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Topological defect coarsening in quenched smectic-C films analyzed using artificial neural networks
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Mechanically quenching a thin film of smectic-C liquid crystal results in the formation of a dense array
of thousands of topological defects in the director field. The subsequent rapid coarsening of the film texture
by the mutual annihilation of defects of opposite sign has been captured using high-speed, polarized light
video microscopy. The temporal evolution of the texture has been characterized using an object-detection
convolutional neural network to determine the defect locations, and a binary classification network customized
to evaluate the brush orientation dynamics around the defects in order to determine their topological signs. At
early times following the quench, inherent limits on the spatial resolution result in undercounting of the defects
and deviations from expected behavior. At intermediate to late times, the observed annihilation dynamics scale
in agreement with theoretical predictions and simulations of the 2D XY model.
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I. INTRODUCTION

Topological defects, which are stable disclinations or dis-
locations in ordered physical systems, are typically formed
as a result of spontaneous symmetry breaking during phase
transitions [1,2]. The formation and evolution of such de-
fects, which have been predicted, and in some cases observed,
in such diverse contexts as cosmology [3] and condensed
matter [4], is a classical phenomenon that has been studied
in many physical systems, including thin magnetic films [5]
and superfluids [6]. Liquid crystals (LCs) are a particularly
convenient medium in which to study the behavior of such
defects experimentally, with disclinations easily visualized in
both the nematic and tilted smectic phases [1]. The structure
and dynamics of topological defects in quasi-two-dimensional
liquid crystals is broadly reviewed in [7].

Fluid smectics are fundamentally interesting because they
can be drawn into extremely thin, freely-suspended films of
the order of a few molecular layers thick, allowing the study
of physics in two dimensions (2D) [8–10]. In the smectic- A
(SmA) liquid crystal phase, the long axes of the molecules
are oriented, on average, along the layer normal, while in
the smectic-C (SmC) phase they are tilted from the layer
normal, breaking the axial symmetry of the SmA phase and
introducing topological complexity. The topology of freely-
suspended SmC films may be described by projecting the
average molecular long axis (the director) onto the plane of
the layers, defining a vectorial orientation field called the
c-director. When these films are viewed in reflection un-
der crossed polarizers, this orientation field typically creates
a schlieren texture, with characteristic, crosslike extinction
brushes centered on any topological defects [11].

The visual appearance of defects in SmC films depends,
in general, on their topological strength, the illumination
conditions, and the relative locations and orientations of the
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other defects [12]. Several experimental studies of SmC defect
dynamics have considered films with only a small number of
defects [13–16]. When there are only a few defects in the field
of view, and they are well separated, they can either be iden-
tified manually or tracked automatically by cross-correlating
the images with synthetically generated templates of model
defect textures [14].

However, in dense arrays of topological defects, such as
those generated in the quenching experiments described here,
the orientation fields around the defects produce irregular and
complex schlieren textures in polarized light, making detect-
ing and tracking the defects using the previously implemented
techniques impractical. Machine learning has been shown to
be a useful tool enabling object detection in images obtained
in such diverse areas as solid-state physics [17], cellular bi-
ology [18,19], and in protein folding experiments [20]. We
shall demonstrate here that deep learning can be used to solve
the seemingly intractable problem of detecting topological
defects in dense, two-dimensional arrays in LC films.

The analysis of coarsening dynamics in LC systems with
large numbers of densely-packed topological defects has been
found historically to be challenging in both experimental and
numerical studies because of the practical difficulty of detect-
ing the defects. The coarsening dynamics of model 2D SmC
films with high defect densities have been studied extensively
using simulations [21–25]. Experimental studies of defect dy-
namics in thin, quenched SmC films were reported by Muzny
[26], who described the basic phenomenology of quenching,
proposed a mechanism for defect generation, and measured
the approach dynamics of defect pairs and the decay of defect
number with time following the quench.

In more recent experiments [27], high-speed video mi-
croscopy was used to capture the textures of mechanically
quenched smectic-C films with much better temporal resolu-
tion than in Muzny’s experiments. A preliminary analysis of
the evolution of the observed arrays of topological defects us-
ing a convolutional neural network (CNN), a type of artificial
neural network that is ideal for image analysis, demonstrated
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the utility of machine learning but also revealed the limitations
imposed by training the network using simulated images, dis-
cussed further below.

In the present study, we analyzed the same experimen-
tal images but using a newer CNN trained on experimental
rather than simulated images to determine the locations of
the defects. The network was able to predict the defect lo-
cations starting at earlier times and with a much higher
degree of accuracy than before, with measurements verified
by comparison with manually determined (human-annotated)
coordinates. In addition, a binary classification network was
trained to distinguish between defects of opposite topological
sign, allowing a comprehensive analysis of the coarsening
dynamics in these films. The observed decay of defect density
with time was compared with the XY model, with the pre-
dictions of a model proposed by Yurke and coworkers [21],
and with the results of numerical simulations [22]. At early
times (t < 0.4 s), when the defect density is high, many of
the defects have a separation that is smaller than the imaging
and machine learning spatial resolution limits, and the number
of defects counted is lower than theoretically predicted. At
later times, the defect density exhibits power-law decay with
an exponent of 0.9, in agreement with theory.

II. EXPERIMENT

In the quenching experiments, smectic-C films are drawn
across a circular aperture in a glass cover slip set in the
opening of an otherwise airtight chamber. Increasing the air
pressure in the chamber causes the originally flat film to
be distorted into a dome. When the pressure is suddenly
released, the film collapses rapidly to being planar again, a
mechanical quench that increases the hydrostatic pressure in
the film, causing a short-lived transition to the smectic- A
phase. The subsequent return to the smectic-C phase results in
the spontaneous appearance of thousands of 2π disclinations,
topological defects of unit strength (i.e., with winding num-
bers ±1), in the film. This initially dense array of defects then
coarsens by the mutual annihilation of defects of opposite sign
[26]. The experimental setup is shown in Fig. 1 and described
in further detail by Green [28]. The evolution of the defect
texture was captured using a high-speed video camera (Phan-
tom v12.2) with a spatial resolution of 1104 × 800 pixels and
a bit depth of 16, operating at 500 fps.

The liquid crystal material used in these experiments was
PM2, a 50:50 mixture by weight of SYNTHON ST00552 (2-
(4-n-hexyloxyphenyl)-5-n-octylpyrimidine) and SYNTHON
ST00557 (5-n-decyl-2-(4-n-octyloxyphenyl)pyrimidine) [29],
with the phase sequence SmC 52◦C, SmA 68◦C, N 72◦C,
Iso [30]. Films 5 mm in diameter and 20–30 molecular layers
(60–90 nm) thick were drawn in the SmC phase at room tem-
perature and the quenching experiments conducted at 35◦C.

The c-director field in a ∼0.6 mm2 region of the film
was visualized using polarized reflection microscopy. Under
crossed polarizers, the film displays a schlieren texture, with
each defect core surrounded by four alternating dark and
light brushes. In order to be able to visualize the coarsening
dynamics at high frame rates, the average intensity of the
image was increased by decrossing the polarizers. This halves
the number of brushes around each defect, transforming the

FIG. 1. Schematic of the film quenching experiment. A thin
smectic-C film drawn across a small, circular opening in a sealed
chamber is temporarily deformed to a dome by increasing the cham-
ber pressure. A sudden release of the excess pressure then causes
the film to return rapidly to its original planar geometry, a mechan-
ical quench that results in the spontaneous formation of topological
defects in the director field (inset). The defects are visualized using
polarized reflected light microscopy and the coarsening of the defect
texture recorded using a high-speed video camera.

crosslike brush textures to bow ties [31]. At the earliest times
that defects can be observed following a typical quench, the
average separation between defects is typically around 20μm.
Defects of opposite sign exert long-range 1/r attractive elastic
forces on one another, while those of the same sign repel,
interacting like infinite lines of electrical charge [26]. The
defects also exhibit Brownian motion, diffusing laterally, in
the plane of the film [13]. Over time, neighboring +1 and
−1 defects approach each other and mutually annihilate,
with most of the defects disappearing within a few sec-
onds of the quench. A typical coarsening sequence is shown
in Fig. 2.

III. TOPOLOGICAL DEFECT DETECTION

A rigorous analysis of the dynamics of topological de-
fects in smectic-C films requires identifying their topological
signs and tracking their locations as a function of time.
Conventional feature-detection algorithms that use intensity
thresholding or edge detection of object boundaries have been
successfully used in many investigations of soft materials to
detect features with regular shapes and well defined bound-
aries, such as colloidal particles in suspension [32] and islands
and droplets on smectic films [33–36]. Detecting topological
defects in liquid crystals is, however, a much more challeng-
ing task because the defects are identified principally by the
diffuse schlieren textures surrounding them, which are typ-
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FIG. 2. Defect coarsening in a mechanically quenched SmC film.
The topological defects are located at the points from which the pairs
of light and dark brushes (resembling bow ties) emanate. Thousands
of +1 and −1 defects are generated during a typical quench and
these mutually annihilate over time. The polarizer and analyzer are
decrossed by 60◦. The intensities of these images, which show only a
small part of the film, have been normalized as described in the text.

ically irregular, have no well-defined boundaries, and vary
in appearance. Quenching a film generates thousands of de-
fects, resulting in a complex schlieren texture with defect core
separations of as little as a few microns in our experiment.
Accurate analysis of such textures is not feasible using our
previous methods, in which we detected and tracked well-
separated defects in equilibrium films by cross-correlating
the experimental images with synthetically generated defect
templates to determine their locations and brush orientations
[14].

We recently demonstrated the utility of modern deep learn-
ing networks for defect detection, using the YOLOv2 network
[37] trained on a large set of computed images of defect
textures generated by Monte-Carlo simulations of the 2D XY
model [27]. Although these training images were modified to
emulate the experimental images more closely, nevertheless,
several features present only in the experimental images regu-
larly caused the trained model to predict false positives during
analysis. For example, because dark speckles of the kind seen
in many of the experimental images were not present in the
training images, the network was not able to recognize these
as being artifacts rather than defects. In addition, the black

mask of the microscope field stop was not considered in the
computed training images, resulting in false positives along
the edges of the field of view.

In the present analysis, we used YOLOv5, a deep learn-
ing network designed for fast object detection [38], that was
trained on real experimental images, allowing us to achieve
a much higher detection accuracy than before. YOLOv5 is
(at this time) the newest iteration of YOLO, a lineage of
neural networks that perform both bounding box predictions
(object localization) and classification tasks for every object in
the image, in a single instantiation of the network. Technical
details of the neural network are given in Appendix A.

A. Image processing

Images captured during nine different quenching experi-
ments were analyzed. To compensate for variations in the
brightness and contrast of these data sets, all of the images
were normalized to have the same average intensity and dy-
namic range. This ensured that all of the images input to
the neural network had similar statistical properties, making
it easier for the correct weights to be developed in training.
This reduced the number of false positives and significantly
reduced the number of training epochs required. A typical
example of image normalization is shown in Fig. 3.

B. Model Training

The neural network was trained on experimental data, us-
ing a set of 141 images chosen at random from different film
quenching experiments and divided into training and testing
sets in the ratio 80:20. Gradient-descent calculations were
carried out using the training set and the model performance
was logged every cycle using the testing set. The locations of
the defects in the training data (the ‘ground truth’ locations)
were determined manually.

Training was carried out using Google’s cloud research
computing service, the Google Colaboratory, on an NVIDIA
Tesla T4 GPU with 16 GB of memory [39]. Four YOLOv5
models of different sizes (listed in Appendix A) were trained
for 500 epochs each on the same training set, using a batch
size of 16. Model checkpoints (weights) were stored every
epoch and the checkpoint yielding the highest mean average
precision (mAP) on the testing set was selected. Choosing
the optimal checkpoint of the neural network in this manner
helped to prevent overfitting, which is generally a concern
when the training data sets have fewer than 500 images, as
in our case.

YOLOv5 uses several data augmentation techniques that
further reduce the possibility of overfitting by changing the
appearance of the training images in order to increase ar-
tificially the amount of training data. These modifications
include carrying out vertical and horizontal flips, cropping,
rotation, and a new method introduced with YOLOv5 called
mosaic augmentation that meshes sections of multiple images
together. In addition, the image quality may be altered in-
tentionally using randomized exposure, saturation, or blurring
[38].

Square bounding boxes were used to define the defect
core locations. While keeping the bounding boxes small has
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FIG. 3. Normalization of experimental images. (a) Raw exper-
imental image (t = 0.4 s). (b) Normalized image. The raw images
extracted from the quenching videos were normalized to have the
same mean image intensity and dynamic range. This procedure
ensured that the statistics of all of the experimental images from
different quenching events would match those of the training set.

the benefit of increasing the precision of the detections and
enabling defect detection even when the defects are close
together, this also reduces the number of pixels associated
with each defect, making training more difficult. The smallest
bounding box size that our network could train on reliably was
found to be 11 × 11 pixels.

C. Neural Network Performance

The performance of the four trained neural network models
was evaluated using a control set of 48 normalized test images
which were not included in the training data and hence had
never been ‘seen’ before by the network. The detection results
were compared to manually obtained ‘ground-truth’ locations
using YOLOv5’s built in performance metrics. Of particular
significance are the mean Average Precision (mAP) values
and the precision recall (F1) scores, since these metrics con-
tain information about both false negatives and false positives
[40]. The model with the highest recorded mAP score was the
smallest model, YOLOv5s, which achieved a mAP of 0.970
and a peak F1 score of 0.96. The metrics computed for the
various models are summarized in Table I in Appendix B.

Although using image cross-correlation to identify defects
yielded accurate results in experiments where the density

of defects in the film was low [14], defect detection using
this method becomes intractable in films with high defect
densities, as is the case at early times in the quenching ex-
periments described here. Cross-correlation is also sensitive to
the presence of artifacts in the image, such as the liquid crystal
deposits on the film chamber window visible as black speck-
les in most of our experimental images of quenched films.
The resulting false predictions cause this method to have a
low mAP, typically around 0.5 (see Table I in Appendix B).
Deep learning networks, in contrast, can be trained to ignore
such artifacts. The machine learning method developed by
Minor et al. using YOLOv2 trained on synthetic images to
analyze the quenching experiments occasionally misidentified
the black speckles in the experimental images as topological
defects [27], and the highest mAP achieved with this approach
was around 0.8. In the present study, the YOLOv5 network
trained on real images that included speckles and the edges of
the field stop obtained significantly better mAP scores.

IV. DEFECT TRACKING AND SIGN CLASSIFICATION

A. Trajectory Linking

Once the defect locations had been determined in each
frame, linked trajectories were constructed using TrackPy
[41], a Python implementation of an algorithm originally de-
veloped for tracking colloidal particles [32]. The ‘memory’
feature of this program enables complete trajectories to be
constructed even when there are occasional missed detections.

Visual comparisons of the computed defect trajectories
following several different quenching events with manually
determined defect locations demonstrated broad agreement,
providing validation of the predictions of the neural network.
A typical example of computed defect trajectories is shown in
Fig. 4.

Two key assumptions about the defect dynamics were
made in linking the defect locations to form trajectories. First,
it was assumed that all of the topological defects present in
the field of view were created at the time of the quench.
Second, we assumed that defects of opposite topological sign
annihilate and disappear in a pairwise manner. Defects that en-
tered or left the frame during the coarsening experiment were
exceptions that required special treatment when constructing
their trajectories.

B. Defect Sign Classification from Brush Orientation Dynamics

When SmC films at equilibrium are observed in real time
in the polarized light microscope, the signs of any topological
defects may be readily determined by judiciously varying
the decrossing angle of the polarizers and rotating the film.
This procedure cannot, however, be followed in the quenching
experiments, where most of the defects disappear less than a
second after the quench occurs. The +1 and −1 defects are
generally very similar in appearance and distinguishing them
in static images alone is difficult. Near their cores, both kinds
of defect resemble bow ties when the polarizers are decrossed
but their orientations and the schlieren textures around them
are highly variable, depending in a nontrivial way on their
locations relative to other defects in the film. We have nev-
ertheless been able to solve this fundamental classification
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FIG. 4. Defect trajectories in a quenched film as determined
by the trained neural network (green tracks) compared with defect
locations identified manually (white crosses) every 500 frames (at
1 second intervals). The trajectories, which were determined over
the course of 3000 frames (an elapsed time of 6 seconds), are
superimposed here on the final image in the video sequence, with
the surviving +1 and −1 defects shown respectively in red and
blue. The dark speckles are liquid crystal droplets deposited on the
chamber window by previously ruptured films. The neural network
was trained to ignore these artifacts. The polarizer/analyzer settings
are as in Fig. 3.

problem by using their characteristic orientational dynamics
to discriminate between the +1 and −1 defects.

First, the orientations of all of the defects, by which we
mean the orientations of the bright brushes in the schlieren
texture around the defects, were determined in every video
frame. This was achieved by the previously mentioned tech-
nique of cross-correlating the region around every defect core
with small, synthetic defect templates generated at different
angles. When the computed defect orientations are plotted as
a function of time, as in the example of Fig. 5, it is immedi-
ately apparent that the defects fall into two classes. The brush
orientations of the first class of defect show little variation
over time, with only small azimuthal fluctuations of less than
10◦. The mean orientation of these defects was found, in all
of the quenched films, to be ∼135◦. The brush orientations of
the second class of defects, in contrast, are not confined to a
particular azimuth and vary substantially over time.

Since +1 defects have full axial (C∞) symmetry, their
brush orientation is relatively insensitive to thermal orienta-
tion fluctuations of the c-director. Defects of strength −1,
on the other hand, are characterized by alternating bend
and splay distortions of the surrounding c-director field and
have only twofold (C2) symmetry. A consequence of this
anisotropy is that the appearance of the −1 defects is ef-
fectively more sensitive to thermal fluctuations and to their
environment, responding readily to reorientations of the sur-
rounding c-director field caused, for example, by distant
defect annihilations or resulting from spatial rearrangements

FIG. 5. Bright brush orientation as a function of time for a typical
pair of annihilating defects. Quenching occurs at t = 0 and the pair
annihilates at t = 9.6 s. Over the lifetime of the pair, the brushes
around the +1 defect (red trace) fluctuate about an azimuth of 135◦

but do not change their average orientation significantly. The −1 de-
fect (blue trace), in contrast, is more orientationally mobile. Initially
oriented at 75◦ in this example, the brushes soon rotate to around
20◦, where they remain until annihilation. The insets show snapshots
of the defects shortly after the quench (t = 0.5 s) and shortly before
annihilation (t = 8 s). The variations in brush orientation over time
are evaluated by a binary classification network in order to determine
the topological signs of the defects.

associated with the approach of other defects in the film.
The orientational mobility of the brushes around −1 defects
was previously reported by Wachs [15], who observed that
in thin films, an isolated −1 defect typically reorients shortly
before annihilating with a +1 defect, maintaining the con-
tinuity of the director field along the line connecting the
two defects. The appearance of the +1 defect, in contrast,
seems to be relatively unaffected by the impending annihi-
lation. This phenomenon has recently also been observed by
Missaoui et al. [16] in thick SmC films and modelled theoret-
ically by Tang and Selinger [42]. We conclude, therefore, that
the first observed class of defects in our experiments has topo-
logical charge +1 and the second class topological charge −1.

Second, determination of defect sign on the basis of the
brush orientation dynamics was achieved using a custom
binary classification network comprising a fully connected
model with one hidden layer. The hidden layer adds the
complexity necessary to account for nonlinearities in the
relationship between brush orientation dynamics and defect
strength. The orientational data were reduced to three in-
put features for each defect: the mean brush orientation, the
standard deviation of the orientation, and the defect lifetime.
The model determined the probability of each defect having
strength +1 or strength −1. Defects with readily identifiable
strengths were selected manually to generate training data
for the model. 74 such defects were labeled in total, 60 for
training and 14 for testing. The model was trained for 1000
epochs.
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FIG. 6. Defect locations predicted by the neural network and
classified according to topological sign. The image shows a SmC film
six seconds after quenching, with the defects color-coded according
to the topological sign predicted by the custom binary classification
network. The defect locations determined by the deep learning model
proved generally to be highly accurate. In this example, every defect
was detected: 18 of strength +1 and 21 of strength −1. The film
diameter is 5 mm, much larger than the image, the black borders
here corresponding to the edges of the microscope field stop. The
polarizer/analyzer settings are as in Fig. 3.

V. RESULTS

A. Detection and Classification of Defects

As we have seen in Fig. 4, the defect locations determined
by YOLOv5 are in very good agreement with those deter-
mined manually. Starting at early times, soon after the quench
(t < 1 s), the network even identifies defects in high-density
regions that are missed by visual inspection. The numbers of
+1 and −1 defects identified in each video frame were found
to be roughly equal, as expected. Small deviations from parity
are inevitable since only a finite region of the film is imaged,
causing some of the partner defects to be located outside the
field of view at any given time. Visual inspection confirmed
that the number of false positives in any image was typically
very small, even near the field stop defining the edges of the
field of view or in the presence of artifacts in the image.
An example of defects detected by the neural network and
classified by topological sign is shown in Fig. 6.

B. Coarsening Dynamics

The decay of N (t ), the number of topological defects,
as a function of time measured in nine different quenching
experiments showed similar behavior. Defects could only be
detected starting about 0.2 seconds after the quench was ini-
tiated, when the previously distorted film was flat and in
focus again. In every experiment, N was observed to decrease
slowly at first and then more quickly, decaying algebraically
at longer times, with a roughly constant exponent. A measure-
ment of N (t ) is shown in Fig. 7. Further examples are shown
in the Supplemental Material [43].

FIG. 7. Defect number vs time in a quenched smectic-C film.
The large number of topological defects generated in a typical
quenching experiment decreases over time by the mutual annihilation
of +1, −1 defect pairs. Images of the film were analyzed starting
when the film came back into focus, about 0.2 seconds after the
mechanical quench. A fit with the diffusive model (green), which
describes algebraic decay of the defect number N with an exponent
of 1, predicts coarsening at long times that is faster than observed.
The logarithmic correction term of Yurke’s model (blue) results in a
slower annihilation rate that closely approximates the experimental
measurements. Power-law decay with an exponent of 0.9, as sug-
gested by the simulations of Jang et al., is in accord with the Yurke
model and matches the data similarly well (red). The experimental
data is duplicated here for visual clarity.

The overdamped, continuous XY model describing locally
interacting, classical spins in 2D predicts an inverse power-
law relation, N ∝ t−1 [1]. It is readily apparent from the
graph, however, that the observed decay occurs more slowly
overall than predicted by this model and deviates significantly
from a simple power law at early times. Yurke et al. carried
out computer simulations of the 2D XY model and described
the observed coarsening behavior with N ln N ∝ t−1, the log-
arithmic correction accounting for the effective drag on the
defect cores [21]. Jang et al. also carried out numerical simu-
lations including these frictional forces, finding that N varied
as N ∝ t−0.9 [22], in agreement with the asymptotic scaling
behavior predicted by the Yurke model. As is evident from
Fig. 7, our experimental data are fit well by the Yurke and
Jang predictions at intermediate and long times (t � 0.4 s).

At early times, between 0.2 and 0.4 seconds after the
quench, the observed dynamics deviate significantly from
power-law behavior. Extrapolating the asymptotic slope to
early times leads to the prediction that at 0.2 seconds there
should be around 800 topological defects, about 200 more
defects than were detected by the neural network. This dis-
crepancy is attributed to the undercounting of defects that are
closer than about 10μm (11 pixels), which is the resolution
limit for detection by the trained network. This limit is also
manifest in defect pair correlation functions computed from
the images, which are identically zero for defect separations
closer than 10μm, as shown in Fig. 10 in Appendix C. Com-
paring the pair correlation curves derived from experimental
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data with those computed from simulations, also plotted in
Fig. 10, supports the notion that the neural network is unable
to discern topological defects that are very close together in
the experimental images, resulting in undercounting at early
times when the defect density is highest.

Finally, it has been suggested that there are circumstances
in which the 2D XY model would be expected to exhibit
exponential rather than power-law decay at early times (see,
for example, Refs. [44,45]), which would clearly result in
a knee of the kind shown in the plot of Fig. 7. However,
the inherent uncertainty in our early-time data precludes any
systematic consideration of this possibility.

VI. SUMMARY

In summary, we have demonstrated a deep-learning ap-
proach that allows us to detect topological defects in thin
smectic-C liquid crystal films with a high level of accuracy.
We have also developed a rigorous method for classifying the
topological signs of the defects, using the distinctive orienta-
tional dynamic behavior of the director fields around them. A
binary classification network trained to perform this task gives
predictions consistent with the known physical properties of
such arrays of defects, for example that mutual annihilation
only occurs between defects of opposite sign and that in any
given region of the film, the numbers of +1 and −1 defects
are expected to be approximately equal.

We compared our experimental observations of the defect
coarsening dynamics in films with several theoretical models.
At long times, the number of defects was observed to decrease
more slowly than predicted by the purely diffusive XY model,
showing instead the power-law behavior with an exponent
of 0.9 in agreement with the model of Yurke et al. and the
simulations of Jang et al. The anomalously slow annihilation
rate observed at early times is attributed to the undercounting
of defects, an unavoidable consequence of the inability of
the neural network to resolve defects with separations smaller
than 10μm.

The deep-learning method described here could be im-
proved by designing custom networks explicitly for detecting
topological defects, which could allow a reduction in the
number of required layers in the neural network, making
defect detection faster and more transparent. The kind of
machine learning implemented here could readily be applied
to other detection tasks in soft materials, such as tracking a
variety of inclusions in smectic films, colloidal particles in
suspension, and bacterial cells in fluid media, or could be
used to analyze the evolution of bubbles in foam coarsening
experiments.
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FIG. 8. Architecture of the YOLOv5 neural network. YOLOv5
comprises three parts, shown in the diagram. The model backbone is
a Cross Stage Partial Network (CSPDarknet) for feature extraction.
A Path Aggregation Network (PANet) combines these features etc.

APPENDIX A: THE NEURAL NETWORK

The architecture of YOLOv5, the neural network used
in this study, is shown in Fig. 8. Unlike previous versions
of YOLO that were developed in the Darknet framework,
YOLOv5 is built using the PyTorch framework in Python.
The backbone uses a Cross Stage Partial Network (CSPNet)
to compress predicted features into fewer channels. A Spatial
Pyramid Pooling Network (SPPNet) restructures the input
to bypass fixed-size input constraints. The extracted features
from the YOLOv5 backbone are then passed to a Path Aggre-
gation Network (PANet) for feature fusion. Finally, the fused
features are passed to the output layer (also called the YOLO
layer), where the detection results are computed.

There are four popular YOLOv5 model sizes, with increas-
ing numbers of layers: YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. We measured the training time, mAP value, and
peak F1 score of all four models. The training times, shown in
Table I, ranged from 50 minutes for the smallest model to 160
minutes for the largest.

APPENDIX B: PRECISION-RECALL CURVE AND F1 PLOT

In order to determine whether a detected result is a true
or false positive, an intersection over union (IoU) of the de-
tection bounding box with the ground truth bounding box is
calculated. If the IoU ratio is above a prespecified confidence
threshold, the detection is classified as a true positive, while
if it is below the threshold, it is deemed a false positive.
The precision-recall (PR) curve is created by sampling re-
sults from a range of confidence threshold values, usually
from 0.5 to 0.95. This is the range used, for example, by
the Microsoft COCO data set, a large annotated collection
of images with only a few sizable objects per image [46]. In
our case, in contrast, there could be hundreds of defects per
image with bounding box sizes as small as 11 × 11 pixels.
For bounding boxes as small as these, small pixelwise dif-
ferences between manually created bounding boxes and those
determined by YOLOv5 may impact the IoU dramatically. As
a result, the likelihood of a true detection producing an IoU
below 0.5 is relatively high. To obtain a better measure of
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FIG. 9. Performance of the YOLOv5 model trained to detect
topological defects. (a) The precision-recall curve yields a mean
Average Precision (mAP) of 0.97, corresponding to a high degree of
confidence in defect detection by the trained network. (b) The highest
value on the F1 curve (the F1 score) was 0.96. The best F1 score was
obtained at a confidence threshold of 0.27.

the network’s results, we extended the threshold range from
0.0 to 0.95.

The mean average precision (mAP) is defined as the area
under the precision-recall (PR) curve [Fig. 9(a)], a plot of
the ratio of true positives to all detections (precision) vs
the ratio of true positives to all ground truth values (recall).
As seen in Table I, the smaller model sizes were found to
yield slightly better mAP scores in this study, with the small-
est model, YOLOv5s, achieving the highest mAP score of
0.970, marginally better than the score of 0.960 achieved by
YOLOv5x, the largest model we looked at. These results in-
dicate that the additional layers present in the larger YOLOv5
models do not result in better defect detection.

The F1 score is the harmonic mean of the precision and
recall values, calculated for a range of confidence thresholds.
Since every threshold value has an associated F1 score, the
threshold that yields the highest F1 score is routinely reported.
As is evident from Fig. 9(b), the highest F1 score (of 0.96)
occurs when no detections are ignored, demonstrating that
our model is unlikely to detect false positives or make double
detections (two detections of the same defect). The F1 score

TABLE I. Neural network model training time and defect de-
tection accuracy given by the mAP and F1 metrics. Shown are the
metrics for topological defect detection using different YOLOv5
models, as well as those achieved when cross-correlating the exper-
imental images with synthetic defect templates and using YOLOv2
trained using synthetic images.

Model Training Time mAP F1 Score

Cross-Correlation – 0.498 0.68
ForLL YOLOv2 1.1 hours 0.818 0.81
RealData11×11 YOLOv5s 0.8 hours 0.970 0.96
RealData11×11 YOLOv5m 0.9 hours 0.967 0.96
RealData11×11 YOLOv5l 1.4 hours 0.963 0.96
RealData11×11 YOLOv5x 2.6 hours 0.960 0.96

drops off rapidly above a confidence threshold of ∼0.70 and
falls to zero before a threshold of 0.95 can be reached. This is a
reflection of the sensitivity of the F1 score to small differences
of a few pixels in bounding box locations and/or dimensions
from the values manually determined in the control set. The
highest F1 score for all four model sizes was 0.96, as shown in
Table I. Also reported in the Table are the performance metrics
for defect detection carried out both using template image
cross-correlation and in the previous study using YOLOv2
[27].

APPENDIX C: DEFECT PAIR CORRELATIONS

The normalized pair correlation (radial distribution) func-
tion g(r), a measure of the average defect density as a function
of distance from any given defect, has been computed from the
experimental data as a function of time. In these calculations,
we used a radial bin size of 3μm and the correlations were
averaged over 10 frames (�t = 0.02 s) in order to reduce the

FIG. 10. Sign-agnostic topological defect pair correlation func-
tions computed from experimental and simulation data shortly after
a quench (t = 0.2 s). The correlation function derived from the sim-
ulation (blue) grows continuously from zero, while the experimental
curve (red) is identically zero below 10μm, the resolution limit for
defect detection by the neural network.
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statistical noise. We show in Fig. 10, by way of example, the
sign-agnostic defect pair correlation function at t = 0.2 s for
the quench event analyzed in this paper. This correlation func-
tion is identically zero below 10μm because no topological
defects closer than than this distance were identified by the
neural network. This is an artifact of the detection process:
defects with separations smaller than the bounding box size
of 11 × 11 pixels (or about 10μm) could not be detected.

A numerical simulation similar to [22] of the evolution of a
large number (∼15,000) of diffusing, interacting topological

charges initially generated with an average density similar to
that observed in the film quenching experiments was carried
out. The pair correlation function derived from the simulated
data, also shown in Fig. 10, is seen to grow continuously
from zero, as expected, saturating at long distances with a
value g(r) = 1. Comparing this to the experimental correla-
tion function confirms that defects in the experimental images
with separations below 10μm are not detected by the neural
network, leading to undercounting at early times following the
quenching event.
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