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Increase in rod diffusivity emerges even in Markovian nature
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Rod-shaped particles embedded in certain matrices have been reported to exhibit an increase in their center
of mass diffusivity upon increasing the matrix density. This increase has been considered to be caused by a
kinetic constraint in analogy with tube models. We investigate a mobile rodlike particle in a sea of immobile
point obstacles using a kinetic Monte Carlo scheme equipped with a Markovian process, that generates gaslike
collision statistics, so that such kinetic constraints do essentially not exist. Even in such a system, provided the
particle’s aspect ratio exceeds a threshold value of about 24, the unusual increase in the rod diffusivity emerges.
This result implies that the kinetic constraint is not a necessary condition for the increase in the diffusivity.
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I. INTRODUCTION

The translational diffusion coefficient Dc of a particle is
generally known to decrease with increasing matrix density
or increasing amount of obstacles. It is understood as a conse-
quence of the ballistic particle motion being disturbed during
collisions with the surrounding matrix. However, if the parti-
cle is rod-shaped, a counterintuitive motion can occur; the Dc

of a rod may increase as the matrix concentration increases,
provided the concentration is sufficiently high. Frenkel and
Maguire [1,2] first observed such behavior for fluids consist-
ing of infinitely thin rods, whose static properties are exactly
the same as those of an ideal gas. This finding was later
confirmed with higher accuracy [3,4]. Their systems do not
have hidden particles or thermostats; the constituent particle
moves ballistically between elastic collisions. Following the
previous studies [1,2], an increase in Dc has been observed in
various systems: (i) an infinitely thin rod in a two-dimensional
(2D) sea of fixed point obstacles [5], (ii) a thick rod in a 2D
matrix of circular obstacles [6], and (iii) an active matter fluid
consisting of rods swimming in direction of its major axis
[7]. In these systems, the increase in Dc is not triggered by a
phase transition. Still, some rod systems exhibit an increase in
Dc accompanied by the isotropic-nematic transition [8]. Such
multiparticle effects remain beyond the scope of the present
work.

Various loosely defined concepts have been considered
previously to explain the increase in Dc: so-called dynamic
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correlation, steric hindrance, confinement, or tube [2,5],
which represent an assumed cylindrical constraint and dis-
turbs the rod rotation. We refer to these concepts as the
“kinetic constraint” in what follows. In this work, we define
the kinetic constraint as the constraint that prevents the rod
from crossing an obstacle until the rod moves about the rod
length. Using the kinetic constraint, the increase in Dc can
be explained. Namely, the rotational motion of the rod is
kinetically constrained via the surrounding matrix in the con-
centrated matrix regime. Even in such a regime, the ballistic
motion along the major axis of an infinitely thin rod is not
hindered, while the relevance of collisions in direction of the
major axis increases with increasing width of the rod or size
of the obstacles. Consequently, the ballistic motion with the
major axis may persist for a relatively long time. This duration
may increase with matrix density or the degree of confinement
and ultimately leads to an increase in Dc. In the so-called
active rod fluid [7], a similar behavior is caused by swimming
along the axial direction of the rod instead of ballistic motion.
In light of these studies one question may arise: Is the kinetic
constraint a necessary condition for the emergence of the
increase in diffusivity?

On our way toward an answer, we have been guided by our
naive belief that such an increase can be caused by the reduc-
tion of the rotational diffusivity alone, without the hindrance
of the axially directed motion. To test our hypothesis rigor-
ously, we consider a simple model system where the rotational
diffusivity reduces with increasing matrix density, whereas the
ballistic motion along the major axis of the rodlike particle
remains largely undisturbed. One possible such system is a
single mobile rod embedded in a three-dimensional (3D) ar-
rangement of spatially fixed point obstacles. It can be regarded
as the extension of the Lorentz gas systems [9–11]; a single
spherical particle in fixed obstacles.

In this work, we report that the upturn of Dc emerges even
in the presence of a Markovian process where the kinetic
constraint does essentially not exist; although the obstacles
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FIG. 1. Schematic figure of the rod. The collision frequency for
a given e(t ), v(t ), and ω(t ) is characterized by z and n.

change the rod motion, they do not keep in the same place nor
constrain the rotational motion of the rod. We investigate the
trajectories of a spherocylinder in a 3D matrix of statistically
homogeneously distributed point obstacles using a kinetic
Monte Carlo (KMC) scheme [12,13]. In this calculation, we
assume the Markovian process, where the sequential colli-
sions between the rod and obstacles are uncorrelated like for
a dilute gas system, as opposed to a standard implementation
of the molecular dynamics simulation. The Dc of this rodlike
particle increases in an intermediate matrix density regime if
the rod is sufficiently long. In our system, Dc reaches a peak
value and subsequently decreases with increasing obstacle
density due to the thickness of the rod. On the basis of the
Markovian nature, we give scaling relations between Dc and
the obstacle density for dilute, intermediate, and concentrated
density regimes. This work will generate fresh insight into the
kinetics of the nonspherical shaped particles.

II. MODEL AND METHODS

The model consists of a rodlike spherocylinder (also
termed capsule or stadium of revolution) with radius σ , mass
M, and length L of its major axis. The effective “rod” length
is Le = L + 2σ due to the half-spherical end-caps, and the
inertia tensor I is determined by assuming that the mass is
homogeneously distributed over the volume of the rod [14].
The schematic figure of the rod is displayed in Fig. 1. The
point obstacles are statistically homogeneously distributed in
the unbounded 3D space at number density ρ. The interaction
between the rod and obstacles is modeled by a hard-core
potential; the obstacles do not penetrate the rod, and they
do not move during a collision. The rod ballistically moves
except when it elastically collides with an obstacle. The center
of mass velocity v and angular velocity ω change during a
collision by conserving the total energy of the system, which
is distributed over the rod particle’s translational and rota-
tional kinetic energy. The total energy of this system is set
to be 5kBT/2, where kB and T are the Boltzmann constant
and temperature, respectively, and does not change during
the course of time. If we choose M, σ , and kBT to define
dimensionless units, then the remaining parameters are only
the effective rod length Le and the number density of the
obstacles, ρ. For the convenience of the presentation, we
define the speed unit u = √

kBT/M. This work displays the
physical quantities with dimensions for physical clarity. If one
prefers to work with reduced quantities, all the variables M,
σ , kBT , and u can be set to unity without loss of generality.

time

ballistic motion collision

FIG. 2. Schematic representation of the KMC method. r(t ), e(t ),
v(t ), and ω(t ) are the position, direction unit vector, velocity, and
angular velocity, respectively, of the rod at time t . z and n character-
ize the coordinate of the collision point; z ∈ [−L/2, L/2] is the axial
coordinate and n is the surface normal at the collision point. τ is the
collision time interval between successive collisions. τ , z, and n are
stochastically sampled from the collision statistics, Eq. (1). From the
sampled variables, r, e, v, and ω at time t + τ are obtained.

Since the interaction between the rod and obstacles is the
hard-core potential, the dynamical properties are independent
of the temperature when the physical quantities are expressed
using dimensionless units. Here, we do not study the trapping
regime, which occurs at densities exceeding the inverse vol-
ume of the spherocylinder, ρσ 2Le � 1.

To calculate the dynamics of a rod subject to a Markovian
collision process, we extend the KMC simulation method
[12,13]. It requires two inputs: (i) statistics of collisions and
(ii) the change of dynamical variables by a collision. For (i),
we here extend the calculations for a sphere [15–17] to the
collision statistics of a spherocylinder and obtain the collision
frequency with the coordinates of collision at time t for a
given velocity v(t ), angular velocity ω(t ), and the direction
vector of the rod e(t ). In the following, we denote �(t )
as the 8-dimensional time-dependent phase space variable
(v(t ),ω(t ), e(t )) characterizing the state of the rod (Fig. 2).
The explicit expression for the collision frequency for a given
�(t ), F (�(t )), arises from a surface integral of the collision
frequency density

f (z, n; �(t )) = ρσve(z; �(t )) · n�[ve(z; �(t )) · n]

×{δ[e(t ) · n] + σδ(z − L/2)�[e(t ) · n]

+ σδ(z + L/2)�[−e(t ) · n]}, (1)

where z is the axial coordinate along the rod direction, δ the
Dirac delta function, � the Heaviside step function, and n a
unit vector normal to the rod’s surface (Fig. 2). These two
variables characterize the coordinate ze + n of the collision
point between the rod and an obstacle, while ve(z; �(t )) =
v(t ) + zω(t ) × e(t ) is the rod’s velocity at the collision point.
In Eq. (1), the first, second, and third terms in the curly bracket
are relevant to the collision on the side (‖) and two opposing
(±) edges of the rod. Based on f (z, n; �(t )) and F (�), the
coordinate of the collision point and the collision time interval
τ between successive collisions are sampled using stochastic
techniques [18]. (ii) From these sampled variables, r, e, v,
and ω are updated based on the rules of classical mechan-
ics for a rigid body. Repeating these samplings and updates,
we calculate the dynamics of the mobile rod. The details of
the derivation of the collision statistics, sampling method, and
the update scheme are described in Appendix A.

044604-2



INCREASE IN ROD DIFFUSIVITY EMERGES EVEN IN … PHYSICAL REVIEW E 107, 044604 (2023)

-20

0

20

-80 -60 -40 -20 0 20 40 60 80

FIG. 3. Trajectories of the rod’s (Le = 2502 σ ) center of mass for various scaled obstacle densities ρσL2
e from the KMC simulation.

Three-dimensional motions are projected onto the XY plane and scaled by Le.

III. RESULTS

Qualitatively different behaviors occur during a change of
ρ at fixed Le = 2502 σ , as visually captured by represen-
tative trajectories in Fig. 3. The observed time duration is
2.0 × 106σ/u. For ρσL2

e = 1 and 10, the mobile rod seems to
move randomly. At higher number densities ρσL2

e = 100, the
straight motion persists over longer distances compared with
those for lower densities ρσL2

e = 1 and 10. For ρσL2
e = 1000,

we observe straight and bouncing motions.
To quantify these motions (Fig. 3), we calculate Dc of the

mobile rod from its center-of-mass mean-square displacement
(MSD) in the linear time domain. Dc/uσ versus the obstacle
number density ρσ 3 are displayed in Fig. 4(a) for various
mobile rod lengths Le (error bars arise from the linear fit-
ting). In this figure, Dc shows nonmonotonic behaviors with
increasing ρ for the highly elongated rods Le � 66 σ ; Dc

at large Le exhibits both a local minimum and maximum.
When the same data are represented in scaled forms, Dc/uLe

and ρσL2
e , as shown in Fig. 4(b), the curves collapse except

for the larger-density regime. From Figs. 4(a) and 4(b), the
asymptotic forms are observed for small-, intermediate-, and
large-density regimes as Dc/uσ ∝ (ρσ 2Le)−1, Dc/uσ ∝ ρL3

e ,
and Dc/uσ ∝ (ρσ 3)−1, respectively. We emphasize that the
nonmonotonic ρ dependency for Dc arises even under the
Markovian process. In contrast to Dc, the rotational diffu-
sion coefficient Dr in the current system exhibits monotonic
behavior against ρ, Drσ/u ∼ (ρL3

e )−1 as shown in Fig. 8
(Appendix C).

The scaling relations between Dc and ρ are simply ex-
plained based on the Markovian nature. Here, Dc is also
calculated from the integration of the velocity autocorrelation
function over time lag: Dc = ∫ ∞

0 〈v(t ) · v(0)〉dt , instead of
the mean-square displacement. Thus, the diffusion coefficient
would be approximated as the product of the square of speed
u2 and the relaxation time of the center of mass velocity.
The collision frequency can be decomposed into two con-
tributions: collision frequencies from the side F‖ and edges
F±. These contributions scale as F‖ ∼ ρσLeu and F± ∼ ρσ 2u.
These estimates are confirmed by the rigorous calculations for
the collision frequencies as shown in Eqs. (A7) and (A11) in
Appendix. The average angular velocity scales as ω̄ ∼ u/Le.
In the dilute regime ρσL2

e � 1, the relation ω̄ > F‖ is satis-
fied. In this low-density regime, the rod mainly rotates and

occasionally collides with an obstacle on its side. By a few
collisions, the motion of the rod largely changes since the
rod experiences the impulsive forces from various directions.
Then, the relaxation time of the center of mass velocity is
approximated as the mean collision time ∼1/F‖ and Dc scales
as Dc ∼ u2/F‖ ∼ u/ρσLe. This description is consistent with
the observed random motions for the lower-density regimes
ρσL2

e � 10 in Fig. 3. In the higher-density regime ρσL2
e � 1,

where the relation ω̄<F‖ is fulfilled, the rotational motion
of the rod is diffusive, and thus the direction of the rod
slowly changes. In this density regime, the velocity with the

(a)

(b)

FIG. 4. Translational diffusion coefficient of the mobile rod (var-
ious rod lengths Le) from the KMC simulations. Data are shown as
(a) Dc/uσ versus ρσ 3 and (b) in scaled form Dc/uLe versus ρσL2

e .
Error bars and asymptotic exponents are also displayed.
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FIG. 5. Reduced translational diffusion coefficient Dc/uLe ver-
sus obstacle density ρσL2

e with the error bars from MD simulations
(symbols). Data for three rod lengths Le are displayed. For compari-
son, the KMC simulation results (Fig. 4) are shown by curves.

orthogonal direction rapidly relaxes, whereas that with the
axial direction is not largely disturbed. In such a case, there
are possible relaxation mechanisms for the velocity with axial
direction: the change of rod direction or the collision on the
edge. Here, the change of rod direction between collisions
is approximately �θ ∼ ω̄/F‖, and the rotational relaxation
timescales as τr ∼ �θ−2/F‖ ∼ ρL3

eσ/u. This estimate also
predicts the rotational diffusion coefficient Dr = (2τr )−1 ∼
u/ρL3

eσ , in full agreement with our measurements, cf. Fig. 8
(Appendix C). The collision time interval on the edge is about
F−1

± . In the intermediate-density regime where Dc increases,
the rotational relaxation time is smaller than the collision
time interval on the edge. Thus, the velocity relaxes by the
rotation of the direction, and consequently the diffusion co-
efficient is approximately Dc ∼ u2τr ∼ ρL3

e uσ . Within the
high-density regime where Dc decreases again, the collision
on the edge is the main mechanism causing velocity relaxation
with the axial direction, and we obtain Dc ∼ u2/F± ∼ u/ρσ 2.
These mechanisms explained above seem to be consistent
with the persistence of the straight motion with ρσL2

e = 100
and the straight and bouncing motions with ρσL2

e = 1000
displayed in Fig. 3, and the estimated exponents agree with
the simulation results in Fig. 4.

One may suspect that the increase in Dc is an artifact
since we assume a Markovian process even in the high-density
regime. However, we next show that this assumption is indeed
a good approximation to calculate Dc for a rod embedded
in a 3D sea of point obstacles. To this end, we calculate the
dynamics of a rod using conventional molecular dynamics
(MD) simulations [19]. Here, instead of a hard-core poten-
tial, the repulsive Weeks-Chandler-Andersen potential [20] is
employed for the elastic interaction between rod and point
obstacles. The details of the simulation method are described
in Appendix D. Figure 5 displays Dc/uLe (symbols) against
ρσL2

e with various reduced rod lengths Le/σ obtained via
MD. Error bars are again calculated from linear fitting for
the MSDs. Due to the computational cost, data for large rod
lengths Le � 16 000 σ could not be sampled. For comparison,
the KMC data from Fig. 4 are shown in Fig. 5 (solid curves).
The MD results quantitatively agree with those obtained via

FIG. 6. Fitting function for Dc, Eq. (B1), with various rod lengths
Le (black curves). For comparison, Dc from the KMC simulation in
Fig. 4(b) are also displayed by symbols. According to Eq. (B1), the
upturn is estimated to be absent for Le/σ � 520/11.

KMC. This indicates that multibody correlations are negligi-
ble in estimating Dc within the explored wide regime of ρ.

IV. DISCUSSION

This work shows that Dc increases even in a Markovian
process and that the observed exponents are easily ratio-
nalized. This result does not imply that the exponents in
prior studied systems can be simply understood. Frenkel and
Maguire [1,2] investigated Dc of a constituent particle in a
system of infinitely thin hard rods, where Dc was found to
be proportional to the root of the rod density. For a 2D rod
in the presence of point obstacles studied by Höfling, Frey,
and Franosch [5], the power exponent of Dc versus obstacle
density is 0.8 in the concentrated regime. Mandal et al. [7]
investigated the dynamics of a rod-shaped active swimmer
(along the axial direction) and showed that Dc depends on the
square of the density of the constituent. In these prior systems,
the kinetic constraints are not negligible, and they should be
taken into account to explain the exponents.

Some works investigated similar systems to ours. Tucker
and Hernandez [6,21] numerically studied the dynamics of a
5 Å long mobile rod in the presence of spatially fixed spheri-
cal obstacles with radius 0.5 Å with rod thickness 0, 0.1, and
0.5 Å. They argued that the increase in Dc does not occur
in their 3D system, while it can occur in the corresponding
2D setup. One may think that these findings are inconsistent
with our results. However, if one identifies the lengths in their
system with ours, the effective aspect ratio of the rod becomes
about 10 since the interaction distance between the rod and
the obstacle is the rod thickness plus obstacle size. For the
rod with such an aspect ratio 10, an increase in Dc does not
occur, as shown in Appendix B; the upturn of Dc emerges for
an aspect ratio �24 corresponding to Le/σ � 520/11 in our
setting. Conversely, in Tucker and Hernandez’s system, the
increase in Dc will occur for a much smaller obstacle radius
or much larger rod length. Otto, Aspelmeier, and Zippelius
[22] theoretically analyzed the dynamics of a constituent
particle of infinitely thin rods under the assumption of the
Markovian process; the sequential collisions are uncorrelated.
They argued that an increase in Dc should not occur under
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the Markovian process. This result obviously contradicts our
findings. However, they did not consider the long-time persis-
tence of the ballistic motion with the axial direction. Thus, the
increase in Dc could not be captured in their theory.

It should be emphasized that a rise of Dc can occur for a
ballistic system [1–5] or some active matter systems [7] due to
the persistence of the motion with the axial direction. One may
think that an increase in Dc can occur for passive rod-shaped
particles in some solvents or porous media. However, it cannot
exhibit the increase in diffusivity by the same mechanism
as our system since the persistence of the motion with axial
direction rapidly relaxes by the Brownian motion. Recently,
the increase in diffusivity with increasing aspect ratio is ob-
served for rod in a gel [23], although the mechanism would be
different to our system.

The current system consists of a rod colliding with immo-
bile, or infinitely heavy point obstacles. Let us consider the
situation where obstacles move in an equilibrium state. As
long as the obstacle mass is sufficiently larger than M, the
obstacle motion is slow because of the Maxwell-Boltzmann
velocity distribution. In this case, the situation would not
be largely different from the current system since the mov-
ing particles can be approximated as the fixed obstacles for
the rod particle, and the increase in diffusivity will emerge.
In contrast, if the obstacle mass is comparable to M, then
the situation can be different from the current system since
the translational and rotational relaxation times vary largely
with the obstacle mass. Even in this case, the increase in
the diffusivity can emerge since it simply originates from
the reduction of the rotational motion and the persistence
of the axial motion. The analyses for the effects of obstacle
mass on the increase in diffusivity will be interesting work.

V. CONCLUSIONS

This study demonstrated that a Dc upturn can emerge
even in Markovian nature, where the kinetic constraint does
not exist. As a simple model system, we investigated the
single mobile rod-shaped particle in immobile fixed obsta-
cles in three dimensions using highly efficient kinetic Monte
Carlo simulations under the Markovian process. The trans-
lational diffusion coefficient of the rod decreases, increases,
and decreases again as the obstacle density increases. This
nontrivial diffusivity could be explained based on the Marko-
vian process. Namely, without using the concept of the kinetic
constraint, the upturn of Dc was simply explained via two
time-related quantities: the angular velocity and the collision
frequency. Further, the lower limit of Le, where the upturn of
Dc emerges in our system, was estimated as Le/σ 
 520/11
(aspect ratio 24). This work sheds light on the kinetics of
non-spherical-shaped particles.
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FIG. 7. Reduced translational diffusion coefficient Dc/uLe ver-
sus the scaled obstacle density ρσL2

e for various rod lengths Le,
from the KMC simulations. Symbols represent the data with �t =√

I/kBT /10. For comparison, the data with �t = √
I/kBT /100 in

the main manuscript are also displayed by curves.

APPENDIX A: KINETIC MONTE CARLO METHOD

1. Overview

For the calculation of the stochastic dynamics, the kinetic
Monte Carlo (KMC) method is employed. Classical KMC
has been originally used for chemical reactions [12] the Ising
model [13] and lateron for many other systems [24]. In this
work, we extend the conventional KMC method to calculate
the dynamics of our rod-shaped particle. To perform the KMC
simulation, we impose the following four assumptions: (i)
The point obstacles are homogeneously distributed in three-
dimensional space, (ii) The dynamics of the mobile rod is a
Markovian process, (iii) The interaction between the mobile
rod and the point obstacles is hard-core potential; the point
obstacles do not penetrate into the mobile rod, and (iv) The
collision frequency is constant during a small time duration
�t .

From these, we calculate the collision frequency for a given
rod direction, velocity, and angular velocity, as described
below. Based on this collision frequency, the collision time
interval and the coordinate of the collision point on the rod
surface are sampled. With this information at hand, the posi-
tion, velocity, direction, and angular velocity of the mobile
rod are updated. For a rod-shaped particle with a transient
symmetry axis e(t ), the collision frequency is not a constant
between successive collisions since it depends on e(t ). The
collision time interval distribution is therefore not a simple
exponential function, and the time interval cannot be straight-
forwardly sampled. The fourth assumption above has been
made to avoid this difficulty. Due to this assumption, the
current implementation involves an additional parameter �t .
We checked that the obtained KMC results are insensitive to
the precise value of �t provided it is small compared with the
mean rotation period of the rod as shown in Fig. 7. All KMC
simulation results to be presented in the manuscript have been
obtained using �t small compared with the mean rotation
period, more precisely, using �t = √

I/kBT /100, where I is
the relevant component of the moment of inertia tensor, and
kBT/2 the mean kinetic energy for one degree of freedom.

044604-5
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FIG. 8. Reduced rotational diffusion coefficient DrLe/u against
the scaled obstacle density ρσL2

e from the KMC simulations. The
asymptotic exponent Dr ∼ u/ρL3

e σ and error bars from the curve
fittings are also displayed.

2. Collision frequencies

Here we derive the collision statistics between the rod and
the point obstacles. The rod length, radius, mass, and inertia
tensor are denoted by L, σ , M, I, while the total kinetic energy
is 5kBT/2. The number density of the point obstacle is ρ. As
in the main manuscript, the physical quantities are displayed
with dimensions for physical clarity. The rod’s center of mass
velocity, its angular velocity, and the direction of its symmetry
axis at time t are denoted as v(t ), ω(t ), and e(t ), and the
following relation is always satisfied,

e(t ) · ω(t ) = 0, (A1)

FIG. 9. Reduced mean energies versus obstacle density from the
MD simulations. The symbols square, circle, and triangle represent
the mean translational (Mv2/2), rotational (Iω2/2), and potential (U )
energies, respectively, divided by ε. Their sum is strictly conserved.
The colors pink, blue, and green indicate the data with the rod lengths
Le = 66 σ , Le = 402 σ , and Le = 2502 σ , respectively.

because ė = ω × e and because the length of e does not
change in time, 0 = e · ė, where the dot denotes a deriva-
tive with respect to time t . In the following, we denote by
�(t ) the 8-dimensional time-dependent phase space variable
(v(t ),ω(t ), e(t )) characterizing the state of the rod and fur-
thermore introduce the effective velocity on the rod surface as
ve(z; �(t )) = v(t ) + zω(t ) × e(t ), where z is the axial coordi-
nate along e(t ) in the range z ∈ [−L/2, L/2].

A collision with a point obstacle occurs either at the
cylindrical surface (side) or at the surface of one of the two
half-spherical bases (edges) of the rodlike particle. The colli-
sion point on the surface is specified by z and the direction of
the surface normal n at the collision point (a unit vector) as
shown in Fig. 1. If the collision occurs at the side, n is per-
pendicular to e(t). For the collision occurring at the edges, z is
+L/2 or −L/2. From these, the collision frequency density at
z and n for a given �(t ), f (z, n; �(t )) can be expressed as the
sum over three terms corresponding to the side and the two
edges,

f (z, n; �(t )) =
∑

μ∈{‖,−,+}
fμ(z, n; �(t )), (A2)

with

f‖(z, n; �(t )) = ρσve(z; �(t )) · n�[ve(z; �(t )) · n]

× δ[e(t ) · n], (A3)

and

f±(z, n; �(t )) = ρσ 2ve(z; �(t )) · n �[ve(z; �(t )) · n]

×�[±e(t ) · n]δ

(
z ∓ L

2

)
. (A4)

Here, � is the Heaviside step function, and δ is the Dirac
δ distribution. To obtain the collision frequency, we need
to integrate the density f (z, n; �(t )) over the surface of the
rodlike particle, i.e., over z and n. To this end it is convenient
to choose two suitable, and therefore different, frames of
reference for the two types of contributions given by Eqs. (A3)
and (A4).

a. Integration of f‖. For the integration of Eq. (A3),
we set the frame of reference so that the direction vec-
tor of the rod and the effective velocity become e(t ) =
(0, 0, 1) and ve(t ) = (vr, 0, vz ) with vr > 0. Then, the di-
rection vector at the collision point can be described as
n = (sin θ cos φ, sin θ sin φ, cos θ ) with θ ∈ [0, π ] and φ ∈
[−π, π ]. In this coordinate system, the integration of Eq. (A3)
over θ yields

f‖(z, φ; �(t )) =
∫ π

0
dθ f‖(z, θ, φ; �(t ))

= ρσvr (z; �(t )) cos(φ) �[cos φ], (A5)

and the subsequent integration over the remaining angle φ of
the surface normal leads to the collision frequency density on
the side at z

f‖(z; �(t )) =
∫ π

−π

dφ f‖(z, φ; �(t )) = 2ρσvr (z; �(t )). (A6)
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From Eq. (A6), the total collision frequency at the side
F‖(�(t )) evaluates to

F‖(�(t )) =
∫ L/2

−L/2
dz f‖(z; �(t )) (A7)

= ρσL2ω(t )

4
[(α + 1)c+ − (α − 1)c− − χ ],

where we made use of the abbreviations ω(t ) = |ω(t )|, v(t ) =
|v(t )|, c± =

√
(α ± 1)2 + β, and

α = 2v(t ) · [ω(t ) × e(t )]

ω2(t )L
,

β = 4[v(t ) · ω(t )]2

ω4(t )L2
,

χ = β ln

(
α − 1 + c−
α + 1 + c+

)
. (A8)

For v‖e, this reduces to α = β = 0 and thus F‖(�(t )) =
ρσL2ω/2, which vanishes for ω = 0, as expected.

b. Integration of f±. For the integration of Eq. (A4), we
employ the new frame of reference such that ve(z; �(t )) =
(0, 0, ve(z; �(t ))) defines the new z axis, and e(t ) = (er, 0, ez )
with er > 0 fixes the new x axis. Then, the surface normal
is described as n = (sin θ cos φ, sin θ sin φ, cos θ ), with θ ∈
[0, π ] and φ ∈ [−π, π ]. In this coordinate system, collision
frequency density at the angle vector n is simply given by

f±(n; �(t )) =
∫ L/2

−L/2
dz f±(z, n; �(t ))

= ρσ 2ve(±L/2; �(t )) · n�[±e(t ) · n]

×�[ve(±L/2; �(t )) · n]. (A9)

By next integrating Eq. (A9) over φ, we obtain the collision
frequency density at θ as

f±(θ ; �(t )) =
∫ π

−π

dφ f±(n; �(t ))

= 2ρσ 2ve(±L/2; �(t )) cos(θ ) �[cos θ ]

× {π�[±γ (θ )−1] + cos−1(∓γ (θ ))�

× [1|γ (θ )|]}, (A10)

where we defined γ (θ ) = ez cos θ/er sin θ . The collision fre-
quencies at the two edges are obtained by performing the
remaining integration over θ ,

F±(�(t )) =
∫ π

0
sin θdθ f±(θ ; �(t )) = πρσ 2

2
(A11)

×{ |ve(±L/2; �(t ))| ± ve(±L/2; �(t )) · e(t )}.
c. Combining the integrated f‖ and f±. Combining

Eqs. (A7) and (A11), the total collision frequency for given
v(t ), ω(t ), and e(t ) becomes

F (�(t )) = F‖(�(t )) + F+(�(t )) + F−(�(t )). (A12)

3. Time evolution

To calculate the trajectory of the mobile rod, we require
the collision time interval τ between successive collisions and

information about the collision point at the surface of the rod
specified by z and n. Making use of the fourth assumption, the
probability density P(τ ) on the side and the edges for a given
phase space coordinate �(t ) can be described using Eq. (A12)
as

P(τ ) = F (�(t )) exp[−F (�(t ))τ ], (A13)

where this probability density is reasonable in 0 < τ < �t .
(i) Based on Eq. (A13), τ is sampled using inversion

method with the range τ ∈ [0,∞].
(ii) If τ > �t , a collision does not occur in �t . In this

case, the time t , position r(t ), and direction vector e(t ) are up-
dated to t + �t , r(t + �t ) = r(t ) + v(t )�t , and e(t + �t ) =
(0,− sin(ω�t ), cos(ω�t )) in the frame of reference where
e(t ) = (0, 0, 1) and ω(t ) = (ω, 0, 0) define the z and x axes,
while v and ω remain unchanged as v(t + �t ) = v(t ) and
ω(t + �t ) = ω(t ). After that, we sample τ again for the up-
dated variables, �(t + �t ).

(iii) If τ < �t , the time t , position r(t ), and direction
e(t ) are similarly updated to t + τ , r(t + τ ) = r(t ) + v(t )τ ,
and e(t + τ ) = (0,− sin ωτ, cos ωτ ), respectively. Using new
�(t + τ ), we determine whether the collision occurs at the
side or the edges based on the collision frequencies given
by Eqs (A7) and (A11); the probabilities where the collision
occurs at the side is F‖�(t + τ ))/F (�(t + τ )) and those at the
edges are F±�(t + τ ))/F (�(t + τ )).

(iiia) When the collision occurs at the side, z is sampled
from the probability density P(z; �(t + τ )) obtained from
Eqs. (A6) and (A7) as

P(z; �(t + τ )) = f‖(z; �(t + τ ))

F‖(�(t + τ ))
= vr

N

= |[1 − e(t + τ )e(t + τ )]ve(z; �(t + τ ))|
N ,

(A14)

where 1 is the unit tensor, and N is the appropriate normal-
ization factor. From this probability density, we sample z in
the range z ∈ [−L/2, L/2] using the rejection method. The
probability density of φ is obtained from Eqs. (A6) and (A5)
as

P(φ; �(t + τ )) = f‖(z, φ; �(t + τ ))

f‖(z; �(t + τ )
= cos(φ) �[cos φ]

2
.

(A15)

We sample φ using the inversion method via φ = sin−1(1 −
2ξ ) with the equally distributed random numbers ξ ∈ [0, 1].
For the collision at the side, θ is trivially π/2. Thus, the
collision point z and n at time t + τ for a given �(t + τ ) are
determined.

(iiib) When the collision occurs at one of the edges at
z = ±L/2, the probability density for n is constructed from
Eqs. (A9) and (A11) as

P(n; �(t + τ )) = f±(n; �(t + τ )) sin θ

F±(�(t + τ ))

= cos(θ ) sin(θ )�[cos θ ]�[±e(t + τ ) · n]

N ,

(A16)

044604-7



FUMIAKI NAKAI et al. PHYSICAL REVIEW E 107, 044604 (2023)

where N is another normalization factor, and the additional
term sin(θ ) is from the solid angle. From Eq. (A16), θ and
φ are simultaneously sampled by the rejection method. Then,
z and n characterizing the collision point at time t + τ for a
given �(t + τ ) are determined.

(iv) The velocity and angular velocity just after a colli-
sion, v(t + τ ) and ω(t + τ ) are updated based on sampled z
and n. In this calculation, we employ the frame of reference
where e(t + τ ) = (0, 0, 1) defines z axis. In this frame, the
two components in inertia tensor Ixx and Iyy are I as

Ixx = Iyy = I = M
5L3 + 20σL2 + 45σ 2L + 32σ 3

60L + 80σ
. (A17)

Here, the hard-core potential between spherocylinder and
point obstacles does not make the torque along z axis. Thus,
the rod does not rotate around z axis, and we need not con-
sider Izz. The nondiagonal components of I in this frame are
zero because of the symmetry of the rod shape. v(t + τ ) and
ω(t + τ ) are calculated as follows:

v(t + τ ) = v(t ) + �v n, (A18)

Iω(t + τ ) = Iω(t ) + �v z e(t + τ ) × n, (A19)

where �v is the magnitude of the velocity change. It is ob-
tained via energy conservation before and after the collision,
v2(t ) + Iω2(t ) = v2(t + τ ) + Iω2(t + τ ) as

�v = −2I[v(t ) + zω(t ) × e(t + τ )] · n
I + z2(e(t + τ ) × n)2

. (A20)

(v) After the update for v(t + τ ) and ω(t + τ ), we sample
τ again, i.e., start over at (i). We repeat this algorithm to
calculate the time series of the position, velocity, direction,
and angular velocity of the mobile rod.

APPENDIX B: ANALYTIC EXPRESSION FOR Dc

A both qualitatively and quantitatively correct fitting func-
tion of our measured Dc data is

Dc

uLe
≈ 1

2ρσL2
e

+ 11ρσL2
e

65[11 + 2(ρσL2
e )2σ/Le]

, (B1)

which by construction satisfies the three scaling relations
(1) Dc/uσ ∼ 1/ρσ 2Le, (2) Dc/uσ ∼ ρL3

e , and (3) Dc/uσ ∼
1/ρσ 3 observed in Fig. 4 at the small, intermediate, and large
ρ limits, respectively. We can also confirm that Eq. (B1)
agrees quantitatively with the KMC simulation data in
Fig. 4(b), as displayed in Fig. 6. From expression (B1),
Dc/uLe monotonically decreases with increasing ρσL2

e when
Le/σ � 520/11 (aspect ratio is about 24), otherwise Dc/uLe

has a local minimum and maximum against increasing ρσL2
e .

Also from (B1), one can estimate the two crossover densi-
ties ρ1↔2 and ρ2↔3 as follows: ρ1↔2 ≈ 5.7 × (σL2

e )−1 and
ρ2↔3 ≈ 2.3 × (σLe)−3/2. They are both independent of tem-
perature, while Dc increases linearly with u = √

kBT/M in
fixed obstacle geometry (the relation Dc ∝ u is generally ob-
served in gas diffusion [15,25,26]).

APPENDIX C: ADDITIONAL SIMULATION DATA
FROM KMC SIMULATIONS

Figure 7 displays Dc/uσ against ρσL2
e with �t =√

I/kBT /10 (symbols) and �t = √
I/kBT /100 (curves). The

data for the two different �t values clearly overlap. This
result indicates that the KMC simulation result is almost
unaffected by the size of �t when �t is sufficiently small
compared with the rotational time period: �t � √

I/kBT .
The scaled rotational diffusion coefficient DrLe/u versus the
scaled obstacle density ρσL2

e from the KMC simulations
within ρσ 2Le < 1 is shown in Fig. 8. Here, Dr is defined
by the rotational relaxation time τr as Dr = (2τr )−1, where
τr is obtained from the curve fitting for the directional cor-
relation function 〈e(t ) · e(0)〉 using the exponential function
exp(−t/τr ). In this fitting, we treat the data only in the higher-
density regime ρσL2

e > 3, where 〈e(t ) · e(0)〉 monotonically
decreases and can be reasonably fit by the exponential func-
tion (in the smaller-density regime ρσL2

e < 3, 〈e(t ) · e(0)〉
exhibits a damped oscillation, and it is no longer the mono-
exponentially decreasing).

APPENDIX D: MOLECULAR DYNAMICS SIMULATIONS

This system consists of a single mobile rod and, as op-
posed to the KMC method, a large finite number (108) of
spatially fixed point obstacles at number density ρ in a three-
dimensional cubic box with periodic boundary conditions.
The positions of the fixed obstacles are uniformly distributed
in the cubic box, and the mobile rod is initially placed without
overlap to the obstacles. The shape of the mobile rod is sphe-
rocylindrical, and its radius, length of axis, mass are σ , L, M,
as before (Fig. 1). The moment of inertia tensor is I given
by Eq. (A17) in the frame of reference where e = (0, 0, 1)
defines the z axis. The total energy of the system is denoted
by E , now with contributions from the kinetic energy for the
translational and rotational degrees of freedom of the mobile
rod as well as of the potential energy between the mobile rod
and fixed obstacles as

E = Mv2

2
+ Iω2

2
+ U (r, e, {Ri}), (D1)

where I is given in Eq. (A17), v, ω, r, and e are the center
of mass velocity, angular velocity, center of mass position,
and direction unit vector of the mobile rod, respectively, and
Ri denotes the position of the ith obstacle. In the molecular
dynamics simulation, we choose U as a Weeks-Chandler-
Andersen (WCA) potential which works for the minimum
distance between the major axis of the rod and the ith ob-
stacles di = d (r, e, Ri ) as

U (r, e, {Ri}) = 4ε
∑

i

[(
σ

di

)12

−
(

σ

di

)6

+ 1

4

]
, (D2)

for di � 21/6σ , where ε is the energy unit for the WCA poten-
tial, and di = d (r, e, Ri ) is calculated using the algorithm by
Lumelsky [27]. The initial v and ω are randomly given so that
the sum of Mv2/2 and Iω2/2 becomes 5ε/2. Consequently, E
keeps 5ε/2 because the system is prepared without overlap
(U = 0) at startup. We calculate the dynamics of the rod
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using the Leap-Frog algorithm extended to the rod-shaped
particle [19]. The results are obtained for the time duration
107σ

√
M/ε with a step size 10−3σ

√
M/ε. Figure 5 displays

the reduced diffusion coefficient Dc/uLe versus number den-
sity ρσL2

e for various rod lengths Le. We recall, u = √
kBT/M,

and kBT/2 was calculated as the mean of the kinetic en-
ergy of a single degree of freedom in the MD simulation.
In the molecular dynamics simulation, the rod is completely
trapped at rather highly number densities ρσ 2Le � 1, where
Le = L + 2σ . Such a trapping motion is beyond the scope of

this work. Thus, we limit ourselves to the range of the number
densities as ρσ 2Le < 1, or equivalently, ρσL2

e � Le/σ .
In the MD simulation, the total energy E is distributed over

the translational, rotational, and potential energies. We display
the time-averaged energies Mv2/2, Iω2/2, and U versus the
obstacle density in Fig. 9. From these data, Mv2/2ε and
Iω2/2ε become almost 3/2 and 1 in the simulated density
regime, although these kinetic energies slightly decrease when
the obstacle density approaches the trapping density regime
ρσ 2Le ∼ 1.
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