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Non-Brownian diffusion and chaotic rheology of autophoretic disks

R. Kailasham ® and Aditya S. Khair
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

M (Received 14 October 2022; accepted 29 March 2023; published 27 April 2023)

The dynamics of a two-dimensional autophoretic disk is quantified as a minimal model for the chaotic
trajectories undertaken by active droplets. Via direct numerical simulations, we show that the mean-square
displacement of the disk in a quiescent fluid is linear at long times. Surprisingly, however, this apparently
diffusive behavior is non-Brownian, owing to strong cross correlations in the displacement tensor. The effect
of a shear flow field on the chaotic motion of an autophoretic disk is examined. Here, the stresslet on the disk
is chaotic for weak shear flows; a dilute suspension of such disks would exhibit a chaotic shear rheology. This
chaotic rheology is quenched first into a periodic state and ultimately a steady state as the flow strength is

increased.
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I. INTRODUCTION

An oil (or water) droplet immersed in a surfactant solution
above the critical micelle concentration isotropically emits
swollen micelles from its surface. The diffusiophoretic inter-
action between the droplet and its products of solubilization
could result in spontaneous self-propulsion of the droplet,
through a symmetry-breaking instability [1-6]. This instabil-
ity occurs when the Péclet number (Pe), i.e., the dimensionless
ratio of the strength of advective to diffusive transport of
the products of solubilization, exceeds a critical value. Such
active droplets display varying patterns of motion, including
straight, curvilinear, or meandering, as Pe is increased, before
entering a chaotic regime at high enough values of the Péclet
number [7,8]. The occurrence of chaotic dynamics [9,10]
is intriguing since the fluid flow around the drop is at low
Reynolds number, where nonlinear inertial forces are absent.

In this article, we consider a two-dimensional autophoretic
disk as a minimal model for an active drop (see the
Supplemental Material [11] for the rationale behind this rep-
resentation) and discover two important features about its
dynamics. First, although such particles undergo normal dif-
fusion at long time scales [12], we show that they are not
Brownian due to strong cross correlations in their displace-
ment components. Second, we calculate the motion of an
autophoretic disk in a shear flow field. Here, the velocity and
stresslet of the disk are chaotic at low values of the shear rate,
implying that a dilute suspension of disks would exhibit a
chaotic shear rheology. On increasing the strength of the shear
flow (at fixed Péclet number) the chaos is quenched, such that
the rheology becomes periodic and eventually steady. Thus
we illustrate that external flows have a dramatic influence on
the dynamics of autophoretic disks and, more generally, active
droplets.
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II. MODEL AND GOVERNING EQUATIONS

Our model consists of a circular disk of radius a* that is im-
mersed in an incompressible Newtonian solvent of viscosity
n* at temperature 7*. A steady simple shear flow with shear
rate y* is imposed on the fluid, whose flow obeys the Stokes
equations. The disk isotropically emits solute particles from
its surface at a rate A* and the solute diffusivity is D*. The
uniform solute concentration far away from the disk is C% and
the excess solute concentration with respect to this far-field
value is denoted by ¢* = C* — CZ,. The disk interacts with the
solute particles through a short-ranged potential of character-
istic length b*, which is much smaller than the radius of the
disk [13]. These interactions set up a tangential phoretic slip
velocity, whose magnitude is determined by a mobility param-
eter M* = +kgT*b*? /n*, where kg is Boltzmann’s constant,
and the concentration gradient on the surface of the disk.
The sign of the mobility parameter is positive (negative) for
repulsive (attractive) interactions [14]. Following [15-17], the
scales for length, time, fluid velocity, pressure, and concen-
tration are defined as a*, a*D* /| A* M*|, U* = | A* M*|/D*,
n*U*/a*, and a*|A*|/D*, respectively. It is convenient to
define the scaled emission rate and mobility parameter as
A = A*/|A*| and M = M* /| M*|, respectively. The onset of
phoretic self-propulsion requires AM > 0 [16,18] and we set
A =M =1 henceforth. The intrinsic Péclet number quan-
tifies the chemical activity of the disk and is defined as
Pe = a*| A* M*|/D*?. The dimensionless shear rate is given
by € = y*a*D* /| A* M*|, which can be viewed as a ratio of
phoretic to flow time scales.

The fluid flow and solute concentration fields around
the autophoretic disk placed in an ambient shear flow are
calculated by simultaneously solving the transient advection-
diffusion equation for the solute concentration and the
quasisteady Stokes equations

dc 2 2
Pe §+v-Vc =V, Vp=Vaw, V.v=0, ()
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with 7, v, and p denoting the dimensionless time, velocity, and
pressure, respectively, and subject to (dc/dr)(1,6,1) = —A,
and the attenuation condition c(r — oo, t) — 0. The neglect
of the time derivative of the velocity field in (1) is justified
provided that the ratio of the kinematic viscosity of the fluid
to the solute diffusivity is large [11], which is typically true for
active droplet systems [1,3,8,19]. In numerical computations
we employ a finite size of the computational domain, R,
and impose the far-field Dirichlet condition ¢(r = R,) = 0.
Considering a frame of reference attached to the centroid of
the disk, the slip velocity at the surface of the disk is given by
v(r = 1,60) = vy = MV, with the surface-gradient operator
defined as Vg = (1/r)ey0/00, where ey is the unit vector in
the tangential direction, 6. The far-field velocity is given by
v(R,,0) = —U + €eye,, where e, is the Cartesian unit vector
in the x direction, y is the coordinate in the direction of
the shear gradient, and the phoretic velocity U(¢) may be
evaluated from the slip velocity using the reciprocal theorem
[20,21] as

2

ue) = —L vdf. 2)

21 0

The external shear acts to distort the solute field by contribut-
ing to the velocity field v, which subsequently also affects
the phoretic velocity U(¢). The time-dependent base state,
co(r, 0, t), corresponding to the state of zero phoretic motion
[U(t) = 0] is computed by solving the transient advection-
diffusion equation subject to an initial condition of ¢y (7, 8, t =
0) = 0 over a duration 1, at specified Pe and €. The value of
the base state at #, is perturbed, c(r = 1,0, =0) = co(r =
1,0, 1) — per cos 6, with [Sper] < 1, and used as the initial
condition while solving Eq. (1). A spectral element solver, de-
scribed in detail in [17,22], is used for the numerical solution
of (1). The solution methodology for an active disk suspended
in a quiescent fluid (¢ = 0) is slightly different [11]. A value
of R, = 200 has been used in all the simulations, after estab-
lishing convergence [11]. Using a procedure analogous to that
in [23], the stresslet induced by the two-dimensional disk is
derived as

2
S = —2/ [rvg + vsn]do, 3)
0

where n = e, is the unit outward normal on the surface of the
disk. The expressions for the various components of the 2 x 2
stresslet tensor have been derived in [11]. Since Sy, and S, are
identical in magnitude and differ only by sign, we only present
results for Sy, and Sy, in this paper. In a dilute suspension of
noninteracting autophoretic disks, S,, would contribute to the
effective shear viscosity of the suspension.

III. RESULTS

Results for an autophoretic disk suspended in a quiescent
fluid (¢ = 0) are presented first (Fig. 1) to provide context for
our findings on disks placed in shear flow. The base state for
a two-dimensional disk has no fluid flow and time-dependent
solute diffusion, which we evaluate by numerically solving
the transient diffusion equation. Our approach is in contrast to
[12,24] who assume a steady base state, in which the purely
diffusive concentration field is set to zero at a finite distance
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FIG. 1. Dynamics of a two-dimensional autophoretic disk in a
quiescent fluid (¢ = 0) at Pe = 20. (a) Trajectory in the x — y plane;
solid and hollow circles denote the beginning and end of the tra-
jectory, respectively, (b) elements of the mean square displacement
tensor f(7), (c) velocity autocorrelation, and (d) stresslet component
autocorrelation. The black dotted line in (c¢) has the functional form
fiexpl—XAit] + foexp[—A,t], with the parameter values given by
fi =0.64, A, = —0.009, f, = 0.60, and A, = —0.0007.

R,. In [11] we show that both approaches yield qualitatively
similar dynamics in the chaotic regime; however, there are
important differences regarding the onset of self-propulsion.

An autophoretic disk in a quiescent fluid undergoes qualita-
tive changes in its trajectory as the Péclet number is increased,
evolving from a stationary state to one of steady linear motion,
followed by a meandering regime that transitions via an inter-
mittency scenario to chaotic motion at sufficiently large Pe
[11,12]. The chaotic dynamics is characterized by a transition
to diffusive scaling of the mean square displacement of the
particle. We choose a representative value of Pe = 20 that is
deep in the chaotic regime. The mean square displacement
tensor of the disk at a lag time 7 is B(7) = ([r(t + 1) —
r(t)][r( + ) — r(t)]), where r(t) denotes the instantaneous
position of the particle at time ¢ and the angular brackets rep-
resent the average evaluated over the trajectory of the particle.
The off-diagonal components of this 2 x 2 tensor are identical
and the scalar mean square displacement is given by the trace
of B,i.e., MSD = tr(B).

It is seen from Fig. 1(b) that, even though MSD ~ t at
long times, seemingly indicative of Brownian motion, the
displacement cross correlation Sy, does not vanish, which
is markedly different from a passive Brownian particle. To
represent the data on logarithmic axes, we plot the absolute
values of the off-diagonal term, B,,. The growth of g,, with
respect to the lag time proceeds with abrupt dips, which
have been observed by Suga et al. [7] in their experiments
on active liquid crystal droplets swimming in a surfactant
solution in a two-dimensional geometry. While the overall
MSD for the liquid crystal droplets oscillates in time it is the
off-diagonal component of the MSD tensor which displays
an oscillatory behavior in the present work. Suga et al. [7]
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observe that the oscillation in the MSD corresponds to a case
where the droplet traces out multiple “figure 8” or looplike
patterns. An examination of the disk trajectory in our work
[Fig. 1(a)], however, reveals that such looplike patterns con-
stitute only a small fraction of the overall trajectory. There
is an early-stage ~73 scaling observed for Bxy whose origins
remain unclear. The overall MSD of the autophoretic disk
in a quiescent fluid is therefore not oscillatory, but rather
exhibits the ballistic-diffusive transition observed previously
in numerical investigations [5,12]. The off-diagonal compo-
nent of the MSD tensor for self-propelled objects has not
been examined widely in the literature. Ten Hagen ef al. [25]
consider an active Brownian particle (ABP) model in which
the orientation of the particle has a deterministic component
stemming from a finite angular velocity, as well as a stochastic
component. They present a detailed derivation for the mean
square displacement of the particle. Following a similar route,
it may be shown that ,, is zero in the absence of an angular
velocity, but does not vanish in general for finite values of the
angular velocity. This agrees with the intuition that the x and y
displacements of a particle moving in two dimensions would
be correlated in the presence of a finite, deterministic angular
velocity. The velocity and stress autocorrelations are eval-
uated as C,(t) = ({U@) - U@t +1))/(JU®)|)*> and Ci(1) =
(s(t)s(t + 7))/ {s*()), respectively, where s represents either
Syy or S,,. We observe that C, in Fig. 1(c) is well approxi-
mated by a sum of two exponentials. The autocorrelation of
both the xy and yy components of the stresslet decay nearly
identically, going to zero at T ~ 300 [Fig. 1(d)]. This is to be
expected because there is no ambient flow that would lead to
a distinction between the components of the stresslet.

A widely used reduced-order framework for self-propelled
microscale objects is the ABP [26-28], wherein a particle
is assumed to move with a constant speed, while its instan-
taneous orientation is selected from a Gaussian white noise
distribution. Peruani and Morelli [29] (hereafter PM) pre-
scribe a model for a self-propelling particle in two dimensions
which allows for fluctuations in both the magnitude and direc-
tion of velocity. By assuming that the instantaneous velocity
magnitude may be selected stochastically from a Poisson dis-
tribution and the orientational distribution function obeys a
diffusion equation, they analytically derive an expression for
MSD and C, of such a particle. Both the ABP and PM models
predict an MSD that transitions to long-time diffusion follow-
ing an early-time ballistic behavior. However, while the ABP
predicts that a single-exponential may be used to describe the
variation in C,, the PM model posits that the velocity autocor-
relation is a sum of two exponentials. In Fig. 1(c), we show
agreement with this biexponential form [30] and the computed
velocity autocorrelation of an autophoretic disk. It is there-
fore evident that the velocity time series of an autophoretic
disk undergoing chaotic dynamics is better described by the
PM model that allows for the instantaneous velocity and
orientation to be chosen independently, rather than the ABP
model.

For a passive Brownian sphere in shear flow, the mean
square displacement in the flow direction (8,,) scales as 73 at
long times, whereas that in the direction of the shear gradient
(Byy) scales linearly with the lag time [31-33]. The cross
correlation, B.y, scales as 2. The effect of a shear-flow field
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FIG. 2. Dynamics of an autophoretic particle at Pe = 20, placed
in a shear flow field of strength € = 0.01. The particle is initially at
the origin and the flow is in the x direction only, with the velocity
increasing linearly with y. (a) Trajectory in the x — y plane; (b) el-
ements of the mean square displacement tensor (), (c) velocity
autocorrelation, and (d) stresslet component autocorrelation.

on the dynamics of an autophoretic disk is illustrated in Fig. 2.
The position of the autophoretic disk is evaluated as

ry(t + At) = ry(t) + Uy () At,
re(t + Ar) = 1 (t) + [Us(F) + ery(1)] A, 4)

while the expression for the mean square displacement tensor
remains unchanged. In Fig. 2(b), the components of () for
an autophoretic disk placed in a shear-flow field of € = 0.01
are plotted as a function of the lag time and it is observed that
they all scale as 72, in marked contrast to the scaling observed
for a passive disk. The autocorrelation of the phoretic velocity
is not significantly altered in comparison to the quiescent case
[Fig. 2(c)]. The autocorrelation of the stresslet components
[Fig. 2(d)] do not vanish in the long-time limit due to the
presence of an ambient shear flow. Furthermore, the xy and yy
components of the stress tensor may be clearly differentiated
from their autocorrelation signals, unlike that in the quiescent
case, since the imposed flow has a fixed direction, along the x
axis.

A strategy for quenching the chaotic motion of the
autophoretic disk is discussed next. In the context of high-
Reynolds number applications, the use of magnetic fields [34],
buoyant forces [35,36], and mechanical impulses [37] has
been suggested to relaminarize the flow [38]. In a similar
spirit, recent simulations [17] and experiments [39] have es-
tablished that an external force field may be used to quench the
chaotic variation of the velocity field around an autophoretic
particle [40]. In Fig. 3, the effect of increasing the shear
strength on the phoretic velocity of the particle at a fixed
value of the Péclet number is illustrated, over a representative
time window. At low values of €, the time series is chaotic,
then gradually settles into a periodic pattern upon increasing
€, before vanishing completely as the shear rate is increased
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FIG. 3. Time series of velocity magnitude at shear rate values of
(a) e = 0.01, (b) e = 0.03, (c) € = 0.04, and (d) € = 0.6, at a fixed
value of the Péclet number, Pe = 20.

further. The triangular wave pattern of the phoretic velocity
in Fig. 3(c) is qualitatively similar to that predicted for self-
propelled two-dimensional droplets [24]. The external flow
field, therefore, modulates the self-propulsive motion of the
autophoretic disk. A similar trend is observed in Fig. 4 for
the stresslet component S,,, which notably attains a time-
independent value at sufficiently large shear rates. A negative
value for the steady-state stresslet has also been observed for
the case of axisymmetric swimmers with a “pusher” type flow
pattern [16,23]. We therefore anticipate that a dilute suspen-
sion of active droplets would exhibit a chaotic rheology at
small values of the shear rate, before first transitioning to a
time periodic and ultimately steady rheology as the shear rate
is increased.

2 2
(a) (b)
1 1
0 0
n n
-1 -1
[(=<=00] o0
-2 -2
1.0 1.02 1.04 1.06 1.08 1.0 1.02 1.04 1.06 1.08
1074t 1074t
2 2
(c) (d) — =06
1 1
3 0 0
n n
-2 -2
1.0 1.02 1.04 1.06 1.08 1.0 1.02 1.04 1.06 1.08
1074t 107%¢

FIG. 4. Time series of xy component of the stresslet at shear rate
values of (a) e = 0.01, (b) € = 0.03, (c) € = 0.04, and (d) € = 0.6,
at a fixed value of the Péclet number, Pe = 20.
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FIG. 5. Power spectrum of the xy component of the stresslet at
various values of the shear rate (¢) and a fixed Péclet number of Pe =
20. The ordinates of the data series have been multiplied by a scale
factor to render them well spaced on the y axis, for clarity. From
bottom to top, the values of € (and the associated scale factors) are
0.036(10722), 0.0366(10~'%), 0.037(10%), 0.0372(1), 0.0373(10'7),
and 0.0374(10'®).

A more detailed picture of the chaotic-to-steady quench-
ing transition is apparent from the power spectrum of the
stresslet, as plotted in Fig. 5 over a narrow window in the
shear rate. At € = 0.036, the broadband spectrum signifies
chaotic dynamics [41-43]. An increase in the shear rate is
accompanied by a coalescence of various frequencies from
the broadband spectrum into discrete peaks of the periodic
motion in Fig. 4(c). The regularly spaced spikes in the power
spectrum at higher values of the dimensionless shear rate,
however, do not coincide with integral multiples of € [11].

IV. CONCLUSIONS

We have shown that the dynamics of an autophoretic disk
is markedly different from a passive Brownian particle. The
dynamics is also richer than that of an ABP with respect to the
biexponential decay of the velocity autocorrelation function.
Furthermore, we showed that the rheology of a dilute suspen-
sion of such disks is chaotic at small values of the shear rate;
effectively, increasing the shear provides a route to removing
chaotic dynamics. We expect these findings to hold, at least
qualitatively, in experimentally realizable dilute active droplet
systems, up to an area fraction of ¢ < 10% based on prior
studies on hard-sphere colloidal dispersions [44]. Finally, our
work may be useful for the synthesis and manipulation of
active droplet emulsions. Here, one may have to account for
the coupled chaotic dynamics of many active droplets, which
is an interesting direction for future work.
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