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Field-driven cluster formation in two-dimensional colloidal binary mixtures
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We study size- and charge-asymmetric oppositely charged colloids driven by an external electric field. The
large particles are connected by harmonic springs, forming a hexagonal-lattice network, while the small particles
are free of bonds and exhibit fluidlike motion. We show that this model exhibits a cluster formation pattern when
the external driving force exceeds a critical value. The clustering is accompanied with stable wave packets in
vibrational motions of the large particles.
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I. INTRODUCTION

In solids, the atoms vibrate around their equilibrium po-
sitions and the excitations of vibrational motions, phonons,
are well described by elastic theory [1]. Although particles
in fluids have vibrational motions, they do not have well-
defined equilibrium positions. Instead of tracking the motion
of individual fluid particles, it is more appropriate to describe
them with continuous quantities, such as density, velocity, and
pressure. Active systems can be solid or fluid. While active
solids have well-defined reference positions, active fluids do
not. Most well-studied active systems are fluids [2–4]; how-
ever, interest in active solids has grown recently [5,6].

In many physical systems, people have observed the co-
existence of vibrational and fluidlike degrees of freedom.
Examples include ion cores and conducting electrons in
metals, rigid and mobile ions in superionic conductors [7],
and most recently superionic behavior observed in size-
asymmetric colloidal compounds [8–15]. While there are
many reports on the equilibrium behavior of these mixtures,
the far-from-equilibrium behavior is still less studied. In this
paper we explore the far-from-equilibrium behavior of sys-
tems with both vibrational and fluidlike degrees of freedom.

Here we study size- and charge-asymmetric oppositely
charged colloidal compounds under an external electric field
in a two-dimensional space. The study of two-dimensional
colloidal mixtures is highly relevant to the behavior of ma-
terials confined at interfaces in both equilibrium [16–19] and
nonequilibrium [20,21] conditions. When colloidal particles
sediment onto the base of a glass sample cell, they form a
monolayer of colloidal mixtures and their motions are in the
two directions parallel to the glass base [16]. Recent advance-
ment in the synthesis of colloidal disks [22] has inspired us
to study size-asymmetric colloidal disks in a two-dimensional
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space. A particular feature of our model systems is harmonic
interactions between the large particles. The large colloidal
particles are connected by harmonic springs and form a hexag-
onal lattice. The harmonic springs enforce elastic coupling
between the motion of the large particles in the far-from-
equilibrium regime and elasticity plays an important role in
the phenomena we describe in this paper. Experimentally,
the development of programmable DNA origami nanosprings
makes it possible to create springs with adjustable lengths and
strengths [23]. Two-dimensional networks of polymer-linked
nanoparticles have been synthesized [24], which is similar to
the network of large colloidal particles we propose in this pa-
per. Another important feature of our systems is an extremely
large size ratio. The size of the small particles is set to be much
smaller than the large particles so that the small particles drift
across the lattice under the external field, showing the behav-
ior of a continuous flow. Under an external driving force, the
small particles flow through the lattice formed by the large
particles, resembling the flow of fluid through the interstitial
spaces in a foam [25,26]. In this study, in analogy to the
solitons found in the flow of fluid through foams, we observe
cluster formation of small particles and solitonlike vibrational
motions of the large particles when the external driving force
exceeds a critical value. The solitonlike vibrational motions
mean that wave packets of displacement vectors of the large
particles travel with stable shapes.

II. MODEL AND METHODOLOGY

Here we briefly summarize the system design and geom-
etry. The motions of the size-asymmetric colloidal disks are
confined to the two directions parallel to the substrate. The
size ratio between the large and small colloidal particles is
R:r = 20:1 and the number ratio between the large and small
particles is N :n = 1:12. The radius of the small particles is
r = 50 nm, which is the length scale unit in our system. The
large colloidal particles are connected by harmonic springs,
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FIG. 1. Sketches of the system geometry. (a) Top view of one
unit cell of the hexagonal lattice. The lattice vectors are �a1 = [45r, 0]
and �a2 = [ 45r

2 , 45
√

3r
2 ]. The electric field is applied in the direction of

�a1, which is the x direction of the simulation box. (b) Side view of the
3D structures of the large colloidal particles, small colloidal particles,
and nanosprings connecting the large particles. The height of the
small particles is much lower than the height of the large particles,
h � H , and the monomers of the nanosprings are typically at the
length scale of 1 nm. Therefore, the nanosprings are not an obstacle
for the small particles.

forming a hexagonal lattice with lattice constant a = 45r.
Figure 1 shows the geometry of one unit cell of the system
from the top view and the side view. The total area fraction
of the colloidal particles is φ = 0.738. The simulations are
conducted in a square box containing 60 × 60 unit cells with
periodic boundary conditions. The particle number, volume,
and temperature are constant.

We introduce here the interactions and external driven
forces in our Brownian dynamics simulations. Since the
system is in a low-Reynolds-number regime, overdamped
Langevin dynamics is implemented to simulate the equi-
librium and nonequilibrium behavior of our system, which
neglects the inertia of particles. We use the LAMMPS package
to conduct the Brownian dynamics simulations [27]. We do
not consider hydrodynamics effects here. The equation of
motion for particle i is

dri

dt
= −∇iU + Fi

ex

γi
+ ξi, (1)

where ri is the position vector of the particle i, U is the total
conservative force potential energy, Fi

ex = Eqi is the external
force acting on the particle i, and γi is the drag coefficient of
particle i. The charge of the large particles is qL = 96e and the
charge of the small particles is qS = −8e. The charge ratio be-
tween the large and small particles is qL:qS = 12: − 1, which
respects the charge neutrality considering the number ratio is
N :n = 1:12. The drag force on particle i depends on the drag
coefficient and velocity of the particle FDi = −γivi. Here we

explain how we set the drag coefficients of the colloidal disks.
We set the height of the colloidal disks to be much smaller
than their radius, i.e., h = 5 nm � r and H = 50 nm � R. In
a low-Reynolds-number fluid with viscosity η, the drag force
on a disk with radius r, negligible height h � r, and moving
in the plane with speed v has an exact formula FD = − 32

3 ηrv,
which is independent of the thickness of the disks [28].
Therefore, the friction coefficients of the small particles and
large particles are γS = 32

3 ηr and γL = 32
3 ηR, respectively,

where the water viscosity is η = 1 × 10−3 Pa s. It follows
that the friction coefficient for the large particles is 20 times
the friction coefficient for the small particles, γL = 20γS . The
thermal force ξi is a white noise with zero mean, satisfying
〈ξiαξ jβ〉 = 2 kBT

γi
δi jδαβδ(t − t ′), where i and j denote the par-

ticle indices and α and β denote the spatial directions. In
addition, kBT is the thermal energy at T = 298 K and is set
as the energy scale unit in the simulation. The Brownian time
of the small particles τ = r2

D = 3.3 × 10−4 s is set as the time
unit, where D = kBT

γS
is the bare diffusion coefficient of the

small particle. The time step for integration is 
t = 10−4τ .
The potential energy of total conservative interactions U

consists of bonded and nonbonded interactions. The bonded
interaction is the harmonic potential between neighboring
large particles Uspring = ∑

{i j}(nn)
1
2 K (ri j − a)2, where (nn)

denotes nearest neighbors, K is the spring constant, ri j

is the distance between the neighboring large particles, and
a is the equilibrium length of the harmonic springs, which
equals the lattice constant. In this paper we use a dimension-
less spring constant to quantify the strength of the springs K̃ =
Kr2

kBT , where r is the radius of the small particles and the length
scale unit in our simulations. The nonbonded interactions
are composed of two parts, the hard-core interaction and the
screened Coulomb interaction. We use the repulsive Weeks-
Chandler-Andersen (WCA) potential to model the hard-core
interaction UWCA(ri j ), given by

4ε

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

+ ε, ri j < 21/6σi j,

0, ri j > 21/6σi j, (2)

and the Yukawa potential to model the screened electrostatic
interaction

βUel(ri j ) = λBqiq j exp[−κ (ri j − σi j )]

(1 + κRi )(1 + κRj )ri j
. (3)

Here σi j = Ri + Rj , where Ri and Rj are the radii of particles i
and j, respectively. The WCA interaction strength ε = 10kBT ,
β = 1

kBT , and λB = e2

4πε0εr kBT is the Bjerrum length. The
Bjerrum length equals 0.7 nm for water solvent at T = 298 K,
and qi and q j are the charges of the particles i and j in units of
the elementary charge, respectively. The Debye length λD =
κ−1 = (4πλB

∑N
i=1niz2

i )−1/2 is a measure of how far a charge
carrier’s electrostatic effects persist in a solution with free ion
concentration ni and ion charge numbers zi. The environment
is deionized water with ion concentration n = 10−7 mol/L.
The Debye length equals 1 µm in the deionized water at
T = 298 K, which is the radius of the large particles. This
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means the electrostatic interaction persists up to the radius of
the large particles.

Before we conduct the simulations on the nonequilibrium
conditions, we prepare the systems by allowing them to reach
thermodynamics equilibrium. We set the external force equal
to zero and run the simulations for 102τ . The pressure and
internal energy of the systems become stable and we see
that as the criterion of equilibrium for the systems. Then we
apply an external force on the systems and let them evolve
under nonequilibrium conditions. In this study, we focus on
the nonequilibrium steady state (NESS), which is defined
when the number of clusters reaches a constant value. In our
simulations, we observe that clusters of small particles form
and change in size until the system reaches this NESS. The
typical time to reach the nonequilibrium steady state is 104τ .

The particles are driven by an external electric field in the
x direction. The large particles are driven to move to the right
and the small particles are driven to move to the left. From
Fi

ex = Eqi we know that the magnitude of the external driving
force on the large particles is 12 times the magnitude of the
external driving force on the small particles. To quantify how
strong the external driving force is compared to the thermal
noise, we use the dimensionless driving force f̃ ≡ fexr

kBT = Eqr
kBT ,

where fex is the magnitude of the external driving force on the
small particles, r is the radius of the small particles, and kBT
is the thermal energy.

The center of mass of all large colloidal particles drifts
due to the external field and the collision with the small
particles. When we look into the vibrational motions of the
large particles, it is more convenient to choose the center of
mass of all large particles as the frame of reference, which we
call the c.m. frame in this paper. We only use the c.m. frame
when we present the results of the vibrational motions of the
large particles and use the laboratory frame of reference for
other parts of the paper. The transformation of the coordinates
of particles from the laboratory frame of reference to the c.m.
frame is r̃i(t ) = ri(t ) − Rc.m.(t ), where r̃i(t ) is the position
vector of the particle i in the c.m. frame at time t , the ri(t ) is
the position vector of the particle i in the laboratory frame
of reference at time t , and Rc.m.(t ) = 1

N

∑
i∈largeRi(t ) is the

position vector of the center of mass of all large particles
in the laboratory frame of reference at time t . We use Ri

to denote the position vectors of the large particles while
using ri to denote the position vectors of any particles. In the
c.m. frame, the displacement vector of one large particle is
δR̃i(t ) = R̃i(t ) − R̃i0, where R̃i0 is the reference position of
the large particle i and does not change with time in the c.m.
frame. It follows that

∑
i∈largeδR̃i(t ) = 0. The displacement

vector fields are calculated in microstates (snapshots) of the
systems. We also calculate the vibrational spectra of the large
particles using the discrete Fourier transform of the time pro-
file of the velocities of the large particles:

vn(ν) = 1

Nframe

Nframe−1∑
j=0

vn(t j )exp(i2πνt j ), (4)

Im(ν) = τ 2

r2

1

Nparticles

Nparticles∑
n=1

|vnm(ν)|2. (5)

The vibrational spectra are calculated from velocities recorded
from Nstep = 1000 consecutive time frames. The index m de-
notes the component of the velocities, which can be x or y in
our systems. The vibrational intensity is dimensionless due to
the prefactor τ 2

r2 .
In this paper we focus on the effects of varying the external

driving force and the spring constant of the springs between
the large particles. The dimensionless spring constants are
K̃ = 20, 30, and 40, corresponding to K = K̃kBT

r2 = 3.36 ×
10−2, 5.04 × 10−2, and 6.72 × 10−2 pN/µm. The strongest
dimensionless driving force is f̃ = 80, corresponding to E =
f̃ kBT

qr = 5.13 mV/nm, which is much lower than the break-
down field of water EB = 65 mV/nm [29].

III. RESULTS AND DISCUSSION

When f̃ � 1, the small particles distribute homogeneously
in the lattice [Fig. 2(a)]. When f̃ 
 1, the small particles
form lanes in the channels [Fig. 2(b)]. The lane formation is
observed in size-symmetric colloidal mixtures when the parti-
cles are not connected by the springs [31–39]. In our systems,
the small particles form lanes, but the large particles do not
aggregate, due to the springs. Interestingly, we observe the
formation of clusters of small particles with further increasing
f̃ [Fig. 2(c)]. When we freeze the motion of the large particles,
the small particles can still form lanes at high fields, but no
cluster formation is observed [Fig. 2(d)]. This means that in
our systems, lane formation does not require the motion of the
large particles, while cluster formation only happens when the
large particles are allowed to vibrate.

A. Lane to cluster transition and phase diagram

First of all, we give the definition of a cluster of small
particles. Two small particles are considered neighbors if they
are within the Debye length λD, since they do not interact
with each other strongly when they are separated beyond this
distance. Two particles are considered in one cluster if we
can find a path of neighbors connecting them. One cluster
is considered percolated in one direction if this cluster goes
across the periodic boundary and forms a loop. If we are in
the equilibrium state or f̃ � 1, the small particles are dis-
tributed homogeneously in the system and therefore they are
all connected and considered to be in one cluster. This cluster
is percolated in both the x and y directions. The lane state
occurs when all clusters are percolated in the x direction and
not percolated in the y direction. The lanes of small particles
drift in the channels between the large particles, and the small
particles are distributed homogeneously inside the channels.
Meanwhile, the cluster state occurs when all clusters are not
percolated. It is natural to define one intermediate state, where
x percolated clusters and nonpercolated clusters coexist.

With these definitions, we find that when we increase the
external driving force, the system evolves from the lane state
[Fig. 3(a)] to the intermediate state [Fig. 3(b)] and then into
the cluster state [Figs. 3(c) and 3(d)]. In the cluster state, the
small particles travel in clusters that have constant velocities
and stable shapes. As we further increase the external driving
force, the shapes of the clusters become more and more round,
which can be quantified by asphericity. We will introduce
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FIG. 2. Representative snapshots of colloidal mixtures driven in
opposite directions with the dimensionless spring constant K̃ = 30.
The left panels represent the whole simulation boxes, while the
right panels are enlarged portions of the left figures. All figures are
enlarged four times from left to right. In addition, the small particles
are enlarged four times the original size to make them visible. The
snapshots are made using the OVITO package [30]. (a) The dimen-
sionless spring constant and driving force are K̃ = 30 and f̃ = 0.1,
respectively. The driving force is much smaller than the thermal
noise, and the small particles distribute homogeneously in the lattice.
(b) The dimensionless spring constant and driving force are K̃ = 30
and f̃ = 10, respectively. The small particles form lanes in the chan-
nels between the large particles, while the large particles vibrate
randomly. (c) The dimensionless spring constant and driving force
are K̃ = 30 and f̃ = 20, respectively. The small particles aggregate
into clusters in the channels between the large particles. (d) The large
particles are frozen on their reference positions forming a hexagonal
lattice, while the small particles are driven by the dimensionless
external force f̃ = 80. The small particles form lanes in the channels
between the large particles.

FIG. 3. Illustrations of different states in the driving colloidal
mixtures with the dimensionless spring constant K̃ = 30. Here we
show only the small particles, which are divided into clusters. The
neighboring clusters are distinguished by their colors. The small
particles are enlarged six times the original size to make them vis-
ible. (a) The dimensionless spring constant and driving force are
K̃ = 30 and f̃ = 10, respectively. The system is in the lane state,
where the small particles form clusters that are percolated only in the
x direction. (b) The dimensionless spring constant and driving force
are K̃ = 30 and f̃ = 16, respectively. The system is in the interme-
diate state, where x percolated clusters and nonpercolated clusters
coexist. (c) The dimensionless spring constant and driving force are
K̃ = 30 and f̃ = 20, respectively. The system is in the cluster state,
where there are only nonpercolated clusters. (d) The dimensionless
spring constant and driving force are K̃ = 30 and f̃ = 80, respec-
tively. The system is in the cluster state at a higher field, where
the clusters are more round in shape. The clusters in the neighbor
channels separate from each other in the x direction with a nearly
constant distance.

asphericity in the next section. We also observe that the clus-
ters in the neighbor channels are repulsive to each other. They
separate from each other in the x direction at a nearly constant
distance. The transition driving force is defined as the lowest
driving force where the cluster state emerges. When the spring
constant increases, we observe that the transition driving force
also increases. This is shown in the phase diagram in Fig. 4.
In Sec. III C we discuss this trend further.

B. Asphericity of the clusters

To quantify the evolution of the shapes of the clusters,
we introduce the concept of asphericity. One cluster is a
collection of mass points. The gyration tensor of the cluster
is defined as

Smn = 1

2N2
p

Np∑
i=1

Np∑
j=1

(
rm

(i) − rm
( j)

)(
rn

(i) − rn
( j)

)
, (6)
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FIG. 4. Phase diagram of driven colloidal mixtures. The horizon-
tal axis is the dimensionless spring constant and the vertical axis is
the dimensionless external driving force. The phase diagram shows
that the transition field increases as the spring constant increases. We
show only the data points with external driving forces close to the
transition.

where m and n denote the directions, i and j denote the particle
indices, and Np denotes the number of particles in the cluster.
This tensor describes the second moments of positions of a
collection of particles. We can always find a coordination
system where Smn is diagonal,

S =
[
λ2

a 0

0 λ2
b

]
, (7)

where we assume λa � λb. The cluster asphericity is defined

as A = 2(λ4
a+λ4

b )
(λ2

a+λ2
b )2 − 1. Under such a definition, A = 1 when the

cluster is completely flat, i.e., λa = 0, and A = 0 when the
cluster is spherically symmetric, i.e., λa = λb. We observe
that the shapes of small clusters do not change significantly
when we increase the driving force since small clusters do
not interact with the lattice as strongly as large clusters. Thus,
we use the size-weighted average asphericity to quantify the
change of shapes of clusters, giving more weight to larger
clusters. The size-weighted average asphericity is defined as

Āw =
∑Nc

i=1N (i)
p A(i)∑Nc

i=1N (i)
p

, (8)

where Nc denotes the number of clusters, N (i)
p denotes the

number of particles in the ith cluster, and A(i) denotes the as-
phericity of the ith cluster. Figure 5(a) shows that the number
of clusters Nc increases as the external driving force increases
and eventually saturates at high external fields. The average
value of the number of clusters is calculated from ten consecu-
tive time frames. The error bar is calculated from the standard
deviation of the number of clusters over ten consecutive time
frames. The system is considered to reach the nonequilibrium
steady state (NESS) if the standard deviation of the number of
clusters is less than 0.1 of the average number of clusters, i.e.,
the number of clusters reaches a stable value. This criterion
for the NESS also works for the lane state, since the number of
clusters is well defined also in the lane state. In the lane state,

FIG. 5. Number of clusters and size-weighted average aspheric-
ity at different spring constants and driving forces in the cluster state.
The data points are mostly for K̃ = 30 and 40. (a) The number of
clusters Nc increases as we increase the external driving force. We
also observe that at the same external driving force, the number of
clusters is larger with smaller spring constants. (b) The size-weighted
average asphericity Āw quantifies how round the clusters are and
gives more weight to larger clusters. Lower asphericity means the
shape of the cluster is more spherically symmetric. The plot shows
that the large clusters become more spherically symmetric as we in-
crease the external driving force. At the same external driving force,
the large clusters are more spherically symmetric in the systems with
lower spring constants.

the number of clusters equals the number of channels, which
is 60 in our simulations. In Fig. 5(b) we see that size-weighted
average asphericity decreases when driving force increases.
This means that the larger clusters become more spherically
symmetric as we increase the driving force. It also shows
that the larger clusters are more spherically symmetric in the
systems with lower spring constants. This observation and the
phase diagram can be understood better when we look at the
vibrational motions of the large particles.

C. Solitonlike vibrational motions of the large particles

When the system evolves from the lane state to the cluster
state, we observe that the vibrational motions of the large
particles show different behavior in different states. In the
lane state, the vibrational amplitude is very small and does
not show stable patterns when time evolves [Fig. 6(a)]. In
the intermediate state, we observe the correlation between the
vibrational motions in different time steps, but the pattern
is not stable [Fig. 6(b)]. In the cluster state, we observe a
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FIG. 6. Vibrational motions of the large particles in the center of mass (c.m.) frame. In all figures, from left to right is time evolution, and
the top two figures are the vibrational motions in the x direction while the bottom two figures are the vibrational motions in the y direction.
The displacement vector fields are calculated in two consecutive microstates (snapshots) at t and t + 20τ , where we set the first time step
t = 0. The time interval 20τ is chosen because it is large enough to observe the displacement of the pattern. The green color denotes positive
values, which means vibrating in the direction of the axis, while the magenta color means vibrating in the opposite direction of the axis. The
color bars show the scale in the units of the small particles’ radius r. (a) The dimensionless spring constant and driving force are K̃ = 30 and
f̃ = 10, respectively. The system is in the lane state and the vibrational motions of the large particles do not show a stable pattern. (b) The
dimensionless spring constant and driving force are K̃ = 30 and f̃ = 15, respectively. The system is in the intermediate state. The vibrational
motions of the large particles show patterns when time evolves, but the patterns are not stable. (c) The dimensionless spring constant and
driving force are K̃ = 30 and f̃ = 20, respectively. The system is in the cluster state and stable patterns are observed. The wave packets are
moving at speed ṽ = −27.6r/τ . (d) The dimensionless spring constant and driving force are K̃ = 30 and f̃ = 80, respectively. The system is
in the cluster state at a higher field, where we see stable patterns in the vibrational motions. The angle pattern is due to the separation between
the clusters in the neighbor channels. We can see some constant horizontal separations between the wave packets of displacement vectors and
they are defined as the length scales of the vibrational pattern. The wave packets are moving at speed ṽ = −125.1r/τ .

stable pattern [Figs. 6(c) and 6(d)]. In the center of mass
(c.m.) frame, the large particles vibrate around their reference
positions and the small particles drift to the left at the aver-
age velocity ṽ = vsmall − vlarge, where vsmall and vlarge are the
average drift velocities of the small and large particles in the
laboratory frame. In the c.m. frame, the vibrational motions
of the large particles in the cluster state satisfy the equation

δR̃i(t ) = δR̃i(R̃i0 − ṽt ), which means the wave packets of the
displacement vectors maintain their shapes while moving at
the same velocity as the drift velocity of the small particles.
This phenomenon is reminiscent of the solitonlike behavior
observed in nonlinear dissipative systems [40–42]. From the
vibrational spectra of large particles (Fig. 7), we can quantita-
tively evaluate the transition. In the lane and intermediate state
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FIG. 7. Vibrational spectra of large particles in the center of mass (c.m.) frame. In all figures, the blue lines are the spectra of the vibrational
motion in the x direction and the red lines are the spectra of the vibrational motion in the y direction. The horizontal axis is ντ because we
express the frequency ν in units of 1

τ
, where τ is the time unit in our simulations. (a) The dimensionless spring constant and driving force are

K̃ = 30 and f̃ = 10, respectively. The system is in the lane state and the vibrational spectra of the large particles do not have peaks. (b) The
dimensionless spring constant and driving force are K̃ = 30 and f̃ = 15, respectively. The system is in the intermediate state and the vibrational
spectra of the large particles do not have peaks. (c) The dimensionless spring constant and driving force are K̃ = 30 and f̃ = 20, respectively.
The system is in the cluster state and the vibrational spectra of the large particles show several peaks. The four peaks a, b, c, and d marked
in the graph correspond to ντ = 0.0103, 0.0205, 0.0308, and 0.0410, respectively. They are all multiples of the frequency of the first peak
νaτ = 0.0103, which is the characteristic of a nontrigonometric periodic function with a period of T = 1

νa
= 97.1τ . This period corresponds

to the time the stable vibrational patterns travel over one box length in the x direction. (d) The dimensionless spring constant and driving force
are K̃ = 30 and f̃ = 80, respectively. The system is in the cluster state and the vibrational spectra of the large particles show several peaks.
The five peaks a, b, c, d , and e marked in the graph correspond to ντ = 0.0463, 0.0928, 0.1390, 0.1855, and 0.2318, respectively. They are
all multiples of the frequency of the first peak νaτ = 0.0463, which is the characteristic of a nontrigonometric periodic function with a period
of T = 1

νa
= 21.6τ . This period corresponds to the time the stable vibrational patterns travel over one box length in the x direction. There are

many other peaks in the spectra, which correspond to the length scales of the vibrational pattern.

[Figs. 7(a) and 7(b)], the vibrational spectra of large particles
do not have peaks. In the cluster state [Figs. 7(c) and 7(d)], the
vibrational spectra show characteristics of nontrigonometric
periodic functions. The period corresponds to the time the
stable vibrational patterns travel over one box length in the
x direction in each condition. This feature shows that the
vibrational motions of large particles have stable patterns that
travel at constant velocity in the cluster state. In Fig. 7(d) we
also observe many other peaks that correspond to the length
scales of the vibrational pattern. The displacement vectors of
the large particles are correlated to the density distribution of
the small particles. As the driving force increases, the large
clusters have larger asphericity and tend to create more strain
in the lattice. On the other hand, the larger the spring constant
is, the less the lattice can deform. That explains why the larger
clusters are more spherically symmetric in the systems with
lower spring constants. This indicates that the formation of
clusters is the result of competition between the instability

caused by the external driving force and the stiffness of the
lattice. This physical picture is consistent with our observation
in the phase diagram that the transition driving force increases
as the spring constant increases.

IV. CONCLUSION

In size-asymmetric charged colloidal compounds with
springs attached between the large particles, we observe var-
ious steady states, including a cluster state when the external
driving force is higher than the lane state. In the cluster
state, the small particles form clusters that travel at constant
velocities with stable shapes and we observe solitonlike be-
havior in the vibrational motions of the large particles in
the c.m. frame. As we increase the external field, the size-
weighted average asphericity of clusters of small particles
decreases, meaning that large clusters become more spher-
ically symmetric. At the same time, it is more difficult for
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the lattice to deform with higher spring constants. Since no
cluster state is observed when the large particles are frozen,
this state is distinguished from the cluster formation in the
active fluids [43–46]. The solitonlike vibrational motions are
also different from the solitary wave observed in the non-
linear active lattices [40,47] since our systems do not have
active frictions and nonlinear springs. The cluster formation
and solitonlike vibrational motions in our model systems are
the result of the coupling between vibrational and fluidlike
degrees of freedom under nonequilibrium conditions, which
is similar to the solitons observed in the drainage of foams
[25,26]. In a driven binary lattice gas model [48,49], phase
separation with a long-range order is also observed in the
nonequilibrium steady state. In that model, the instability is
induced by fluctuation correlations of the charge field, which
could also be the origin of instability in our systems. It is
important to note that the Debye length in our system is
smaller than the length of the clusters since the system is on
a surface in contact with an electrolyte (a reservoir contain-
ing ions), which provides electrostatic screening. In a system
with long-range Coulombic interactions, the requirement of
charge neutrality will forbid the formation of clusters. In a
driven colloidal binary mixture with low volume fraction and
long-range interactions, it is found that hydrodynamics play
an important role in the self-assembly process [50]. In our
systems, the hydrodynamics interactions are expected to be
screened because the momentum will be transferred to the
lattice of the large particles. However, hydrodynamics could
still affect the morphology of the clusters in length scales

of the order of the lattice constant, which can be a subject
of future investigation. It should be noted that our systems
have a very large parametric space, partly due to the size and
charge asymmetries. We study extremely large size ratio and
number ratio so that the small particles act like continuous
flow over the size of the large particles. If the size ratio is
not sufficiently large, we do not expect to observe the aggre-
gation of the small particles. We also study a large overall
density of the particles so that the scattering process between
small and large particles is important. The phenomenon in
this paper is expected to be robust under such conditions,
although we have not fully explored the large parametric
space. Our work provides insight into the nonequilibrium or-
ganization behavior of size- and charge-asymmetric colloidal
mixtures.
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