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Hidden scale invariance in the Gay-Berne model. II. Smectic-B phase
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This paper complements a previous study of the isotropic and nematic phases of the Gay-Berne liquid-
crystal model [Mehri et al., Phys. Rev. E 105, 064703 (2022)] with a study of its smectic-B phase found
at high density and low temperatures. We find also in this phase strong correlations between the virial and
potential-energy thermal fluctuations, reflecting hidden scale invariance and implying the existence of isomorphs.
The predicted approximate isomorph invariance of the physics is confirmed by simulations of the standard
and orientational radial distribution functions, the mean-square displacement as a function of time, and the
force, torque, velocity, angular velocity, and orientational time-autocorrelation functions. The regions of the
Gay-Berne model that are relevant for liquid-crystal experiments can thus fully be simplified via the isomorph
theory.
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I. INTRODUCTION energies, and two exponents i and v. The GB pair potential

Liquid crystals involve molecules with a high degree of ve is defined as follows [6]:

shape anisotropy [1,2]. This interesting state of matter is
relevant in many different contexts, ranging from display
applications to biological systems [3—5]. Depending on tem-
perature and pressure, the molecular anisotropy leads to
different structural phases, e.g., nematic and smectic phases
with long-range orientational ordering [1].

Gay-Berne (GB) models describe molecules of varying
shape anisotropy spanning from elongated ellipsoids to thin
disks, and GB models have become standard liquid-crystal
models [6]. The GB pair potential depends on four di-

von(rij, &, &) = de(F, &, &,)[(05/0i))"*— (05/p:;))°1,  (1a)
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Here, r;; is the distance between molecules i and j, £ = r;;/7;;
is the unit vector from molecule i to molecule j, and €; and €,
are unit vectors along the major axes of the molecules. The
GB molecule mimics an ellipsoid of two diameters, o, and o.
Specifically, one defines

mensionless parameters. This is reflected in the notation
GB(«x, k’, i, v) in which the four parameters quantify the
shape of the molecules and the strength of their interactions.
A previous paper studied the isotropic and nematic phases
of a GB model with parameters corresponding to rod-shaped
elongated molecules [7]. It was found that this model has
isomorphs in the isotropic and nematic phases, which are
curves in the thermodynamic phase diagram along which the
physics is approximately invariant. This paper presents a study
of the same GB model in its smectic-B phase, demonstrating
that isomorphs exist also here.

II. THE GAY-BERNE POTENTIAL
AND SIMULATION DETAILS

The GB(k, k', i, v) pair potential is characterized by the
following four dimensionless parameters: x = o,/0,, where
o, and oy are lengths, k' = &,/€.., Where gy and &, are
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Here, x is a shape anisotropy parameter, and k quantifies
the molecular asymmetry such that k = 1 (¥ = 0) represents
spherical molecules, x — oo (x — 1) corresponds to very
long rods, and x — 0 (x — —1) corresponds to very thin
disks. The energy term is given by

e(, &, &) =g (e1(&,€;)) (2R, &, €))), (3a)
in which
e1(8, &) = (1 — x(&-e)) '/, (3b)
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FIG. 1. Snapshot of the smectic-B phase at density 0.4 and tem-
perature 1.2. A color coding is introduced here to visualize the
individual planes.

Here,

. K/]/u -1
A Gd
is an energy anisotropy parameter. The energies &, and &,
are the well depths of the potential in the side-side and end-
end configurations, respectively. Unless otherwise stated, oy
defines the length and ¢ defines the energy unit used below.

We simulated a system of 1372 particles of the
GB(3, 5,2, 1) model studied previously in Ref. [7]. The GB
pair potential was cut and shifted at . = 4.0, and the time
step used was At = 0.001. The standard NVT Nosé-Hoover
algorithm was used for the center-of-mass motion and the
Fincham algorithm was used for the rotational motion [8,9].
Different thermostats were applied for the translational and
rotational motions [7]. The molecular moment of inertia was
set to unity. A homemade code for graphics processing unit
(GPU) computing was used; at each simulated state point,
20x 108 time steps were taken to equilibrate the system before
the production run of 67 x 10° time steps.

If R=(ry,...,ry) is the vector of particle coordinates
and p = N/V is the particle density, the microscopic virial
W (R) is defined by W (R) = dU (R)/9 In p in which the den-
sity is changed by a uniform scaling of all particle coordinates.
For an inverse power-law pair potential, v(r) = e(r/o)™", itis
easy to see that this implies that W (R) is a sum of pair virial
contributions equal to (n/3)v(r). Because the vectors F, &;,
and €; do not change under a uniform expansion, a related
result applies for the GB pair potential. Specifically, the GB
pair virial is 4¢ (£, &, €;)[4(05/pi))'* — 2(05/pi;)°1(r/ pi;) and
the total microscopic virial W (R) is calculated as the sum of
all pair virials.

The GB(3,5,2,1) phase diagram is shown in Fig. 3 of
Ref. [7]. Figure 1 shows a snapshot of the system at equi-
librium in the smectic-B phase.

III. PROPERTIES STUDIED

The quantities evaluated numerically in this paper are as
follows: the standard radial distribution function g(r) [10,11],
the below-defined orientational radial distribution function
G;(r) (I = 2) [11-14], and a number of single-molecule time-
autocorrelation functions [15,16]. The latter two observables
are defined by

Gi(r) = (Pi(& - &))), “

Pat) = (A(to) - Aty +1)). )

Here, P, is the /th Legendre polynomial, A(¢) is a vector
defined for each molecule, and the angular brackets denote
an ensemble and particle average, which in the case of G;(r)
is restricted to pairs of particles the distance r apart. We study
the cases of A being the velocity, angular velocity, force, and
torque. We also study the first- and second-order molecular
orientational order parameter time-autocorrelation functions
defined by

¢1(1) = (P (&) - &(10 +1))). (6)

IV. R-SIMPLE SYSTEMS AND ISOMORPHS

The virial W quantifies the part of the pressure p that
derives from molecular interactions via the defining iden-
tity pV = NkgT + W. Liquids and solids may be classified
according to the degree of correlation between the constant-
volume thermal-equilibrium fluctuations of virial W and
potential energy U [17]. “R-simple systems” are those with
strong WU correlations; such systems are simple because
their thermodynamic phase diagram is basically one dimen-
sional in regard to structure and dynamics [17-20]. The
“isomorph theory” of R-simple systems was developed over
the last decade [21,22].

The WU Pearson correlation coefficient (which depends on
the state point in question) is defined by

R (AW AU)
VAW (AU 2

Here, A gives the deviation from the equilibrium mean value.
Many systems, including the standard Lennard-Jones and
Yukawa fluids, have strong WU correlations in their liquid
and solid phases, whereas R usually decreases significantly
for densities below the critical density [23]. A system is con-
sidered to be R-simple whenever R > 0.9 at the state points of
interest [21]. This is a pragmatic criterion, however, and, e.g.,
the simulations presented in this paper go below this value at
high temperatures without significantly affecting the degree of
isomorph invariance.

As mentioned, R-simple systems have curves in the
phase diagram along which structure and dynamics are ap-
proximately invariant. These curves are termed isomorphs.
Isomorph invariance applies when data are presented in so-
called reduced units. These units, which in contrast to ordinary
units are state-point dependent, are given by letting the density
p define the length unit /y, the temperature define the energy
unit ey, and density and thermal velocity define the time
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unit #g,

to=p "P/m/ksT. (8)

Here, m is the molecule mass. Quantities made dimensionless
by reference to these units are termed “reduced” and marked
with a tilde.

Strong virial potential-energy correlations arise whenever
hidden scale invariance applies. This is the condition that the
potential-energy ordering of same-density configurations is
maintained under a uniform scaling of all coordinates [24].
This is formally expressed as follows:

lo=p""7 e =ksT,

UR,) <URp) = U@AR,) < U(ARy), 9

in which A is a scaling factor. Consider two configurations
with the same potential energy, i.e., U(R,) = U(Ry). After a
uniform scaling one has by Eq. (9) U(AR,) = U(ARy). By
taking the derivative of this with respect to A one derives
W(R,) = W(Ry) [24]. Thus the same potential energy implies
the same virial, resulting in a 100% correlation between the
W and U constant-volume fluctuations. For realistic systems,
Eq. (9) is fulfilled only approximately, however, and one
rarely experiences perfect virial potential-energy correlations
[this only applies when U (R) is an Euler-homogeneous func-
tion].

Recall that a system’s entropy S is equal to that of an ideal
gas at the same density and temperature plus an “excess” term
deriving from the intermolecular interactions: S = Sjg + Sex-
It can be shown that Eq. (9) implies that the reduced structure
and dynamics are invariant along the lines of constant excess
entropy; these are by definition the system’s isomorphs [24].
The so-called density-scaling exponent y is defined by

(10)

_ (3T _ (AWAU)
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The second equality here is a general identity [22], which
is useful when the system is R-simple because Eq. (10) can
then be applied for tracing out isomorphs without knowing the
equation of state. For the simple Euler algorithm this is done
by proceeding as follows. At a given state point (p;, 77), by
means of Eq. (10) one calculates y from the equilibrium fluc-
tuations of the potential energy and virial. From Eq. (10) one
then predicts the temperature 7, with the property that (p,, T3)
is on the same isomorph as (p;, T1). If y = 7, for instance, for
a 1% density increase a 7% temperature increase will ensure
that the new state point is on the same isomorph. In the sim-
ulations of this paper, in order to increase the accuracy of the
generated isomorph, following Ref. [25] we used instead the
fourth-order Runge-Kutta algorithm for solving numerically
Eq. (10) (involving density changes of order 1%). The result-
ing isomorph state points are given in Table I. We note that
the density-scaling exponent is generally significantly larger
than for point-particle Lennard-Jones models where it is in the
range 4—6. This must be a consequence of the spherical asym-
metry because the same increase has been seen, e.g., for the
asymmetric dumbbell and Lewis-Wahnstrém ortho-terphenyl
models built of Lennard-Jones particles [18,21,26]. A quanti-
tative explanation of this is missing, however, because a full
isomorph theory of molecules is still not available.

TABLE I. Variation of density p, temperature 7', virial potential-
energy correlation coefficient R [Eq. (7)], and density-scaling
exponent y [Eq. (10)] for nine state points on the isomorph generated
from the reference state point (p, 7) = (0.4, 0.4).

P T R 4

0.400 0.400 0.956 9.46
0.416 0.578 0.946 9.04
0.433 0.823 0.936 8.74
0.451 1.160 0.925 8.50
0.469 1.619 0.905 8.28
0.488 2.240 0.887 8.06
0.508 3.079 0.868 7.92
0.529 4211 0.854 7.85
0.550 5.770 0.854 8.00

V. STRUCTURE AND DYNAMICS MONITORED ALONG
AN ISOCHORE AND AN ISOMORPH

We begin the study by presenting results for the mean-
square displacement as a function of time, which is predicted
to be isomorph invariant in reduced units. Figure 2 shows
the results along the p = 0.4 isochore (upper panel) and the
isomorph generated from the reference state point (p, T) =
(0.4, 0.4) (lower panel), in both cases for the same nine tem-
peratures. The isomorph data involve state points of more
than a third density change and more than a factor of 10
temperature change (Table I). Note that the smectic-B phase of
the GB(5,3,2,1) model is found at higher densities than those
of the isotropic and nematic phases studied in Ref. [7].
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FIG. 2. Reduced mean-square displacement as a function of
reduced time along the p = 0.4 isochore and along the iso-
morph generated from the reference state point (p, T') = (0.4, 0.4)
(Table I).
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FIG. 3. Structure along the isochore and the isomorph probed via
the standard radial distribution function (upper panels) and the orien-
tational radial distribution function defined in Eq. (4) (lower panels),
in both cases plotted as a function of the reduced pair distance 7. The
colors used here and henceforth for the different temperatures are the
same as those of Fig. 2.

The low-temperature state points along the isochore of
Fig. 2 are in the solid state as evident from the fact that the
long-time mean-square displacement is constant. The high-
temperature isochore state points, on the other hand, show
diffusive long-time behavior and are liquid. The fact that all
mean-square displacement data collapse at short times in the
ballistic regime for both the isochore and the isomorph is
a consequence of the use of reduced units, which leads to
a reduced-unit thermal velocity that is the same at all state
points. For the isomorph data, we see a fairly good collapse
at all times, not just at short times. The minor deviations
from perfect collapse are consistent with the fact that the
virial potential-energy correlation coefficient R is not very
close to unity; in fact, R goes below 0.9 at the four highest
temperatures (Table I). This feature might have to do with
the short-time librational motion of the rods, which as shown
below does not scale well in the isomorph sense.

Figure 3 shows reduced-unit data for the radial distribu-
tion function g(r) and the orientational radial distribution
function G,(r) [Eq. (4)] along the same isochore and iso-
morph. Figure 3 shows no invariance along the isochore, but
fair invariance along the isomorph. An exception to this is
the highest temperature isomorph radial distribution function
that deviates notably from the eight others. We have found
that at this (and higher) temperatures, the smectic-B phase
undergoes a further transition involving a tilt of the aver-
age molecular orientation with respect to the smectic layers,
similar to what has been reported by de Miguel et al. [11].
Interestingly, this does not affect the isomorph invariance of
quantities other than the radial distribution function [com-
pare the G,(r) data of Fig. 3, as well as the data of later
figures].

Returning to dynamic properties, the normalized force
and torque time-autocorrelation functions, i.e., the functions
da(t)/pa(0) of Eq. (5) for A equal to the force and torque
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FIG. 4. Normalized force (upper panels) and torque (lower pan-
els) time-autocorrelation functions along the same isochore and
isomorph as in the previous figures, plotted as functions of reduced
time 7.

on the individual particles, respectively, are shown in Fig. 4
as functions of the reduced time. Near-perfect scaling is ob-
served for both functions along the isomorph, but not along
the isochore.

Figure 5 shows the first- and second-order orientational
time-autocorrelation functions along the isochore and iso-
morph. These functions both decay to zero at the highest
density studied on the isochore, which is not the case for the
isomorph along which invariant dynamics is observed.

We finish the study by showing the normalized velocity
and angular velocity time-autocorrelation functions in Fig. 6.
Again, good isomorph invariance is observed at all times,
though with minor deviation at intermediate times for the
velocity time-autocorrelation function.
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FIG. 5. First- and second-order orientational order parameter
time-autocorrelation functions along the isochore and isomorph,
plotted as functions of reduced time.
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FIG. 6. Normalized velocity and angular velocity time-

autocorrelation functions along the isochore and isomorph, plotted
as functions of reduced time.

VI. SUMMARY

We have shown that the isomorph theory can be used to
understand GB liquid crystals in the smectic-B phase, because
the thermodynamic phase diagram is here effectively one
dimensional in the sense that the reduced-unit structure and
dynamics are approximately invariant along the isomorphs.
Our previous paper [7] showed that the same applies for the
isotropic and nematic phases of the GB(3,5,2,1) model. This
means that most of the GB(3,5,2,1) phase diagram is effec-
tively one dimensional in regard to structure and dynamics.
We note that this property is not limited to a particular GB

model; thus an earlier publication demonstrated the existence
of isomorphs in the GB(0.345,0.2,1,2) model that forms a
discotic liquid-crystal phase at low temperatures [27]. The GB
potential is unique in the field of liquid-crystal models in that
through a gradual reduction of the parameters xy and x’ of
Egs. (2) and (3), the Lennard-Jones potential is recovered. It
is an interesting question whether one would find isomorph
invariance behavior in other models of rods, such as a rigid
line of Lennard-Jones interaction centers.

We demonstrated above that the GB(3,5,2,1) model ex-
hibits good invariance of the reduced-unit structure and
dynamics along the studied isomorph. In conjunction with
our previous study [7], the existence of isomorphs in the GB
model can now be used to explain the observed behavior
of liquid crystals, for instance, the so-called density scaling,
which is the fact that the reduced dynamics is invariant along
lines of constant p¥ /T [28,29]. Studies remain to investigate
whether other smectic phases of the GB model also exhibit
strong virial potential-energy correlations and thus the ex-
istence of isomorphs. It would be interesting, in particular,
to investigate the effect of varying the moment of inertia,
given the fact that fixing this quantity upon a density change
formally violates isomorph invariance of the dynamics, but
was found above to have little effect in practice. Also, it would
be interesting to investigate systematically the vast parameter
space of the GB potential from the hidden-scale-invariance
perspective.

ACKNOWLEDGMENT

This work was supported by the VILLUM Foundation’s
Matter grant (Grant No. 16515).

[1] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Oxford University Press, Oxford, 1993).

[2] M. Jurdsek and R. Vicha, Self-assembled clusters of patchy
rod-like molecules, Soft Matter 13, 7492 (2017).

[3] S. J. Woltman, G. P. Crawford, and G. D. Jay, Liquid Crys-
tals: Frontiers in Biomedical Applications (World Scientific,
Singapore, 2007).

[4] A. de la Cotte, C. Wu, M. Trevisan, A. Repula, and E. Grelet,
Rod-like virus-based multiarm colloidal molecules, ACS Nano
11, 10616 (2017).

[5] Y. Tian and Z. Niu, Self-assembly of rod-like bionanoparticles
at interfaces and in solution, in Virus-Derived Nanoparti-
cles for Advanced Technologies (Springer, New York, 2018),
pp. 159-167.

[6] J. Gay and B. Berne, Modification of the overlap potential to
mimic a linear site-site potential, J. Chem. Phys. 74, 3316
(1981).

[7]1 S. Mehri, J. C. Dyre, and T. S. Ingebrigtsen, Hidden scale
invariance in the Gay-Berne model, Phys. Rev. E 105, 064703
(2022).

[8] D. Fincham, N. Quirke, and D. J. Tildesley, Computer simula-
tion of molecular liquid mixtures. I. A diatomic Lennard-Jones
model mixture for CO,/C,Hg, J. Chem. Phys. 84, 4535 (1986).

[9] D. Fincham, Leapfrog rotational algorithms, Mol. Simul. 8, 165
(1992).

[10] M. A. Bates and G. R. Luckhurst, Computer simulation studies
of anisotropic systems. XXX. The phase behavior and structure
of a Gay-Berne mesogen, J. Chem. Phys. 110, 7087 (1999).

[11] E. De Miguel, L. F. Rull, M. K. Chalam, and K. E. Gubbins,
Liquid crystal phase diagram of the Gay-Berne fluid, Mol. Phys.
74,405 (1991).

[12] B. J. Berne and G. D. Harp, On the calculation of time corre-
lation functions, in Advances in Chemical Physics, Advances
in Chemical Physics Series Vol. 17 (Wiley, New York, 1970),
pp- 63-227.

[13] E. de Miguel, L. F. Rull, M. K. Chalam, K. E. Gubbins, and
F. Van Swol, Location of the isotropic-nematic transition in the
Gay-Berne model, Mol. Phys. 72, 593 (1991).

[14] D. Adams, G. Luckhurst, and R. Phippen, Computer simulation
studies of anisotropic systems: XVII. The Gay-Berne model
nematogen, Mol. Phys. 61, 1575 (1987).

[15] E. de Miguel, L. F. Rull, and K. E. Gubbins, Dynamics of the
Gay-Berne fluid, Phys. Rev. A 45, 3813 (1992).

[16] P. P. Jose and B. Bagchi, Multiple short time power laws in
the orientational relaxation of nematic liquid crystals, J. Chem.
Phys. 125, 184901 (2006).

044702-5


https://doi.org/10.1039/C7SM01384A
https://doi.org/10.1021/acsnano.7b06405
https://doi.org/10.1063/1.441483
https://doi.org/10.1103/PhysRevE.105.064703
https://doi.org/10.1063/1.450824
https://doi.org/10.1080/08927029208022474
https://doi.org/10.1063/1.478563
https://doi.org/10.1080/00268979100102321
https://doi.org/10.1080/00268979100100451
https://doi.org/10.1080/00268978700102001
https://doi.org/10.1103/PhysRevA.45.3813
https://doi.org/10.1063/1.2364188

MEHRI, DYRE, AND INGEBRIGTSEN

PHYSICAL REVIEW E 107, 044702 (2023)

[17] T. S. Ingebrigtsen, T. B. Schrgder, and J. C. Dyre, What Is a
Simple Liquid? Phys. Rev. X 2, 011011 (2012).

[18] T. S. Ingebrigtsen, T. B. Schrgder, and J. C. Dyre, Isomorphs
in model molecular liquids, J. Phys. Chem. B 116, 1018
(2012).

[19] J. C. Dyre, Hidden scale invariance in condensed matter,
J. Phys. Chem. B 118, 10007 (2014).

[20] J. C. Dyre, Perspective: Excess-entropy scaling, J. Chem. Phys.
149, 210901 (2018).

[21] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrgder, and J. C.
Dyre, Pressure-energy correlations in liquids. I. Results from
computer simulations, J. Chem. Phys. 129, 184507 (2008).

[22] N. Gnan, T. B. Schrgder, U. R. Pedersen, N. P. Bailey, and J. C.
Dyre, Pressure-energy correlations in liquids. IV. “Isomorphs”
in liquid phase diagrams, J. Chem. Phys. 131, 234504 (2009).

[23] I. H. Bell, R. Messerly, M. Thol, L. Costigliola, and J. C.
Dyre, Modified entropy scaling of the transport properties of
the Lennard-Jones fluid, J. Phys. Chem. B 123, 6345 (2019).

[24] T. B. Schrgder and J. C. Dyre, Simplicity of condensed matter
at its core: Generic definition of a Roskilde-simple system,
J. Chem. Phys. 141, 204502 (2014).

[25] E. Attia, J. C. Dyre, and U. R. Pedersen, Extreme case of
density scaling: The Weeks-Chandler-Andersen system at low
temperatures, Phys. Rev. E 103, 062140 (2021).

[26] L. J. Lewis and G. Wahnstrom, Molecular-dynamics study of
supercooled ortho-terphenyl, Phys. Rev. E 50, 3865 (1994).

[27] S. Mehri, M. A. Kolmangadi, J. C. Dyre, and T. S. Ingebrigtsen,
Lines of invariant physics in the isotropic phase of the discotic
Gay-Berne model, J. Non-Cryst. Solids: X 14, 100085 (2022).

[28] C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini,
Supercooled dynamics of glass-forming liquids and polymers
under hydrostatic pressure, Rep. Prog. Phys. 68, 1405 (2005).

[29] K. Satoh, Characteristic behavior of short-term dynamics in
reorientation for Gay-Berne particles near the nematic-isotropic
phase transition temperature, J. Chem. Phys. 125, 204902
(2006).

044702-6


https://doi.org/10.1103/PhysRevX.2.011011
https://doi.org/10.1021/jp2077402
https://doi.org/10.1021/jp501852b
https://doi.org/10.1063/1.5055064
https://doi.org/10.1063/1.2982247
https://doi.org/10.1063/1.3265957
https://doi.org/10.1021/acs.jpcb.9b05808
https://doi.org/10.1063/1.4901215
https://doi.org/10.1103/PhysRevE.103.062140
https://doi.org/10.1103/PhysRevE.50.3865
https://doi.org/10.1016/j.nocx.2022.100085
https://doi.org/10.1088/0034-4885/68/6/R03
https://doi.org/10.1063/1.2393238

