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Slow dynamics in a single bead with mechanical conditioning and transient heating
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The contact stiffness of an aluminum bead confined between two slabs diminishes upon mechanical condi-
tioning, and then recovers as log(t) after the conditioning ceases. Here that structure is evaluated for its response
to transient heating and cooling, with and without accompanying conditioning vibrations. It is found that, under
heating or cooling alone, stiffness changes are mostly consistent with temperature-dependent material moduli;
there is little or no slow dynamics. Hybrid tests in which vibration conditioning is followed by heating or cooling
lead to recoveries that begin as log(t) and then become more complex. On subtracting the known response to
heating or cooling alone we discern the influence of higher or lower temperatures on slow dynamic recovery from
vibrations. It is found that heating accelerates the initial log(t) recovery, but by an amount more than predicted
by an Arrhenius model of thermally activated barrier penetrations. Transient cooling has no discernible effect, in
contrast to the Arrhenius prediction that it slows recovery.
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I. INTRODUCTION

Natural rocks and cements exhibit remarkable and seem-
ingly universal nonclassical nonlinear elastic behaviors.
Among those is slow dynamics (SD), in which a modest
mechanical conditioning strain induces a loss of stiffness that
afterward recovers, slowly, as log(time). The SD stiffness
loss and slow recovery are not comprehended within classical
nonlinear elasticity. Inasmuch as the stiffness depends on the
history of stress it is a peculiar species of time-dependent
nonlinear elasticity. This apparent healing after damage is
seen in many materials, on length scales from the laboratory
to the seismic, and on timescales from milliseconds to years.
Laboratory applications of minor strain (as little as 10−6) lead
to drops in elastic modulus that then slowly recover [1–9].
Loss of stiffness and slow recovery are seen also in seismic
wave speed near a fault after an earthquake [10–12] where
recoveries are monitored over periods from days to years. SD
is observed in concrete and mortar [13,14] and in buildings
[15]. Shokouhi et al. [8] and Kober et al. [16] report intriguing
deviations from log(t).

SD behavior is not confined to rocks and cements. Ma-
terials with simpler chemistry and structure show the effect
as well. Bittner and Popovics [17,18] showed that a glass
block under impact conditioning exhibited slow dynamics
after it was thermally cracked, but not before. Zaitsev et al.
[19] observed slow dynamics in thermally cracked glass rods.
Slow dynamic nonlinearity is also found in unconsolidated
materials; it has been observed in aggregates of spherical glass
beads under static load, by Johnson and Jia [20] who posited a
connection to dynamic earthquake triggering, by Zaitsev et al.
[21], by Jia et al. [22], and by Yoritomo and Weaver [23].
The latter observed slow dynamics in a single bead confined
between two plates [24] and among glass, aluminum, and
steel beads [25]. The inference is that unconsolidated mate-
rials replace slow dynamic processes at the internal intergrain

contacts of rocks with processes taking place at bead contacts.
Rocks and cements have complex and varied internal struc-
tures and chemistries that present corresponding challenges
in identifying microphysical mechanisms. However, the pres-
ence of SD in simpler materials and the apparent universality
across so many natural materials and cements [6,26], and in
both metals and insulators, suggests that the microphysical
mechanism is simple and common, leading to hopes that it
can be understood on a universal basis.

Conditioning need not be mechanical. Ten Cate et al. re-
port [27] modulus loss and slow recovery following imposed
changes of temperature. Figure 1 shows initial drops in the
modulus (here represented in terms of a resonant frequency),
followed by an hours-long rise. In the case of a temperature
decrease [Fig. 1(a)], the initial drop is small and the later rise
is large, eventually leaving the material with a net increased
stiffness, consistent with the usual case that the modulus rises
after a temperature decrease. Figure 1(b) shows the opposite:
a large initial drop followed by a slow and modest rise over
hours that leaves a net decrease in the modulus at late times.

SD drops in resonant frequencies are associated with in-
creases in loss rates. Johnson and Sutin [6] in a survey of a
number of materials found changes in inverse quality factor Q
to be proportional to the change in resonant frequency ω by

�Q−1/Q−1 = −γSD[�ω/ω]Q, (1)

with coefficient γSD varying from 0.23 to 0.46 among different
materials. Inasmuch as Q is typically large, Q � 1, the frac-
tional change in Q is typically much greater than the fractional
change in resonant frequency.

Closely related are studies of anomalous nonlinear fast
dynamics [5,6,28] in which these materials also show a non-
classical nonlinearity under sinusoidally imposed stresses.
Lebedev and Ostrovsky [29] have a model in which both fast
and slow dynamics are comprehended within a single unified

2470-0045/2023/107(4)/044902(14) 044902-1 ©2023 American Physical Society

https://orcid.org/0000-0002-4526-5219
https://orcid.org/0000-0003-4208-8138
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.044902&domain=pdf&date_stamp=2023-04-24
https://doi.org/10.1103/PhysRevE.107.044902


RICHARD L. WEAVER AND SANGMIN LEE PHYSICAL REVIEW E 107, 044902 (2023)

FIG. 1. Variation of a sandstone prism’s resonant frequency when (a) temperature is dropped by 5 ◦C and (b) when temperature is increased.
In both cases stiffness drops quickly and then rises slowly. At late times the stiffness is (a) greater or (b) less than its starting value. Data taken
from Ten Cate et al. [27].

microphysical mechanism. Sens-Schoenfelder et al. [30] pro-
pose a phenomenological set of local stress-strain relations
that, after parameters are chosen, produce the detailed fast
dynamic behavior observed by Renaud et al. [28] and slow
dynamic recoveries.

There remains no consensus as to the mechanisms re-
sponsible for SD. Among the speculations there are a few
chief, though not exclusive, hypotheses. One is that moisture
plays a critical role. This is supported by the well accepted
dependence of rock moduli on the presence of trace amounts
of moisture, and by observations of humidity sensitivity for
SD in cracked glass [17,18] and humidity sensitivity of fast
dynamic nonlinearity in an unconsolidated granular medium
[31]. It is also suggested by Bouquet et al.’s observation [32]
of log(t) aging, and humidity dependence of the strength of a
sand pile against avalanching, and their model of the aging
as due to thermal activation of nanoscopic water bridges.
Another hypothesis may be termed “the Arrhenius,” for which
recovery proceeds [1,29,33] due to thermally activated barrier
penetration and bond formation, and for which details are
presented below. A variation connects the widely observed
logarithmic aging of static friction strength with the loga-
rithmic SD aging of stiffness. Baumberger and Caroli [34]
show in their review of solid friction that (1) log(t) aging of
frictional strength is observed over a wide range of materials
and (2) it is observed in the growth of contact areas, and (3)
it may be derived theoretically from a model of plastic creep
if the rate thereof is governed by a model in which plastic
strain rate is, Arrhenius-like, exponential in the ratio of stress
to temperature [35]. It is highly plausible that the growth of
the contact asperity area would lead to both static friction
strengthening and to the increasing stiffness observed in the
SD literature.

The Arrhenius picture is prevalent among hypotheses for
the mechanisms of SD. Yet tests to date [1] have been unable
to confirm the predicted absolute temperature proportional-
ity of the log(t) recoveries. As discussed below, however,

tests that combine time-varying temperature with mechanical
conditioning may prove more sensitive than those at fixed
temperature.

The work reported here is part of an experimental program
whose intent is to elucidate the mechanisms behind these non-
classical behaviors. The next section provides an overview of
our single-bead experimental setup and the SD measurements
that are conducted there. This is followed in Sec. III on the
response of the single-bead system to transient temperature
changes. Stiffness changes due to heating or cooling are found
to be mostly consistent with the familiar sensitivity of moduli
to temperature, with minor contributions from SD; the behav-
ior (Fig. 1) seen by Ten Cate et al. [27] is not reproduced.

In order to investigate the Arrhenius hypothesis and ther-
mal activation, Sec. IV then presents measurements of SD in
hybrid tests involving combinations of vibration condition-
ing and transient heating. It is found that heating accelerates
SD recovery from vibration conditioning, but does so more
strongly and with more permanence than is predicted by the
Arrhenius hypothesis. Transient cooling has no effect on heal-
ing. Section V summarizes our conclusions.

II. OVERVIEW OF SINGLE-BEAD EXPERIMENTS

Figure 2 sketches our laboratory system. A 3 mm diame-
ter aluminum bead is confined between two aluminum slabs
(dimensions: 215 mm long × 155 mm wide × 19 mm thick).
Optional heating is applied to the blackened face of the bead
by a continuous wave 450 nm diode laser. Bead temperature is
monitored by a thermocouple with a noise level of ±0.01°C.
A high voltage pulse is applied to the piezoelectric transducer
on the upper slab. The resulting ultrasound reverberates in
the upper slab and slowly diffuses into the lower slab by
way of natural modes of vibration of the confined bead. The
transmitted ultrasound is dominated by a band of frequencies
90–110 kHz. Changes in the signal received in the lower slab
indicate changes in the modes’ resonant frequencies, and thus
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FIG. 2. A not-to-scale sketch of the laboratory measurement
system. A 3 mm diameter aluminum bead is confined between
aluminum slabs instrumented with piezoelectric ultrasound transduc-
ers. The bead’s resonant frequencies depend on the stiffness of the
bead-slab contact, diminishments in which manifest as delays of the
transmitted waveform.

of changes in material elastic moduli or other contributions
to contact stiffness. Conditioning is applied by an electro-
magnetic shaker (not shown) acting on the base. The entire
structure sits on a vibration isolation platform and an optical
table to shield it from ambient vibrations. With negligible ex-
ceptions (see below), the slabs remain at ambient temperature
throughout all tests.

Changes in the diffuse waveform received in the lower
slab are analyzed using coda wave interferometry [24,36,37].
These measurements differ from others in the SD literature
that typically quote frequency or modulus changes. Here the
measured parameter is a time shift. Delays or advances, Y, in
the transmitted diffuse signal are detected with nanosecond
precision. Weaver and Lee [37] showed that Y is related to the
bead’s resonant frequency changes by Y = (�ω/ω) times a
random time-independent function R of the system geometry

and bead position inherited from the stochastic nature of the
reverberant diffuse fields with unity mean 〈R〉 = 1, times a
“dwell time” 1/2γ defined as the average lifetime of bead
vibration energy as it decays due to absorptive or radiative
losses.

Y = [�ω/ω]R/2γ = [�ω/ω][R/ω] Q. (2)

The bead’s free vibration amplitude loss rate γ = ω/2Q is
not to be confused with γSD. Examples of Y’s measurement,
and diminishment and slow recovery after mechanical condi-
tioning, are given by Weaver and co-workers [24,25,37].

Y is constructed to be insensitive to gross temperature
changes in the structure. Slab heating will indeed delay a
diffuse waveform, and will do so proportionally to the travel
time of the waves; waves with greater travel time experience
proportionally more temperature-induced delay [37], but Y is
constructed [24,37] as the zero-travel-time limit of the delays
and is thereby unaffected by slab temperature changes, if any.

Figure 3 shows three measurements of Y separated by
60 min, each covering a period before, during, and after 30 s of
vibration conditioning. The bead temperature is constant. The
laser remains off. A mechanical shaker attached to the optical
table upon which the slabs sit is driven at 500 Hz. Acceleration
amplitudes of the upper slab during conditioning are typically
1 m/s2. This corresponds to rms strain across the bead of
about 64 μstrain. The diffuse time shift Y (negative values
correspond to delays) of a given received ultrasonic waveform
is evaluated relative to a reference waveform recorded at a
time shortly before the most recent vibration conditioning
began. During the vibration Y is irregular and not meaningful.
After the vibration ceases, Y is negative, thus representing
diminishment of contact stiffness. In all cases the delays then
recover and, as seen in Fig. 3, do so with the same slope:
dY/dln(t) ∼ 31 ns. Linearity vs ln(t) is striking. The three
recoveries differ in offset but are otherwise repeatable, the first

FIG. 3. Diffuse field shifts Y (t ) for successive tests separated by 60 min: (a) plotted vs time, (b) plotted vs ln(time). The results of the first
test are indicated in the lower, black, line; the middle red line and upper blue line pertain to the second and third tests respectively. Negative
values of Y correspond to delays of ultrasound on passing through the bead, i.e., to diminishments of stiffness. These data constitute an example
of vibration-induced loss of stiffness followed by slow, logarithmic recovery. rms noise in Y is of the order of a couple of nanoseconds. The
noise is attributed to building vibrations and has been reduced by the use of vibration isolation tables.
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vibration (test 1) causing a greater delay than the others. This
is because each test’s Y is measured relative to the system state
just before that test’s vibration, yet each conditioning leaves
the system with the same absolute stiffness. The difference
in offset reflects the healing that has happened since previous
tests. Except for the offset, repeatability is good as long as the
bead is undisturbed.

Plotting vs ln(t − to), or construction of relaxation spectra
[8,26], can be ambiguous, as one must choose a reference
time, to. It would be natural to set this at the time when
conditioning vibrations cease, but no vibration ceases instan-
taneously, so the appropriate value is unclear. Fortunately
the choice only affects the plots at short times, log(t) < 1.
Because of this insensitivity and because vibration was not
monitored vis-à-vis the ultrasonic pulses, here all plots take
to from the 1 s interval between the time of the last reported
datum still clearly affected by the ongoing vibrations where Y
is not meaningful and the next recorded Y. The precise value
is chosen such that the plots are rendered as linear as possible.
That is admittedly a convenient choice. In practice different
choices only affect the first couple of points, data points
that are unimportant to the present purposes. Separate, more
recent studies (not shown) with Y evaluated approximately
every 70 ms, with simultaneous evaluation of the conditioning
slab acceleration A(t ), and to chosen to coincide with the
beginning of A(t )’s cessation, show that Y vs log(t) maintains
good linearity above 50 ms, and excellent linearity for t above
1/3 s, thus justifying the otherwise ad hoc choice here of to that
gives best linearity. The interesting tangential issue of whether
and where there may be significant deviations from linearity
[8,16] below 50 ms cannot be addressed with this structure.

The work reported here includes tests with laser heating,
as illustrated in Fig. 2. A blue-green 450 nm nominal 1 W
continuous wave diode laser is focused on the front face of
the bead, typically for 30 s. The resulting temperature rise
of the bead leads to heat flow across the interfaces and into
the slabs, thereby limiting the rise of bead temperature to
a steady state, in Fig. 4 at about 12.5 °C. Simple heat con-
duction arguments predict that the steady state temperature
increase at the interfaces is half that of the bead. They also
establish that there is a region of inhomogeneous temperature
and high heat flux confined to near the interface over a length
scale provided by the radius of the contact, ∼47 µm. We
calculate that the longest time constant for heat flow within
a bead is 1/k2d = 0.006 s and effectively instantaneous. Here
d = 93 mm2/s is the heat diffusivity in aluminum, κ = z/a
where a is the bead radius, and z is the first zero of the slope
of the spherical Bessel function: j′i (z) = 0; z = 2.07. Other
calculations establish that 1 W of heating of 3 kg of aluminum
for 30 s will raise its temperature by no more than 0.01 ◦C, and
less than that if heat flow to the air is considered, so the slabs
are not appreciably heated during tests.

III. MEASUREMENTS OF TEMPERATURE AND
CONTACT STIFFNESS CHANGES ON TRANSIENT

HEATING AND COOLING

Here we report the bead’s responses, both in temperature
and stiffness, to heating and cooling. It is found that changes
in contact stiffness, as manifested in shifts Y, are consistent

FIG. 4. The bead temperature, relative to its initial value and to
the slab temperature, for cases in which the laser is on for 30 s. Tests
3 and 4 are at a lower laser intensity. Consistency is good. Peak
values for temperature change, here about 12.5 ◦C, are observed to
vary with bead repositioning, possibly due to repositioning affecting
optical absorptivity or bead-slab thermal conductance.

with a simple picture in which Y is dominated by a proportion-
ality to bead temperature changes, Y = βTb. Deviations are
present but weak; there are no significant nonlinear or delayed
or SD effects. Tests are conducted with both transient heating
and transient cooling. All bead and interface temperatures are
reported as changes relative to the temperature immediately
before any heating or cooling, unless otherwise indicated. In
the case of transient heating (Sec. III A) this is the same as
relative to the slab.

A. Transient heating

Figure 4 shows the temperature change Tb(t ) of the single
bead, as reported by the thermocouple before, during, and
after 30 s of laser heating. Four measurements are shown in
order to illustrate repeatability, the indistinguishable third and
fourth with lower laser power.

The rise and fall fit well to a model of linear conductance
in which bead temperature relative to that of the slabs, and
to initial bead temperature, is Tb(t ) = (τ�o/C)[1– exp(–t/τ )]
while the laser is on. Here C is the bead’s heat capacity and
�o is the thermal power being deposited by the laser. The
model predicts Tb(t ) = To exp(–t/τ ) for times after the laser
is turned off. The time constant τ is given by C/2α where α

is the conductance between bead and slab in Watts per unit
temperature difference across the interface. The data fit well
with a time constant τ of 3.2 s, for both heating and cooling,
and for both high and low laser power. It is curious that a
model in which the interface is a uniform pancake of radius
47 µm (based on Hertzian contact theory [38]) predicts [38]
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FIG. 5. For a laser-on duration of 30 s, Y (t ) (blue dots) is com-
pared to βTb(t ) (red dashed curve) with a best fit β of –0.0310 ms/◦C.
Y (t ) for laser heating is close to proportional to bead temperature
Tb(t ), thus indicating that Y is dominated by linear elasticity with
temperature-dependent moduli. At late times t > 620 s there is a
residual loss of stiffness not encompassed by βT . The inset shows
Y vs βTb and illustrates the degree to which proportionality is im-
perfect, in particular, that there are weak deviations discernible even
before the final relaxation. Arrows indicate directions of increasing
time.

a conductance α such that τ = 0.76 s. Our measurement of
3.2 s indicates that heat conduction is impeded by complexity
at the interface. One imagines oxide layers, moisture, or air
gaps as playing roles. That the time constants of the tests at
high and low laser intensity in Fig. 4 are the same suggests
that nonlinearities are unlikely to explain the curiously low
thermal conductance at the interfaces. The literature [39] has
it that the net conductance across a highly imperfect contact
scales with the sum of the radii of many small well separated
contacts rather than the apparent radius of the entire region.
A more precise theory may thus predict a conductance much
less than the simple estimate.

Figure 5 shows the shift Y (t ) for 30 s of laser heating.
Y (t ) is compared to βTb(t ) with a best fit β = –0.031 µs/◦C,
showing that Y is approximately simply proportional to bead
temperature. β was chosen to minimize the mean square
deviation between βTb and Y: 
t [Y (t ) − βTb(t )]2. Points
are equally weighted. For these plots of T and Y we have
corrected for time delay � between bead temperature and
that which is reported by the thermocouple [40], Tb(t ) =
Tthermocouple(t + �). By close analysis of the quickest of T
and Y changes (for both the cooling and heating protocols,
in Figs. 5 and 6, respectively), � has been determined to be
0.6 s. As seen in the plot, shifts Y (t ) fit well to βTb(t ), but
not exactly. Residual stiffness loss is apparent in Fig. 5 at
late times, t > 620 s, even after the temperature has dropped
back to zero. The residual stiffness loss peaks at about 20
ns, 15 s after laser-off, but drops to about 10 ns at a point
50 s after laser-off. It recovers slowly in a manner reminiscent
of slow dynamics. The dynamic range covered by recovery is

FIG. 6. Y for a case of transient cooling is compared to scaled
bead temperature. Best fit β was −0.0316 µs/°C. A weak stiffness
loss persists at late times and shows no sign of relaxing yet. An inset
showing Y vs βTb illustrates the degree to which proportionality is
imperfect. Arrows indicate directions of increasing time.

sufficiently low, and the ambiguities as to choosing a reference
time with which to define ln(t) are sufficiently great, that we
cannot clearly identify it as logarithmic. The inset of Fig. 5
shows βT vs Y, with indications that differences between Y
and βT are also present before laser-off.

As discussed above, the slabs are not appreciably heated
by the laser. They remain at ambient temperature except for a
small region near the bead interfaces where slab temperature
falls away from Tb/2 to zero (relative to initial, i.e., ambient,
i.e., slab), for distances r > a, like a/r where a is of the order
of the contact radius and about 47 µm.

Y (t ) = βTb(t ) would be predicted by a model in which
there are no heating-induced structural changes or broken
bonds and no slow dynamics, and in which the material
moduli in the vicinity of the interface vary linearly with tem-
perature. To see this and to construct a theoretical estimate
for β we first recall that the bead-slab contact stiffness, as
calculated by Hertzian elastic contact theory [38,24], varies
with the 2/3 power of the Young’s modulus E in the vicinity
of the contact. In consequence the resonant frequencies ω

then vary with the 1/3 power of E. E in aluminum varies
with temperature as δE/E = μδT , with μ = –5.3 × 10−4/◦C
[41]. Contact stiffness also depends on Poisson ratio and on
the radius of the bead, but we neglect those quantities as less
important. We note that the temperature Ti in the vicinity of
the interface is half the temperature Tb of the bead (Tb and
Ti are defined relative to their initial values, i.e., the tempera-
ture of the slab) and conclude that �ω/ω = (μ/6)Tb where
ω is a bead’s resonant frequency. We then recall [Eq. (2)]
that Y = R[�ω/ω]/2γ . Putting these estimates together pre-
dicts Y = βTb with β = Rμ/12γ . This model for temperature
dependence in Y ignores any nonclassical elasticity, and in
particular any slow dynamics. It is furthermore uncertain to
the degree that attenuation γ and the random R are unknown,
but it nevertheless provides a comparison for measurements.
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FIG. 7. The behaviors exhibited in Figs. 5 and 6 are reproduced in separate measurements on the same bead: (a) for heating and (b) for
cooling. Here best fit β is −0.0313 for both cases. Time delays between bead temperature and thermocouple reading remain at � = 0.6 s.

It is emphasized that this contribution to the temperature
dependence of Y is classical; it includes only the effects of
the temperature dependence of aluminum’s Young’s modulus
in the vicinity of the contact.

Figure 5’s fit is remarkably good considering the simplic-
ity and linearity of the theoretical picture. The best fit β in
Fig. 5 is −0.031 µs/°C, but varies with bead repositioning.
We have observed values from −0.02 to −0.045 µs/°C, a
variation that indicates the influence of the stochastic variable
R and suggests a best guess for γ in the vicinity of 1400/s,
corresponding to a quality factor Q = ω/2γ of about 220,
comparable with previous estimates [37].

B. Transient cooling

A similar test is illustrated in Fig. 6, conducted on the same
undisturbed bead, but now with a laser protocol that emulates
transient cooling. The test begins with a laser-on duration of
400 s during which the bead achieves a steady reference state
of near constant Y and bead temperature about 11 °C above
slab temperature. The laser beam is then blocked for 30 s and
then unblocked. This leads to the bead experiencing 30 s of
transient cooling. As seen in the figure, the shifts Y still track
the temperature changes. Again one sees that the observed
shifts Y are chiefly due to temperature dependence of elastic
moduli in the vicinity of the contact. The quantity Tb is now
negative, as it is still defined as the change in bead tempera-
ture relative to its value before the laser beam was blocked.
The best fit value for β is unchanged. This rules out, for
example, significant losses of stiffness due to bond breaking
from tangential sliding due to differential thermal expansion
across temperature gradients at the bead-slab contact. Such
sliding and breaking would lead to the same loss of stiffness
regardless of whether it was caused by cooling or heating.

The conclusion is that transient changes in bead interface
stiffness due to temperature largely correspond to the classical
effect in which modulus varies linearly and instantaneously
with temperature. Heating and cooling make little slow dy-

namic or other nonlinear contributions to Y. Figure 7 shows
that that conclusion is reproduced in further tests.

The changes seen here on heating or cooling are qualita-
tively different from those observed by Ten Cate et al. [27]
(Fig. 1 above) who observed immediate stiffness drops and
slow recoveries regardless of the sign of temperature change.
We can speculate as to the reason. It may be imagined that the
behavior seen in sandstone was due to thermal stresses owing
to inhomogeneous thermal expansion coefficients, perhaps
due to inhomogeneous chemistry or to anisotropic crystal-
lites with inhomogeneous orientations. These thermal stresses
would then be expected to lead to SD behavior much as do
applied stresses. In the single-bead system, on the other hand,
the structure is nominally homogeneous; both slabs and beads
are composed of the same material, aluminum, known for not
exhibiting SD in the bulk. In addition, aluminum crystallites
are cubic with isotropic thermal expansion coefficients, so
there are no intercrystallite thermal stresses.

This section has introduced two fitting parameters. β is the
observed proportionality between T(t) and Y (t ), found to be
the same for both heating and cooling, and to be reproducible
if the bead is not disturbed. Small deviations from perfect
proportionality presumably indicate a degree of SD-like be-
havior. The other parameter, �, is a best fit delay between
temperature and thermocouple reading, also found to be repro-
ducible and unchanged between heating and cooling. Neither
parameter is used below.

IV. HYBRID TESTS, VIBRATION CONDITIONING
FOLLOWED BY TEMPERATURE CHANGES

Because heating induces few SD effects on its own, we are
encouraged to investigate how it superposes with vibration-
induced SD. Chief among the models for how heating might
affect SD recoveries is that of Arrhenius [29,32–35]. The first
of the following subsections shows that even small transient
temperature changes will, according to Arrhenius, dramati-
cally affect SD recoveries. The second and third subsections
present measurements of SD recovery before, during, and af-
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ter transient temperature changes. It is found that heating does
enhance healing, but the measured enhancement is stronger
than predicted by Arrhenius. It is further found that cooling
has no discernible effect.

A. Arrhenius theory

One form of the Arrhenius conjecture, see Bouquet et al.
[32] or Amir et al. [33], posits that slow dynamics recoveries
are governed by bond formation due to thermal activation over
energy barriers with a distribution of heights. Straightforward
calculations show that room temperature log(t) recovery may
be derived from this Arrhenius conjecture with few additional
assumptions. One starts with a relaxing quantity F(t) (a mod-
ulus or a wave speed or a resonant frequency) with time
dependence of the form

F (t ) = F∞ −
∫ ∞

0
fo(EA)e−νt exp(−EA/kT )dEA, (3)

where T is absolute temperature and k is Boltzmann’s con-
stant. F∞ is a reference value equal to F (t = ∞). ν is some-
times called the attack rate. fo is a distribution of activation,
or barrier, energies EA. fo must diminish sufficiently quickly
at large EA for the existence of the integral. (That condition
on fo may be removed by rewriting (3) in the form F (t ) =
F (t = 0) + ∫ fo(EA){1– exp(–νt[exp(–EA/kT )]}dEA).

This picture is mathematically equivalent to representing
F(t) as a superposition of exponential relaxations exp(–t /τ )
with a distribution in τ [8,16,26].

F (t ) = F∞ −
∫ ∞

0
[A(τ )/τ ] e−t/τ dτ,

as may be established by changing the integration variable
from EA to τ using τ = exp(EA/kT )/ν. A(τ ) may be termed
the relaxation spectrum. This form for F(t) leads to log(t)
linearity when A is constant over wide a range in τ [26].

The Arrhenius expression (3) simplifies in an asymp-
totic limit EA/kT � 1 or alternatively, log(νt ) � 1 (well
satisfied for the times of interest in SD experiments and
for the usual identification of ν with 1012/s). In this case
the exponential in Eq. (3) approximates to a Heaviside
step function exp[−νt exp(−EA/kT )] ≈ [kT ln(νt ) − EA].
Equation (3) then becomes

F (t ) = F∞ −
∫ ∞

kT ln(νt )
fo(EA)dEA.

Its time derivative is evaluated to be

dF (t )/dln(t ) = kT fo[kT ln(νt )], (4)

thereby showing that F is linear in log(t) whenever fo(EA)
is constant. A more detailed treatment (see the Appendix)
without asymptotic assumptions derives (4), but with the right
side replaced with fo smoothed over a range of order kT,
thus predicting linearity in log(t) under the less restrictive
condition: whenever the smoothed fo is constant.

The thermal activation conjecture thus replaces the mystery
of log(t) recovery over decades of time, or the constancy of
A(τ ) over decades in τ , with a less mysterious hypothesis of
a flat distribution, fo(EA) = constant, over a short range of
activation energies. Indeed, a constant slope dF/d ln(t ) from

1 s to 20 min, i.e., over three orders of magnitude in time, re-
quires merely (we take ν to be the conventional 1012/s though
the precise value is unimportant) that fo(EA) be constant from
EA = 0.69 to 0.86 eV. The hypothesis is attractive in that it
naturally predicts log(t) recoveries over orders of magnitude
of time, requiring constancy of fo over only short ranges of
activation energy.

In spite of its apparent naturalness and the ease with which
it predicts log(t) recoveries, the thermal activation conjecture
for slow dynamic recovery of stiffness has not been confirmed
in the laboratory. TenCate et al. [1] attempted confirmation by
studying stiffness loss and healing at different temperatures.
The conjecture predicts [Eq. (4)] that F’s slope with respect
to log(t) ought to be proportional to absolute temperature.
They were unable to observe that. This may have been be-
cause the Arrhenius conjecture is incorrect. Alternatively, one
could ascribe the result to their inability to control for the
temperature dependence of the amount of initial stiffness loss
∫ fo(EA)dEA induced by their mechanical conditioning. They
were further hampered by access to only a limited temperature
range imposed by their apparatus and by a desire not to bake
the constitutive clays.

Single-bead experiments with laser heating permit an al-
ternate protocol, one in which temperature is quickly raised
or lowered during a recovery. As shown below, such tran-
sient heating can amplify temperature sensitivity beyond that
predicted in Eq. (4). If the temperature changes occur after
the mechanical conditioning, the initial stiffness diminish-
ment from the mechanical conditioning is unaffected, and
if the Arrhenius conjecture is correct, the recovery acceler-
ates (decelerates) significantly when the temperature increases
(decreases). This is illustrated by solutions to the following
equations governing recovery from mechanical conditioning
while temperature is time varying.

f (EA, 0) = fo(EA),

df (EA, t )/dt = − f (EA, t )ν exp [−EA/kT (t )], (5)

F (t ) = F∞ −
∫ ∞

0
f (EA, t )dEA.

An initial density fo(EA) of barrier heights depletes accord-
ing to the Arrhenius law at a rate that depends on temperature.
When applied to the single-bead system of Fig. 2, T must
be identified with the temperature Ti at the interface, not the
temperature of the bead. Equations (3) and (4) are recovered
if T is constant.

Equation (5) was integrated numerically under three differ-
ent T(t) protocols. The initial distribution fo was taken to be
uniform from 0 to 1.5 eV. ν was taken to be 1012/s. The re-
sulting recoveries F (t )–Fo are displayed in Fig. 8 in arbitrary
units vs ln(t/s). The straight line is the predicted behavior for
constant 293 K temperature and shows the familiar linearity
in log(t). The upper crooked line is for the case in which
absolute interface temperature was raised by 2%, from 293 to
299 K (corresponding to absolute bead temperature raised 4%
from 293 to 305 K as in Fig. 4, i.e., Tb being raised by 12
K) 20 s after the recovery began, and held there for 30 s
before being quickly brought back. The difference between
the straight and upper crooked lines is striking and should
be detectable given sufficient measurement precision. During
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FIG. 8. Predicted SD recoveries (in arbitrary units and shifted
arbitrarily) vs ln(t/s) according to the Arrhenius conjecture, Eq. (5),
with an assumed uniform distribution of activation energies. The
straight black line is for a fixed absolute temperature of 293 K. The
two crooked lines are for an initial temperature of 293 K followed
by, after 20 s, 30 s of a, respectively, 2% higher (red, upper line) or
lower (blue, lower line) temperature.

the 30 s of 2% higher absolute temperature, the recovery was
accelerated by far more than 2%. During the 30 s period of
enhanced temperature, energy barriers EA were overcome that
would have required 57 s if T had not been briefly boosted.
The average healing rate has nearly doubled. Recovery is
slower after recooling and asymptotes back onto the original
linearity in log(t). The figure also shows the predicted effect
of a 2% absolute temperature drop, from 293 to 287 K for 30
s. As with the response to heating, the change in slope is far
more than 2%.

Baumberger and Caroli [34], Brechet and Estrin [35],
and Lebedev and Ostrovky [29] offer an alternative Arrhe-
nius argument for log(t) recovery. If the load on the contact
area is fixed then the stress will diminish as the area grows
σ ∝ (Area)−1. They take that area growth to be plastic
and governed by an Arrhenius rule of the form dA/dt ∝
exp(–σV/kT ) where V is a relevant activation volume for the
plastic flow. On assuming SD stiffness F is a linear proxy for
contact area, and that changes in area are small and may be
linearized, one recovers a differential equation governing the
SD recovery: dF/dt ∝ exp(–F/kT ), whose solution is linear
in log(t). Numerical solutions of this model reproduce Fig. 8
with high precision. In particular, this model exhibits the same
striking amplification of small temperature changes as does
Eq. (5).

Taking ν at a nonphysical value much greater than 1012

enhances the effect of transient temperature changes. For
example, the choice, ν = 1018, leads to the crooked lines
becoming about 50% further from the straight line.

B. Hybrid tests, heating

Figure 9 shows the shifts for a hybrid measurement of
shift Y, here called H (t ), that combines vibration conditioning
and transient heating. After a rest period of 1 h or more,

FIG. 9. H (t ), the shift Y in a hybrid test in which vibration
conditioning is followed by 20 s of free recovery and then 30 s of
laser heating and then further recovery.

coda-wave-interferometric monitoring began at t = 0. Vibra-
tion conditioning was then applied between times t = 100 and
t = 130 s. Recovery commenced at t = 130 s but was inter-
rupted at t = 150 s by 30 s of laser heating, after which the
recovery was monitored for another 400 s. Figure 10 shows
the same data vs log(t).

Until 20 s after vibration cessation, recovery proceeds lin-
early with log(t), as may be seen in Fig. 10. Later, between 20
and 50 s after cessation, i.e., during the period of elevated bead
temperature, shifts Y are dominated by loss of stiffness due
to heating. At late times, after the temperature drops again,

FIG. 10. The hybrid data H (t ) of Fig. 9 are plotted vs log(t).
Measured shifts in blue dots. A linear extrapolation of early behavior
is shown in the straight red line.
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FIG. 11. Compensated shift C = H–L, black dots, where H is the
hybrid test’s shifts as in Fig. 10, and L is the unattenuated laser-alone
shift as in Fig. 5. The solid line is the Arrhenius prediction, Fig. 8,
for the case ν = 1012/s and a 2% temperature increase. This plot
illustrates a spike and step discontinuity at laser-off (ln t = 3.9) due,
respectively, to imperfect temporal alignment of L and H, and the
failure to attenuate L before subtraction.

the recovery asymptotes to a line parallel with the original
trend, but shifted vertically by about 10 ns, indicating that
the heating has had a net effect of increasing contact stiffness
by a small amount. The heating has healed the system over
and above the healing it would have achieved on its own.
That much is consistent with the Arrhenius hypothesis, but
the predicted increased healing (Fig. 8) asymptotes toward the
original trend, while the measured seems to parallel the orig-
inal trend. The discrepancy is even greater when one recalls,
Figs. 5 and 7, that heating alone would have degraded system
stiffness.

While Fig. 10’s behavior after laser-off shows failure of the
Arrhenius conjecture, the loss of stiffness due to heating has
obscured the full record of stiffness recovery, most seriously
while the laser is on. In order to separate the direct effects of
the heating and discern any effect on the SD healing while
the laser is on, we subtract from H (t ) the laser-alone shifts
L(t ), where L is the Y (t ) measured during transient heating
of the same undisturbed bead (and shifted in time to align the
times of laser-on and -off.) A typical L(t ) with no time shifting
was seen in Fig. 5. L(t ) for the subtraction is measured some
30 min after H, without disturbing the bead.

Removal of the direct effects of the heating is a deli-
cate process. Figure 11 shows a compensated shift C(t ) =
H (t )–L(t ) with two unphysical features. Insufficient precision
in doing the temporal alignment has led to a delta-function-
like spike at the time (ln t = 3.9) of laser-off. This spike
disappears if greater care is taken in doing temporal align-
ments. Figure 11 also shows an unphysical step discontinuity
of about 20 ns at the time of laser-off. This step discontinuity
disappears if the laser-alone shifts L are attenuated before
subtraction. The appropriateness of such attenuation could
have been expected. Recall that shifts Y are affected by the
ultrasonic loss rate γ in the bead [Eq. (2)], which are in turn

FIG. 12. Compensated shift C = H–(1–p)L, with p chosen at
5% and greater care in the temporal alignment. The delta-function-
like spike and the step discontinuity that appeared in Fig. 11 at
ln(t ) = 3.9 have been eliminated.

affected by the SD loss of stiffness [Eq. (1)]. We put these
together and predict that L ought to be replaced by (1–p)L,
with p = –γSDωY/R. Unfortunately R and γSD are known only
approximately, but p can be roughly estimated as 0.026 using
Y = –120 ns, γSD = 0.35, and R = 1.

Figures 12 and 13 show compensated shifts C(t ) =
H (t )–(1–p)L(t ). A spline like algorithm [42] is used to in-
terpolate the data and align time stamps in order to eliminate
spike discontinuities like that in Fig. 11. Figure 11’s step
discontinuity at ln(t ) = 3.9 has been eliminated by using
an attenuation p with a value that best does this, a value
consistent with the prediction that p is of order 2.6%. The
behavior shown in these figures is not as Arrhenius would
have it. The plot shows that healing has been accelerated by
the raised temperature, but more than predicted. As observed

FIG. 13. Compensated shift C = H–(1–p)L for a separate test,
but with identical protocol. p is chosen at 4%. The disagreement with
the Arrhenius prediction is greater than in Fig. 12.
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FIG. 14. Hybrid shift H (t ) for the case of 30 s of lower
temperature.

in the discussion following Fig. 10, the difference between
theory and measurement at very late times remains higher than
the Arrhenius prediction, about 15 ns in Fig. 12 and 40 ns in
Fig. 13.

C. Hybrid tests, cooling

We also examine the effect on SD healing of a short
period of cooling. The test protocol consists of 500 s of
laser illumination to bring the bead into a steady state at
an elevated temperature about 11◦C above the slabs. A
30 s period of vibration conditioning was then applied while
maintaining the illumination. A curious 1◦C further increase
of temperature (not shown) occurs during the vibration and
is attributed to a vibration-induced drop in time-averaged
thermal conductance. (Vibration alone does not noticeably
raise bead temperature.) Vibration ceases after 30 s but laser
illumination continues with the temperature dropping back by
the curious 1◦C to its value before vibration. At this point
the system is essentially equivalent to the standard test, e.g.,
Fig. 3, but at an elevated temperature. Twenty seconds after
the vibration turns off, the laser beam is blocked for 30 s, caus-
ing the temperature to drop. The laser is then unblocked and
the recovery monitored for another 300 s. This is equivalent to
the standard test, though at elevated initial temperature and
with a 30 s period of transient cooling imposed 20 s after
vibration conditioning.

The resulting hybrid shift is shown in Fig. 14. The initial
recovery from 530 to 550 s is followed at 550 s by a large
step up due to the cooling, followed by a step down at 580 s
upon reheating. Thereafter H continues to slowly recover. A
second cooling, 30 min later (not shown), allows us to assess
the effect of cooling alone, as in Fig. 6.

In Fig. 15 the same data are displayed vs log(t). It shows
the usual linearity, though interrupted by the cooling. After
the period of lower temperatures ends, the recovery resumes,
and on a line very nearly identical to an extrapolation of the

FIG. 15. The data H (t ) of Fig. 14, plotted vs ln(t).

early time recovery. The cooling seems to have had no long
term effect.

As previously, we can subtract the profile of the cooling
alone from the hybrid data of Figs. 14 and 15 to recover what
Y would be without the modulus changes due to the cooling.
The result is shown in Figs. 16 and 17. p was taken to be 1%
and 1.1%, respectively.

Figures 16 and 17 of compensated shift H–(1–p)L show
no clear sign of the predicted (Fig. 8) Arrhenius behavior.
Cooling has had no clear effect. The disagreement with Arrhe-
nius is less severe than it was in Figs. 11 and 12 for transient
heating, but it remains discernible, peaking at 13 and 9 ns,
respectively.

FIG. 16. Compensated shift C(t ) = H (t )–(1–p)L(t ) for the case
of 30 s of cooling is compared with theory (Fig. 7) for ν = 1012/s. p
is chosen at 1%.
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FIG. 17. Compensated shift C(t ) = H–(1–p)L for a separate
measurement of the response to transient cooling. Protocol is identi-
cal to that of Fig. 16. p = 1.1%.

D. Interpretation

The fitting parameters to, β, and � introduced in Secs. II
and III do not affect the construction of C(t ) so the con-
clusions below are not dependent upon them. In Secs. IV B
and IV C the choice of time shift to be applied to L before
subtraction from H is also unimportant; doing so removes an
unphysical spike in C(t ) but the effect is local and not determi-
native in the conclusions below. The parameter p representing
the attenuation to be applied to L(t ) before subtraction from
H (t ) is arguably more ad hoc and consequential. It was chosen
to eliminate step discontinuities like that illustrated in Fig. 11
and that we judge to be unphysical. If it had not been applied,
however, the discrepancy with Arrhenius would be more se-
vere and more complex, so our qualitative conclusions would
be unchanged.

The compensated plots C = H–(1–p)L could differ from
linear extrapolation of their early times for either of two
reasons. (1) The changed temperatures may affect the SD
recovery from the vibrations; indeed, this is what we wish to
detect in general, with particular interest in seeing whether
or not that effect is consistent with the Arrhenius conjecture,
Eq. (5). One must also consider the possibility (2) that the
stiffness loss associated with transient temperature changes
might be enhanced or diminished when concurrent with an
ongoing SD recovery. Stiffness loss associated with heating
or cooling and which is unaffected by concurrent SD recov-
ery from mechanical conditioning (for example, that due to
temperature-dependent moduli) does not meet the latter pos-
sibility. To meet the possibility one must imagine that heating
during the hybrid H (t ) does more, or less, damage than does
heating in the reference measurement L(t ). Inasmuch as L
exhibits very little damage (Figs. 5–7), this may be difficult
to maintain. One way to envision how the heating in a hybrid
test may be doing less damage than the reference heating in
L is to imagine that there are bonds that are broken during
laser-alone measurements, breakages that contribute to loss of

stiffness beyond that encompassed by βT and apparent at late
times in Figs. 5–7. Some of these same bonds may also have
been broken by the mechanical conditioning in the hybrid
tests. If they remain as yet unhealed at the time of the heating
in the hybrid tests then the laser is incapable of breaking these
bonds, because they are already broken. This implies that the
L(t ) used to compensate would be reporting more damage
than it should. The possibility is intriguing and has the right
sign to reconcile Arrhenius with C(t ), as it makes the compen-
sated C(t ) less healed, but the effect is small. It is too small,
for example, to explain the 15 ns discrepancy at late times in
Fig. 12, or the 40 ns discrepancy at late times in Fig. 13. The
other hypothesis, that the laser might do more damage on the
partially healed system than it does when acting on its own,
has the wrong sign to reconcile Arrhenius with C(t ).

The conclusion is that the Arrhenius conjecture, Eq. (5),
is not supported by the measurements. During the period
of transient heating (Figs. 9–13) the rate of healing is in-
deed increased, but in excess of predictions. Nevertheless, the
measured changes in healing are of the same order as the
Arrhenius prediction, which suggests that Arrhenius may be
approximately correct and that minor considerations might
suffice to improve the match with measurements. Positing
super-Arrhenius kinetics is one possibility. Such are ap-
parently common in complex processes when consecutive
reactions contribute [43]. The literature’s more extreme quotes
[44] for dEA/dT may be sufficient to reconcile some of
Figs. 9–13 with a generalized Arrhenius picture. This may be
seen if we take effective activation energy of a bond to be
temperature dependent, e.g., EAeff = Eo–ζkT . Then the rate
factor ν exp(–E/kT ) in Eq. (5) becomes ν exp(–EAeff/kT ) =
ν exp(ζ ) exp(–Eo/kT ). For large positive ζ , this is mathemati-
cally equivalent to a significantly increased attack rate, and as
remarked in Sec. IV A, will accelerate the predicted healing
above that of the upper (red) line in Fig. 8 and bring theory
into better agreement with measurements.

Positing super-Arrhenius kinetics does not, however, help
in reconciling theory with the data after the temperature has
fallen again, t > 50 s after vibration cessation. Theory, regard-
less of the effective ν, predicts healing to slow and asymptoti-
cally approach the original line (Fig. 8). Yet the measurements
show healing to continue, with a constant slope.

Nor does positing super-Arrhenius kinetics reconcile the-
ory with the measurements for transient cooling where
Figs. 16 and 17 do not exhibit the predicted slowing of healing

It is also worth considering that the value of attenuation
p used to construct C = H–(1–p)L and eliminate the step
discontinuity may have been incorrect. While there must be
some p of the order of a few percent, we have no independent
way of accurately estimating it. One can imagine that perhaps
some of that discontinuity seen in Fig. 11 represents part of
the physics at cooling and ought not have been artificially
removed. Perhaps the step down discontinuity at laser-off in
Fig. 11 includes damage on cooling. This requires a picture
in which sudden cooling does more damage to bonds that are
recently healed than to those that are fully healed. It is not
impossible to subscribe to such a multiplication of hypotheses,
but even if one does, it leaves us with Fig. 11’s even greater
difference between measurements and Arrhenius prediction
before laser-off.
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V. SUMMARY

It has been found that transient heating or cooling
of the single aluminum bead system without mechanical
conditioning leads to little or no long term modulus loss or
SD recovery. This system’s change of stiffness upon heating
and cooling alone is dominated by the familiar classical in-
stantaneous temperature-dependent material moduli. This is
in contrast to reports elsewhere of SD behavior after transient
heating or cooling in sandstone.

Hybrid tests are conducted also, in which SD recoveries
from mechanical conditioning are combined with transient
heating and cooling. Such tests permit investigation of the Ar-
rhenius conjecture that SD healings are governed by thermally
activated barrier hopping over a distribution of barrier heights.
Numerical calculations show that Arrhenius predicts strong
healing rate changes even when absolute temperature changes
are as little as 2%. After doing such tests, and subtracting the
effect of heating alone, we find that the Arrhenius conjecture
is not supported. While the compensated recovery profiles in
Figs. 12 and 13, and 16 and 17 do not differ enormously from
the predicted, they do so to a degree well above the apparent
noise.

While a simple Arrhenius picture is rejected, the data do
not demand more general rejection. Indeed, that the measured
changes in healing are of the same order as the Arrhenius
prediction suggests that Arrhenius is approximately correct
and that minor variations in theory, or hypotheses of additional
mechanisms, might suffice to improve the match with mea-
surements. One might, for example, consider the literature on
super-Arrhenius kinetics [43,44].

Further tests are indicated. The obvious ones would be tests
with materials other than aluminum.
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APPENDIX: DERIVATION OF log(t) LINEARITY FROM
THE ARRHENIUS HYPOTHESIS EQUATION (3)

We replace the lower limit in Eq. (3) with –∞, with the un-
derstanding that fo vanishes for negative EA. We also change
variables: EA = kT (ln νt + q); dEA = kT dq, and derive

F (t ) = F∞ − kT
∫ ∞

−∞
fo[kT (lnνt + q)]e− exp (−q)dq. (A1)

Taking the derivative d/d ln t = d/d ln νt and replacing
d/d ln νt acting on fo with d/dq acting on fo, we obtain

dF (t )/dlnt

= −kT
∫ ∞

−∞
{dfo[kT (lnνt + q)]/dq} e− exp (−q)dq. (A2)

FIG. 18. The weighting function D(q) appearing in Eq. (A3).

On integrating by parts [and remembering fo(∞) = 0, re-
quired for the existence of Eq. (3)] we have

dF (t )/d ln t = kT
∫ ∞

−∞
fo[kT (ln νt + q)]

d{ e− exp(−q)}
dq

dq

= kT
∫ ∞

−∞
f [kT (ln νt + q)] e−q−exp (−q) dq

= kT
∫ ∞

−∞
fo[kT (ln νt + q)] D(q) dq =kT 〈 fo〉.

(A3)

The above integral describes a weighted average of fo

over a region near q = 0. The weighting function D(q) =
exp[–q– exp(–q)] is zero for large positive or negative q. It
peaks at q = 0 with a value of 1/e. The area under the curve
is unity. Mean q is γ = 0.577; standard deviation is π/

√
6 =

1.28. D(q) is plotted in Fig. 18.
We conclude

dF/d ln t = kT 〈 fo〉, (A4)

with the brackets indicating a smoothly weighted average of
fo over a short range of order kT in the vicinity of EA =
kT ln(νt ).

In the asymptotic limit kT  EA, or νt � 1, D(q) be-
comes a delta function, and Eq. (A4) becomes dF/d ln t =
kT fo[kT ln(νt )], without the brackets 〈· · · 〉.
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