero
slope). We can verify the fact considering the first equation
in (13)

λ̄n = 0 ⇒ sin

(
pn + 2

α
v̄(r)

xn
v̄(r)

yn

)
= 0 ⇒

v̄
(r)
xn =0

pn = mπ,

FIG. 3. Examples of periodic orbits: (a) period-one orbit. The
dynamical system returns to the point in phase space at each iteration
and (b) period-two orbit when the system returns to the point after
two iterations.

where m is an integer. These points indicate the locations of
the peaks and valleys in Fig. 3(a). Thus

v̄(r)
xn+1

= F1
(
0, v̄(r)

yn
, mπ

) = 0,

v̄(r)
yn+1

= F2
(
0, v̄(r)

yn
, mπ

) = v̄(r)
yn

, (14)

pn+1 = F3
(
0, v̄(r)

yn
, mπ

) = mπ.

We have the following physical situation: If a particle is cho-
sen whose horizontal component of velocity is zero, in a zero
slope point, clearly the x coordinate of the particle will never
change and the particle does not scatter in the x direction.

2. Period-two orbits

We now consider points with nonzero slope. In general, the
particle gains a nonzero horizontal component to the velocity
and then diffuses along the horizontal axis. Nevertheless, de-
pending on the initial conditions, it is possible for the particle
to strike the surface at point pn with velocity 
vn, reflect there,
then it reaches point pn+1 with velocity 
vn+1, where it will
then reflect again and go back to point pn with velocity 
vn.
Figure 3(b) depicts an illustration of this kind. Inspired by
the figure, consider points connected by v̄(r)

xn+2
= −v̄(r)

xn+1
= v̄(r)

xn
,

v̄(r)
yn+2

= v̄(r)
yn+1

= v̄(r)
yn

, pn+2 = pn, ȳ(pn+1) = ȳ(pn), and oppo-
site local slopes λn+1 = −λn.

Taking into account Fig. 3(b), the points pn and pn+1 must
be connected by{

pn = −π − χ

pn+1 = π + χ
with 0 < χ < π,

where we are solely concerned with the most straightforward
solution. Then, with the help of Eqs. (10), we can write

v̄(r)
xn

v̄(r)
yn

= ᾱ(π + χ ). (15)
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FIG. 4. Period-one orbits are represented by the black dots in the
center of the line. The other points are the period-two orbits.The gray
dots at the end of the curves are the points obtained with the value
χ = π/2.

In addition, the first of Eqs. (12b) yields

v̄(r)
yn

= ᾱ

β̄ sin(χ )
v̄(r)

xn
. (16)

These results allow us to determine both v̄(r)
xn

and v̄(r)
yn

as
functions of χ . So the points for period-two orbits are
written as

v̄(r)
xn

= ±
√

β̄(π + χ )sin(χ ),

v̄(r)
yn

= ᾱ(π + χ )√
β̄(π + χ )sin(χ )

,

pn = ∓(π + χ ).

Figure 4 illustrates these points. The middle points in black
in this picture indicate the period-one orbit. The graphic also
illustrates the effect of the β parameter on the formation of
period-two orbits. The points are calculated by altering the
value of χ from 0 to π , and each gray level indicates a β

parameter value from the lightest gray (β = 0.000 01) to the
darkest (β = 0.0001). α = 0.001 is used for all points.

The choice χ = π/2 is used to calculate the gray dots
in Fig. 4. Each curve is divided into two branches by these
points. The points that make up the branches we name external
have χ > π/2, whereas the points that make up the branches
we term internal have χ < π/2. Consider the eigenvalues of
the Jacobian matrix to categorize the stability of these points.
The external points (χ � π/2) can be classified as node-
type stable points since the modules of their Jacobian matrix
eigenvalues are all equal to 1. On the other hand, because all
of the eigenvalues are real with one positive and the others
negatives, the internal points (χ < π/2) are categorized as
unstable points of the saddle type. Therefore, the gray dots
in the phase space represent saddle-node bifurcations [15].

Many more types of fixed points may exist, and this subject
will be addressed in future work. We are mostly interested in
the particle dispersion problem along the horizontal axis in
this work.

FIG. 5. Typical behavior of the horizontal component of the col-
lision force F̄colx . Here we have used ᾱ = 0.01 and β̄ = 0.005. The
graph has two regions with different scales. On the left we have the
region magnified between φ = 0.000 and φ = 0.020 and on the right,
after a cut in the graph, the normal scale from φ = 0.5 to φ = 1.0 is
shown.

III. DIFFUSION PROCESS

A. The stochastic character of force

Clearly, unless we are in some special initial point, the par-
ticles must diffuse in the x direction. This diffusion is caused
by the collision force with the ground. Due to the irregular na-
ture of the ground, the collision force Fcol has components in
both horizontal and vertical directions. It is intuitive to notice
that the horizontal component presents different magnitudes
and directions at each collision. To understand the behavior
of this horizontal component of the collision force, we can
describe it as

F̄colx (φn) = 
v̄

τ̄

∣∣∣∣
pn

= v̄(r)
xn

− v̄(i)
xn

τ̄
= v̄(r)

xn
− v̄(r)

xn−1

τ̄
,

where τ̄ is the dimensionless collision time, which is ex-
tremely small. We will also assume that the collision force is
approximately constant during the collision time and a typical
example of what this force looks like is shown in Fig. 5.

The width of each rectangle represents the collision time
and despite the dynamics being well known and the irreg-
ularities in the ground having a periodicity, the numerical
results presented show that the effects of the horizontal
component of this force has a behavior comparable to a
stochastic force. It is actually extremely difficult to tell
whether a sequence is random or chaotic, but there are some
proposed procedures to distinguish between these two be-
haviors. In this work we will make use of the permutation
entropy (PE) method [16,17] to establish the randomness
of the time series produced by the collision force. Denot-
ing the time series as {St }t=1,...,T the method consists in
defining subsets of order O, forming the set S = {{S1, S2,

. . . , SO}, {S2, S3, . . . , SO+1}, . . . , {ST −O+1, . . . , ST −1, ST }}.
We then compare consecutive values from each subset to es-
tablish the associated permutation. For example, {S1 < S2 <

· · · < SO} represents the permutation {1, 2, . . . ., O}, while
{S2 < S1 < · · · < SO} represents the permutation 2, 1 . . . , O
and so on, yielding the set of all permutations associated with
the sequence S, named �(S). Then, the set of all O! possible
permutations πi of the numbers {1, 2, . . . , O} are constructed.
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TABLE I. The initial conditions are chosen in order to vary the initial point [x(p0), y(p0)] and keeping the energy Ē = 4 constant.

Floor parameters Initial condition O = 3 O = 4 O = 5 O = 6

α = 0.01 p0 = −0.033 0.998569 0.995189 0.981222 0.92671
β = 0.005 p0 = 0.032 0.999633 0.995120 0.982245 0.925946
α = 0.01 p0 = −0.033 0.998874 0.994082 0.986440 0.935262
β = 0.0005 p0 = 0.032 0.999501 0.996295 0.984878 0.934281

The relative frequency of each permutation πi can be cal-
culated by counting the number of times the permutation
πi is found in the set �(S) divided by the total number of
sequences,

Pi = Number of times that πi appears in �(S)

T − O + 1
, (17)

and the normalized permutation entropy function is written as

PEO = − 1

log2(O!)

O!∑
i=1

Pi log2(Pi ). (18)

Formulas (17) and (18) were applied to the temporal se-
quences of collision forces for three different initial conditions
and also different orders O. Table I shows the results obtained.
The smaller the PEO, the more regular and more deterministic
the time series. Contrarily, the closer to 1 the value of PEO,
the more noisy and random the time series. The results allow
us to assume that the force is random.

IV. PDF

This section’s major purpose is to establish the PDF

(x, t ), which provides us the probability of the particle
being on the coordinate x at time t , and what it has to do
with normal and superdiffusive processes. Among the various
diffusive processes, Brownian motion is the prototype for the
description of nonequilibrium dynamical systems. Due to the
stochastic behavior of the collision force, the jumps performed
by the particles also reproduce characteristics of random walk.
We can comprehend this by calculating the chance of each
particle going to the right. After each impact, we obtain the
x component of the velocity. Then, by examining the sign
of these velocities and associating +1 for vx > 0 and 0 for
vx < 0, we can count the number of jumps to the right and
derive the evolution of this probability as the number of jumps
increases. It is appropriate at this point to introduce an index
that specifies the initial condition (ν), which is used to com-
pute the PDF for the complete ensemble. So, starting with an
initial state labeled by ν, the probability of jumping to the right
after n jumps is calculated as follows:

Pr jump(n, ν) = 1

n

n∑
i=1

SgnPlus
(
v

(ν)
x,i

)
,

where SgnPlus(vx ) =
{

1 if vx > 0
0 if vx < 0.

Figure 6, on the left, shows examples of the time pro-
gression of individual particle jumps for four distinct initial
conditions and two ground parameter adjustments, as well as
the corresponding PDFs 
(x̄, φ). With time evolution, the left

and right jump probabilities for a ground with ᾱ = 0.01 and
β̄ = 0.005 tend to be 0.5 very quickly as we can see in the
upper graphic on the left. However, if the β parameter is set to
β̄ = 0.0005 the graph indicates an initial oscillation, but the
probability ultimately tends to reach 0.5.

The coordinates of the collision points and the travel time
between one point and the next are obtained from the map-
ping given in Eqs. (9) and (10). It is obvious that the travel
time varies between jumps. However, for our analysis, it is
critical to obtain the particle’s position as a function of time
with equal time intervals. This is simple because the particle
moves in a gravitational field g, and we can easily calculate
its position as a function of time. The time is then normalized
so that the maximum time equals 1. So, to get the probability
distribution, for all iterative processes, we begin by subtract-
ing the starting position of the particles. As a result, all of
the particles in the ensemble start from the same position. In
our scenario, we have 2000 particles performing 4000 leaps,
totaling 8 × 106 collision points, but it is clear that the number
of points as a function of time depends on the choice of
interval dt and can be much higher. To demonstrate the pro-
cedure, the simulation is configured so that each particle in
the ensemble has an energy of Ē = 4. The outcomes for
two different types of grounds are shown in Fig. 6 on the
right.

The first PDF graph was obtained with the parameters ᾱ =
0.01 and β̄ = 0.005, and shows a probability density region
following a format very similar to a Gaussian distribution. The
second PDF, obtained with the parameters ᾱ = 0.01 and β̄ =
0.0005, has an extremely anomalous diffusion in the early part
of its time evolution; however, when the time evolution takes
place, the PDF apparently starts to show a Gaussian behav-
ior. In order to have a better understanding of this behavior,
we studied the moments associated with each distribution.
Inspired by the Gaussian form of normal diffusion, with an
anomalous diffusion we make a scaling hypothesis [18] so that
we can express the anomalous distribution as


μ(x̄, φ) =
√

a

π

1

φμ
exp

[
−a

(
x̄

φμ

)2]
. (19)

It should be noted at this point that when we make the Gaus-
sian hypothesis, Eq. (19), we are implicitly assuming that the
force depicted in Fig. 5 is related to Mandelbrot’s theory of
fractional Brownian motion (FBM) [19]. Like the authors of
Ref. [18], we do not intend to provide a theoretical derivation
of the FBM. Obtaining the Gaussian form (19), as well as
its parameters, from the FBM described in Fig. 5 is, in fact,
a significant theoretical open problem. Instead of addressing
this issue directly, we deal with the moments associated with
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FIG. 6. The first graphic of each column contains time evolution examples for the likelihood of a single particle jumping to the right.
The difference is in the β parameter value, which is lowered to one-tenth and one-hundredth of its initial value in the columns on the left.
The evolution of the four-particle leaps (four initial conditions) is explored in the graphs. The different initial conditions for the particles are
obtained by changing the initial parameter p in the functions x(p) and y(p) in Eq. (1) and keeping the energy Ē = 4 constant. The selected p
parameters are shown in the figures. The respective contour plots for the probability distributions are shown on the right.

the distribution which can be easily derived as

〈|x̄(φ)|m〉 =
∫ ∞

−∞
x̄m
μ(x̄, φ) dx̄ = 1√

amπ
�

(
m + 1

2

)
φmμ.

(20)

The result shows a behavior of MSD as 〈x̄2〉 ∝ φ2μ, there-
fore normal distribution has a scale parameter μ = 1/2. If
μ < 1/2 we have a subdiffusive process and for μ > 1/2
we found a superdiffusive behavior. Fure 7 shows the results
of the moments calculations for two different grounds. We

FIG. 7. The black lines represent equations of powers φmμ. At left we have a normal diffusion and at right we have a superdiffusive process.
We can see that more than half of the time evolution has passed before the superdiffusive behavior with scale μ = 0.65 manifests.
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FIG. 8. PDFs rescaled by the factor ξ = x̄2/〈x̄(φ)2〉 for four
distinct times. The theoretical prediction given in Eq. (21) with an
a = 3.75 × 10−8 is shown by the black line.

can observe that at the left we obtain the scale μ = 0.5 and
at the right we obtain μ = 0.65. So, we have two distinct
behaviors: at the left a normal diffusion and at the right we
have a superdiffusive behavior.

The scaling hypothesis is carried forward using Eq. (20)
to obtain φ2μ = a

√
π〈x̄(φ)2〉/Γ (3/2), which enables us to

specify the subsequent function

fφ (ξ ) = φμ
μ(x̄, φ) =
√

a

π
exp

[
−�(3/2)√

π
ξ

]
, (21)

where ξ = x̄2/〈x̄(φ)2〉. Using the PDF data for the superdiffu-
sive process (μ = 0.65) we obtain fφ (ξ ) numerically and the
results for φ = 0.76, φ = 0.765, φ = 0.89, and φ = 0.995 are
presented in Fig. 8. The only parameter that can be adjusted
in the theoretical forecast stated in Eq. (21) is the value of
a. We get a remarkable agreement with the simulation find-
ings when we choose a = 3.75 × 10−8. The black dot-dashed
line on the graph denotes the theoretical result obtained in
Eq. (21). We observe that the theoretical modeling and the
simulation outcome start to diverge for periods of time less
than 76.5% of the overall duration of the iterative procedure.
Rescaling the data, all simulation points for times more than
this amount lie exactly on the same curve. This was already a
foregone conclusion if we look at the second PDF in Fig. 6,
which shows quite anomalous behavior for times less than 0.8.
Before this time has elapsed the particles display a strongly

anomalous diffusion with a scale that must rely on the moment
being estimated, 〈|x|m〉 ∝ tmμ(m) [20].

V. CONCLUSIONS AND OUTLOOK

In this work, we have studied a falling particle in the
gravitational field colliding with a nonplane surface. We could
observe that the horizontal component of the collision force
presented a stochastic behavior. This was verified by using
the entropy permutation method applied to the collision force
time series. Additionally, we established that the jumps to the
right and left follow a distribution whose probabilities tend
toward 0.5 while the particle’s temporal development takes
place. It can be seen that the convergence to the factor 0.5
occurs significantly more quickly using the ground with pa-
rameters α = 0.01 and β = 0.005 than with β = 0.0005. We
assume that a surface with more pronounced undulations pro-
duces a horizontal component of the force that swiftly alters
the particle’s horizontal motion, causing the probability of
jumps to fast converge to 0.5. The first case implied a diffusion
process that follows Einstein’s famous relationship so that the
horizontal mean-squared displacement is proportional to time,
〈x(t )2〉 ∼ t . The system begins to become superdiffusive as
the ground gets smoother. In fact, it is observed that the system
with β = 0.0005 exhibits a strongly anomalous mean-squared
deviation with temporal increase over the earliest portion of
its temporal history. Subsequently, the movement becomes “
standard superdiffusive.” To comprehend this behavior, we as-
sumed that the probability density’s functional form must take
on a Gaussian form of normal diffusion, with the exception
that the distribution’s time dependence is scaled by tμ. We get
a remarkable consistency between the theoretical expression
and the simulation results using this approach. Future works
are being developed including changes in the function that
describes the floor, the introduction of dissipation, and oscil-
lations in the ground, among other works.
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APPENDIX: JACOBIAN MATRIX

The Jacobian matrix J = ∂ (F1, F2, F3)/∂ (vx, vy, p) for this
dynamical system may be simply calculated using Eqs. (11a)–
(13), leading to

∂F1

∂vx
= ᾱ4 + 4β̄vy

2 cos
(
p + 2vxvy

ᾱ

)[
ᾱ2 − β̄2 sin2

(
p + 2vxvy

ᾱ

)] − β̄4 sin4
(
p + 2vxvy

ᾱ

) − 4ᾱβ̄2vxvy sin
(
2p + 4vxvy

ᾱ

)
[
ᾱ2 + β̄2 sin2

(
p + 2vxvy

ᾱ

)]2 ,

∂F1

∂vy
= 2β̄

{
ᾱ
[ − 2β̄vx

2 sin
(
2p+ 4vxvy

ᾱ

) + ᾱ2 sin
(
p+ 2vxvy

ᾱ

) + β̄2 sin3
(
p+ 2vxvy

ᾱ

)]+ 2vxvy cos
(
p+ 2vxvy

ᾱ

)[
ᾱ2 − β̄2 sin2

(
p+ 2vxvy

ᾱ

)]}
[
ᾱ2 + β̄2 sin2

(
p + 2vxvy

ᾱ

)]2 ,

∂F1

∂ p
= 2ᾱβ̄ cos

(
p + 2vxvy

ᾱ

)(
ᾱ2vy − β̄ sin

(
p + 2vxvy

ᾱ

)[
β̄vy sin

(
p + 2vxvy

ᾱ

) + 2ᾱvx
)]

[
ᾱ2 + β̄2 sin2

(
p + 2vxvy

ᾱ

)]2 ,
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∂F2

∂vx
= −2β̄

{
ᾱ
[
2β̄vy

2 sin
(
2p + 4vxvy

ᾱ

) + ᾱ2 sin
(
p + 2vxvy

ᾱ

) + β̄2 sin3
(
p + 2vxvy

ᾱ

)] + 2vxvy cos
(
p + 2vxvy

ᾱ

)[
ᾱ2 − β̄2 sin2

(
p + 2vxvy

ᾱ

)]}
[
ᾱ2 + β̄2 sin2

(
p + 2vxvy

ᾱ

)]2 ,

∂F2

∂vy
= ᾱ4 − β̄

{
4vx

2 cos
(
p + 2vxvy

ᾱ

)[
ᾱ2 − β̄2 sin2

(
p + 2vxvy

ᾱ

)] + β̄3 sin4
(
p + 2vxvy

ᾱ

) + 4ᾱβ̄vxvy sin
(
2p + 4vxvy

ᾱ

)}
[
ᾱ2 + β̄2 sin2

(
p + 2vxvy

ᾱ

)]2 ,

∂F2

∂ p
= −2ᾱβ̄ cos

(
p + 2vxvy

ᾱ

){
β̄ sin

(
p + 2vxvy

ᾱ

)[
2ᾱvy − β̄vx sin

(
p + 2vxvy

ᾱ

)] + ᾱ2vx
}

[
ᾱ2 + β̄2 sin2

(
p + 2vxvy

ᾱ

)]2 ,

∂F3

∂vx
= 2vy

ᾱ
,

∂F3

∂vy
= 2vx

ᾱ
,

∂F3

∂ p
= 1,

where we used an abbreviated notation (vx, vy, p) rather than
(v̄(r)

xn
, v̄(r)

yn
, pn) to simplify the expressions. It is straightforward

to show that the Jacobian matrix’s determinant is equal to
1, confirming that the system is indeed conservative and the

dimensionless energy

Ēn = 1
2

[(
v̄(r)

xn

)2 + (
v̄(r)

yn

)2]
(A1)

is constant.
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