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Cross-stream migration of a vesicle in vortical flows
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We use numerical simulations to systematically investigate the vesicle dynamics in two-dimensional (2D)
Taylor-Green vortex flow in the absence of inertial forces. Vesicles are highly deformable membranes encapsu-
lating an incompressible fluid and they serve as numerical and experimental proxies for biological cells such as
red blood cells. Vesicle dynamics has been studied in free-space or bounded shear, Poiseuille, and Taylor-Couette
flows in 2D and 3D. Taylor-Green vortex are characterized with even more complicated properties than those
flows such as nonuniform flow line curvature, shear gradient. We study the effects of two parameters on the
vesicle dynamics: the ratio of the interior fluid viscosity to that of the exterior one and the ratio of the shear
forces on the vesicle to the membrane stiffness (characterized by the capillary number). Vesicle deformability
nonlinearly depends on these parameters. Although the study is in 2D, our findings contribute to the wide
spectrum of intriguing vesicle dynamics: Vesicles migrate inwards and eventually rotate at the vortex center
if they are sufficiently deformable. If not, then they migrate away from the vortex center and travel across the
periodic arrays of vortices. The outward migration of a vesicle is a new phenomenon in Taylor-Green vortex flow
and has not been observed in any other flows so far. Such cross-streamline migration of deformable particles can
be utilized in several applications such as microfluidics for cell separation.

DOI: 10.1103/PhysRevE.107.044608

I. INTRODUCTION

Phospholipid molecules containing a hydrophilic head
and a hydrophobic tail come together and form a lipid bi-
layer which consists in biological membranes [1]. The lipid
bilayer is fluid but impermeable to many molecules except
water molecules. Vesicles are the bilayer sacs that show rich
dynamics in their flows even at small velocity and length
scales [1,2]. Vesicles of approximately 10 µm in diameter are
numerical and experimental proxies for biological membranes
encapsulating only a liquid such as red blood cells. There
have been extensive studies on vesicles which are theoreti-
cal [3–6], experimental [7–15], and computational [16–22].
They have immense application areas in micro- and nanoscale
biotechnology: They are used as containers for biochemi-
cal reactions [23,24] and molecular transport [25,26] and as
vectors for targeted drug delivery [27,28]. Vesicles show a
wide variety of equilibrium shapes and complex nonequilib-
rium dynamics in their creeping flows (i.e., the flows where
the viscous forces dominate the inertial forces). For a wide
range of parameter values vesicles have a symmetric shape
called parachute [29,30] and an asymmetric shape called slip-
per [10,17,30,31]. Complicated vesicle dynamics arise from
the nonlinear interaction of membrane deformation and fluid
flow. Understanding rich vesicle dynamics depending on their
deformability helps designing microfluidics devices and tech-
niques for medical diagnoses of diseases [32–35].

The dynamics of a single vesicle has been studied in
several fundamental setups so far: free-space or confined

shear [5,12,36–41] and Poiseuille flows [8,12,17,18,42–50],
Taylor-Couette flow, and confined Couette flow [51]. In
those flows, vesicles are observed to show various migration
and orientation dynamics stemming from the complicated
interplay between the vesicle deformability and the imposed
flow characteristics such as the shear rate and the flow
line curvature. Due to flow-induced deformation vesicle
membrane develops tension so as to keep its arc length
constant (due to the inextensibility). Tension along the
membrane, then, dictates vesicle dynamics. Vesicle evolves
in such a way that minimizes the nonuniformity in tension
distribution and at equilibrium tension becomes uniform
[51,52]. There are some previously observed dynamics
relevant to the present study: (i) membrane tank treading vs.
vesicle tumbling and (ii) cross-stream migration.

In free-space shear flow vesicles have been observed to (1)
tank tread with a stationary angle between its main axis and
the flow direction (orientation angle) and (2) tumble, i.e., go
through a periodic flipping motion. Which dynamics vesicle
shows depends on vesicle’s deformability and the ratio of
its interior fluid’s viscosity to the exterior fluid’s viscosity
(viscosity contrast) (see Refs. [43,53,54] for the experimental
and numerical studies). For low viscosity contrast values, a
vesicle’s membrane tank treads. The tank-treading motion
induces an inner circulation which results in higher dissipa-
tion. However, it is shown in two-dimensional (2D) free-space
Poiseuille flow that tank treading is a favorable dynamics
under specific conditions as it helps vesicle reduces the lag
between the vesicle velocity and the imposed flow [17]. As
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viscosity contrast increases, tank treading leads to more dis-
sipation and eventually the vesicle transitions to tumbling to
reduce the dissipation [53]. The appearance of tank treading
vs. tumbling dynamics is similar in bounded or free Taylor-
Couette flow and Poiseuille flow.

Cross-stream migration in low-Reynolds-number flows
may occur if the symmetry in the suspended particle is lost
by deformation or in the presence of the wall [52]. Particle
deformation is due to a shear gradient (as in free Poiseuille
flow [17]) and/or flow line curvature (as in Taylor-Couette
flow [51]). No matter what the source for the deformation,
vesicles are observed to migrate for low viscosity contrast
values for which they also tank tread [17,51]. Above a critical
viscosity contrast value, vesicle starts tumbling and the migra-
tion is suppressed in free Poiseuille and Taylor-Couette flows.
Unlike those free-space flows, in bounded shear flow vesicles
migrate even for high viscosity contrast values [55]. In such
cases, vesicle initialized near a wall lifts off and also tumbles.
The tumbling leads the lift-off angle to decrease and reverse
its direction. That leads a vesicle to experience a pushing force
toward the wall. However, since the tumbling cycle results in
asymmetric shapes during the two halves of the tumbling pe-
riod, the vesicle experiences net migration toward the closest
wall. For very high viscosity contrast values, a vesicle does
not even lift off the wall and aligns with the flow near the
wall.

Another interesting setup in which the vesicle dynamics
needs to be investigated is Taylor-Green (TG) vortex flow
[56] (see Fig. 1). It consists of an array of vortices and can
be considered a toy model of turbulent flows. However, it
cannot reproduce all the features in turbulent flows and also
has some features that are not present in turbulent flows such
as closed streamlines. TG flow shows characteristics similar
to the flows mentioned above in which vesicle dynamics has
been investigated. The flow near the vortex center resembles
the Taylor-Couette flow in terms of the flow line curvature and
the shear rate. The flow lines in TG flow have almost constant
curvature near the vortex center. Further away from the vortex
center, the streamlines have nonzero curvature only around
the x = y line [see Fig. 1(b)]. The tangential component of
a Taylor-Couette flow is vθ ∝ 1/r and the radial component
is zero, which results in curved flow lines whose curvature
increases as r → 0 where is also the high shear rate region.
The shear rate reaches its maximum value near the vortex
center and disappears near the edges of the the periodic unit
of the vortex.

In this article, we study the transport of a vesicle (a model
biological cell) in Taylor-Green vortex flow in a 2D setup in
the limit of zero Reynolds number (i.e., the inertial forces are
negligible). The vesicle is modeled as inextensible and de-
formable drop with Helfrich elasticity and its flow is governed
by the Stokes equations. We aim at investigating the effects
of vesicle deformability on the vesicle dynamics. Specifically,
we vary two nondimensional parameters: the capillary num-
ber (the ratio of the flow scale to the vesicle’s relaxation
timescale) and the viscosity contrast (the ratio of the interior
fluid viscosity to that of the exterior one). We observe that
a sufficiently deformable vesicle migrates toward the vortex
center [Fig. 1(c)] while it tank treads and almost aligns its
main axis with the imposed flow lines. A stiffer vesicle migrates

(a) (b)

(c) (b)

FIG. 1. (a) The streamlines with the color scheme showing the
background flow speed (nondimensionalized by the imposed flow
strength). (b) The flow line curvature in TG flow. (c) Inward migrat-
ing vesicle with no viscosity contrast λ = 1. (d) Outward migrating
vesicle with high viscosity contrast value λ = 10. Both cases have
the same capillary number Ca = 17 (the flow strength is 400U ). The
gray lines show the trajectories of the vesicles. The time of a snapshot
is indicated as t0 to t4. In (c) the vesicle is initialized near the edge of
the cell, whereas in (d) it is initialized near the vortex center. On
one hand, the softer vesicle (λ = 1) aligns its main axis with the
flow lines and migrates inwards. On the other hand, the stiffer one
(λ = 10) tumbles periodically while migrating outwards.

outwards and travels across the periodic arrays of vortices
[Fig. 1(d)]. The outward migration is a new phenomenon in
TG flow and has not been observed in any other flows so far.
We conducted our studies in two dimensions, motivated by the
fact that in several circumstances 2D studies [57] accurately
captures the 3D results [42] while 2D simulations are faster
and allow mapping parameter space.

II. METHODS

We consider a vesicle in Taylor-Green vortex flow. The
imposed flow is two dimensional, time independent, and peri-
odic,

v∞(x) = U ( sin(x) cos(y),− cos(x) sin(y)) (1)

for (x, y) ∈ [0, π ]2 with U the flow strength. The repeated
unit flow contains a vortex at the center [Fig. 1(a)]. A 2 ×
2 array of the units have a hyperbolic stagnation point at
its center. That point is connected to other stagnation points
through stagnation streamlines (separatrix). We carry out the
numerical simulations using a boundary integral formulation
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(a) (b)

(d)(c)

FIG. 2. Dynamics of a vesicle in Taylor-Green flow for low viscosity contrast value (λ = 1, first row) and for high viscosity contrast value
(λ = 10, second row). On the left dispersion, i.e., L2 norm of the distance vector from the vesicle’s center to the vortex center is shown. The
orientation angle which is defined as the angle between the vesicle’s main axis and the imposed velocity vector at the vesicle’s center (solid
line), and the phase angle of a point on the membrane (i.e., the tank-treading angle) (dashed line) are shown together on the same figures on
the right. The background colors in the plots correspond to the the curvature of the flow line where the vesicles are. The color scale for the
curvature is given in Fig. 1(b) (the yellow is zero curvature and the blue is the maximum curvature). On the one hand (the first row), the inward
migrating vesicle has nearly constant orientation angle and its membrane is tank treading. On the other hand (the second row), the outward
migrating vesicle is tumbling with a very slowly tank-treading membrane.

(see the Taylor-Couette simulation below and Appendix for
the verification and validation of the numerical method used
in this study):

v(x) = 2

1 + λ
v∞(x) + 1

2πη0(1 + λ)

×
∫

γ

G(x − y) · f (y) ds(y) + 2(1 − λ)

π (1 + λ)

×
∫

γ

v(y) · T (x − y) · n(y) ds(y), (2)

where γ is the vesicle membrane; v is the membrane velocity;
G and T are the Green’s functions of the Stokes flow [58];

x and y are points on the membrane; f is the membrane force
or length; n is the outward normal to the membrane; η0 and
η1 denote the viscosity of the suspending fluid and the fluid
inside the vesicle, respectively; and λ = η1/η0 is the viscosity
contrast between the internal and the external fluids. The
membrane applies force due to its resistance to bending and its
inextensibility. The form of the force or length is obtained by
taking the functional derivative of the Helfrich bending energy
E = κ

2

∫
c2ds + ∫

ξds that includes the tension ξ to enforce
the membrane inextensibility:

f (x) = −κ

[
d2c

ds2
+ 1

2
c3

]
n + ξcn + dξ

ds
t, (3)
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(b)(a)

(c) (d)

FIG. 3. Trajectories of vesicles (λ = 1 in the first row and
λ = 10 in the second row) in Taylor-Couette flow. The vesicles
have similar capillary number and reduced area as those in Fig. 1.
The orientation and the tank-treading angles for those vesicles are
also shown on the right. For viscosity contrast λ = 1, the vesicle
tank treads and migrates inwards with a fixed orientation; for vis-
cosity contrast λ = 10, it tumbles and shows negligible outward
migration.

where κ is the membrane’s bending modulus, c is the mem-
brane curvature, ξ is the tension that acts like a local Lagrange
multiplier enforcing membrane inextensibility, and t is the
tangent to the membrane. The membrane force Eq. (3) bal-
ances the jump in the traction across the vesicle membrane.
The details of the numerical scheme to solve the integral
equation formulation can be found in Ref. [58].

III. RESULTS

Let A and L denote the area enclosed by a vesicle and its
arclength, respectively. Then the vesicle’s reduced area (defla-
tion) is defined as the ratio of the enclosed area to the area of
a circle having the same perimeter L: 	 =

√
A/[π (L/2π )]2

(0 < 	 < 1, 	 = 1 for a circle). The other dimensionless
numbers that enter the problem of free-space vesicle flows are
(1) the viscosity contrast value λ and (2) the capillary number
Ca = η0UR3/κ where κ is the membrane bending stiffness
and the vesicle’s characteristic size R is defined as the radius
of a circle that has the same perimeter as the vesicle, i.e.,
R = √

A/π . The capillary number measures the vesicle de-
formability: Its higher values correspond to more deformable
vesicles.

We experimented numerically by varying the capillary
number and the viscosity contrast values. Considering healthy
red blood cells, a typical value for velocity in small vessels in

human microcirculation is 800 µ/s [59], membrane rigidity is
10−19 J [60], cell radius is 3 µm, and the plasma viscosity is
10−3 Pa s. So a typical Ca value is O(10) for healthy cells.
When a cell is diseased, it loses its deformability and Ca
becomes one order of magnitude smaller [61]. Based on that
calculation, we considered Ca ∈ [1, 80] in our simulations.
To observe the dynamics in the limit of rigid vesicle, we
reduced Ca to O(10−2) and hence worked in the range of
Ca ∈ [10−2, 80]. The range of the viscosity contrast values
is λ ∈ [1, 100]. Reduced area for RBCs is approximately 0.6
[62]. Here we considered 	 = 0.6 for which the ratio of the
vortex size to the vesicle size R is 18.

To analyze our simulations, we investigate several quanti-
ties. One of them is the dispersion of a vesicle which is defined
as L2 norm of the distance vector from the vesicle’s center
to the vortex center. The second one is the orientation angle
θ of a vesicle with respect to the imposed flow at its center.
We quantify a vesicle’s orientation by the angle between its
main axis and the velocity vector at its center [see the inset in
Fig. 2(b)]. To do so, we rotate a vesicle such that the imposed
velocity at the center is in the x direction. Then, the main axis
of a vesicle is the axis corresponding to the smallest principal
moment of inertial with the x axis. The moment of inertia
tensor J is

J =
∫

ω

(‖r‖2I − r ⊗ r) dx = 1

4

∫
γ

r · n(‖r‖2I − r ⊗ r) ds,

where ω is the area enclosed by γ , γ denotes vesicle mem-
brane, and r = x − c is the distance of point x from the
vesicle’s center c. The principal axes of inertia are the eigen-
vectors of J . The last quantity is the tank-treading angle α

that measures the angular position of a particular point on the
membrane with respect to the vesicle’s center (see the inset
in Fig. 2). Since a vesicle rotates and translates with respect
to the vortex center in TG flow, the tank-treading angle is also
measured after aligning the vesicle such that the imposed flow
at its center is in the x direction .

IV. DISCUSSION

A. Tank-treading vesicles migrate inwards

In Fig. 1(c), we superimpose the snapshots from the simu-
lation of a vesicle with λ = 1 initialized near the edge of the
periodic unit. The vesicle’s reduced area is 	 = 0.6 and the
capillary number is Ca = 17. The vesicle with low viscosity
contrast value migrate inwards [Fig. 2(a)] while it tank treads
with almost a fixed orientation angle with respect to the im-
posed flow direction at the vesicle’s center [Fig. 2(b)]. This is
similar to the vesicle dynamics in Taylor-Couette flow for low
viscosity contrast values [51]. We also performed simulations
by initializing a vesicle closer to the edge of the repeating
unit (only 5% of the vortex size away from the edge) for the
same viscosity contrast value. We observed persistent inward
migration regardless of the initial position and orientation of
the vesicle.

B. Tumbling vesicles migrate outwards

Under the same flow conditions, we then increased the
viscosity contrast of the vesicle to λ = 10. Figure 1(d) shows
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the snapshots from this simulation. Here the vesicle is ini-
tialized near the vortex center and migrates outwards [see
Fig. 2(c) for its dispersion]. At the same time, the vesicle
tumbles, and that can be captured by looking at its orientation
angle in Fig. 2(d). Its membrane still tank treads but much
slower than it does for low viscosity contrast values. Outward
migration with tumbling for high viscosity contrast values is
a new phenomenon, which is not observed in Taylor-Couette
flows [51].

C. Flow line curvature impacts vesicle dynamics

To illustrate that, in Fig. 2 we plot the dispersion, the
orientation, and the tank-treading angles. Time is in the x axes
and nondimensionalized with the timescale [the timescale is
π/U where π is the size of a repeating unit and U is the
magnitude of the TG flow in Eq. (1)]. The striped background
in these plots indicates the curvature of the flow line the
vesicle resides at a particular time. The color scale is given
in Fig. 1(b) (the yellow is zero curvature and the blue is
the maximum curvature). For the inward migrating vesicle
(the first row in Fig. 2), its orientation angle drifts away
from the flow direction when it is on flow line of a lower cur-
vature [yellow bands in Fig. 2(b)]. Its membrane tank treads
faster on high curvature flow lines than on low curvature
flow lines. Although the flow line curvature does not have a
significant impact on the dispersion of the outward migrating
vesicle, its effects on the vesicle orientation and tank treading
are visible. High flow line curvature accelerates the vesicle’s
tumbling and tank treading.

Taylor-Couette flow resembles Taylor-Green flow in sev-
eral aspects such as having nonzero flow line curvature and
high shear rate at the center [51]. A fundamental difference is
that flow line curvature in TG flow varies along a streamline.
While vesicles migrate inwards for low viscosity contrast
values in both flows, for high viscosity contrast values they
show negligible migration in Taylor-Couette flow and outward
migration in TG flow. In order to understand the reasons
for the different dynamics, we considered a single vesicle
in Taylor-Couette flow where the imposed flow is vθ = a/r,
vr = 0 where r is the position of vesicle’s center. Then the
imposed shear rate becomes −2a/r. Vesicle has the reduced
area 	 = 0.6 (same as in the TG flow simulations in Fig. 1).
We initialized the vesicle at 10R and the imposed flow has
a = −40. So the capillary number is 0.8 at 10R and increases
to 80 at R. We performed two simulations for different viscos-
ity contrast values λ = (1, 10). Our results shown in Fig. 3
recapitulated the findings in Ref. [51]. For λ = 1, vesicle
migrates inwards (see its trajectory on the left in the first row)
with a fixed orientation (the solid line on the right in the first
row) while tank treading. The same dynamics is also observed
in TG flow. However, for λ = 10, vesicle does not migrate
(see its trajectory on the right in the second row). That vesicle
tumbles periodically (see the solid line in the right figure in
the second row) with slight tank treading. Although tumbling
observed in both Taylor-Couette and TG flows, the time evolu-
tion of the orientation angle is different. While the orientation
smoothly changes in Taylor-Couette flow, the rate of change
is varying as the flow line curvature varies in TG flow. The
nonuniformity in the flow line curvature in TG flow inhibits

FIG. 4. Phase diagram for a vesicle with reduced area 	 = 0.6.
Ca is the capillary number ranging from O(10−2) to almost 80 and λ

is the viscosity contrast. The purple area shows inward migration and
the green area shows outward migration. The filled circles and trian-
gles represent tumbling and tank-treading dynamics, respectively.

symmetric tumbling as in Taylor-Couette flow and hence leads
to non-negligible outward migration. Does a tumbling vesicle
always migrate outwards in Taylor-Green vortex? Even when a
vesicle is initialized only 5% of the vortex size away from the

FIG. 5. The evolution of a single vesicle in an unbounded shear
flow. The viscosity contrast values are λ = 2, 3, 4, and 5. The capil-
lary number is Ca = 2. In theory [41] the critical viscosity contrast
value for the transition to tumbling is found to be between 3 and
4. Lagrangian points on the vesicle membrane is colored for visual
purposes only and has no other significance.
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vortex center, it still migrates outwards for the same viscosity
contrast value.

D. Large Ca value leads to inward migration

Since vesicle is more deformable for lower viscosity con-
trast values and we observe that vesicles migrate inwards for
low viscosity contrast values, one would expect inward mi-
gration for large capillary number values. Our results shown
in the phase diagram (Fig. 4) verify that. Moreover, the phase
diagram demonstrates that the migration direction and tank
treading vs. tumbling dynamics depend on the viscosity con-
trast and the capillary number in the same way. Tank-treading
vesicles migrate inwards all the time while tumbling vesicles
migrate outwards. As the capillary number increases, the crit-
ical viscosity contrast value for the transition from inward
migration to outward migration increases initially and then
the migration direction does not significantly depend on Ca.
In free space shear flow, the critical viscosity contrast value
for the tank treading–tumbling transition depends similarly on
the capillary number [41].

V. CONCLUSION

The present study systematically uncovers complex vesicle
dynamics in a complicated Taylor-Green flow (e.g., showing
oscillatory flow line curvatures). What is new to the vesicle
dynamics in free-space flows is the outward migration of
tumbling vesicles for high viscosity contrast values for which
vesicles do not significantly migrate in free-space shear and
Poiseuille flows. The nonuniformity of flow line curvature
along a streamline in TG flow causes symmetry-breaking in
the tumbling motion of vesicles, which leads them to mi-
grate away from the vortex center and eventually to travel
across the arrays of TG vortices. Taylor-Green vortex is a
three-dimensional phenomenon and we expect even more
complicated vesicle dynamics in 3D TG flows as similar ex-
tensions of shear or Poiseuille flows to 3D have discovered
rich dynamics [18,63].
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APPENDIX: VALIDATION OF THE NUMERICAL METHOD

We refer the reader to Ref. [58] for the equations gov-
erning vesicle flows, their integral equation formulation, and
the solution techniques used in the boundary integral equa-
tion method. In the same article, the method was also verified.
In Ref. [34], the method was used to accurately reproduce
some fundamental results in the literature: capturing the equi-
librium shape of a single vesicle in free-space Poiseuille flow
with no viscosity contrast and cross-stream migration of vesi-
cles in Taylor-Couette flow.

In this work, we verified the method by simulating the
outward migrating vesicle in Fig. 1(d) by refining the spa-
tiotemporal resolution. The timescale (the ratio of the vortex
size to the flow strength U ) in this test problem is 0.02 s.
We reduced the time step size to 10−7 s and the outward
migration is still observed. To validate the method, we re-
produced the cross-stream migration results in Taylor-Couette
flow which are presented in the main text. In addition to that,
we performed simulations of a single vesicle in free-space
shear flow in which vesicle tank treads at an equilibrium
angle for low viscosity contrast values and tumbles other-
wise [5,41,54]. The critical viscosity contrast value depends
on the reduced area. For reduced area of 	 = 0.6, the crit-
ical viscosity contrast value is between 3 and 4 [41,64].
We considered viscosity contrast values λ between 2 and 5
(see Fig. 5) to capture the transition from tank treading to
tumbling. We set the reduced area to 0.6 and capillary num-
ber to 2. We found that vesicle tank treads for λ < 4 and
tumbles otherwise (see Fig. 5 showing snapshots from the
simulations). So, our method accurately captures the critical
viscosity contrast value. Additionally, our results show that,
as the viscosity contrast value increases, a vesicle’s main axis
gets more aligned with the flow direction, which is physically
correct.
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