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Thermophoretic motion of a charged single colloidal particle
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We calculate the thermophoretic drift of a charged single colloidal particle with hydrodynamically slipping
surface immersed in an electrolyte solution in response to a small temperature gradient. Here we rely on a
linearized hydrodynamic approach for the fluid flow and the motion of the electrolyte ions while keeping the full
nonlinearity of the Poisson-Boltzmann equation of the unperturbed system to account for possible large surface
charging. The partial differential equations are transformed into a coupled set of ordinary differential equations in
linear response. Numerical solutions are elaborated for parameter regimes of small and large Debye shielding
and different hydrodynamic boundary conditions encoded in a varying slip length. Our results are in good
agreement with predictions from recent theoretical work and successfully describe experimental observations on
thermophoresis of DNA. We also compare our numerical results with experimental data on polystyrene beads.
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I. INTRODUCTION

Nonequilibrium transport processes of charged colloids or
macromolecules in aqueous solutions are ubiquitous in bio-
logical, chemical, and physical systems [1-6]. Typically, the
motion of such colloids is mediated by externally maintained
thermodynamic (bulk) gradients mostly in solute concentra-
tion, electric potential, and temperature. The phoretic motion
then depends in a subtle manner on the surface properties of
the colloid and its interactions with the solvent whose details
are still subject of ongoing scientific research, experimentally
[4,5,7-12] as well as theoretically [13-21].

In particular, the directed drift motion in response to a
temperature gradient, usually referred to as thermophoresis
is a formidable problem due to its peculiar sensitivity on
the details of the system under investigation. It depends not
only on particle properties such as molecular weight [22],
size [8,23-25], anisotropy [26,27], concentration [28], surface
charging, and surface coating [9], but also on solvent param-
eters including permittivity, salinity, Debye screening length,
and thermoelectric field, as well as their inherent temperature
dependence [10,17,25,29]. For example, already the depen-
dence of the thermophoretic drift velocity on the dimensions
of the colloid has been observed differently for the same sys-
tem under investigation. While the study in Ref. [8] suggests
a linear variation with particle size, measurement data from
Refs. [23,24] strongly supports a constant thermophoretic
drift motion of the particle.

This results in competing contributions to thermophoretic
transport rendering it more complex to understand and predict
than other field-driven transport processes such as elec-
trophoresis or diffusiophoresis. Nevertheless, thermophoresis
has numerous (bio-) technological and microfluidic applica-
tions, for example, it plays a pivotal role for the separation and
characterization of polymers and macromolecules by thermal
field-flow fractionation [30], the trapping and enrichment of
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DNA in a microchannel with ambient flow [25,31], the possi-
ble guiding of fluid motion by thermal micropumps [32,33],
and in the state-of-the-art analysis of biomolecular interac-
tions by means of microscale thermophoresis (MST) [34].

Thermally driven transport was first observed by the Irish
physicist John Tyndall in aerosols by simple noticing that
a temperature gradient affects the motion of dust particles
tending to avoid hot surfaces [35]. Shortly afterwards, the
German physiologist Carl Ludwig discovered a similar effect
in aqueous alkali halide solutions in 1856 [36], which then
was independenly considered in detail by the Swiss physico-
chemist Charles Soret in 1879 [37]. The phenomenon is there-
fore also called the Ludwig-Soret effect or just Soret effect.

In principle, thermophoresis of a charged colloidal parti-
cle immersed in an aqueous electrolyte solution constitutes a
highly nonlinear transport problem coupling ion convection-
diffusion dynamics, electrostatics, and solvent flow. This
makes a quantitative analysis of the underlying field equa-
tions and their corresponding boundary conditions within a
continuum approach almost intractable. Nevertheless, most
studies regard thermophoresis more or less explicitly as a
linear-response phenomenon [17,29,38], where the equilib-
rium electrolyte structure around the colloid is only slightly
distorted by the applied temperature gradient. Then to linear
order, the thermophoretic drift velocity of the colloidal parti-
cle becomes

Ur = -D7 VT, ey

with Dr being referred to as the thermal diffusion coefficient
which may take both signs indicating that the colloid migrates
to the cold for positive Dy and to the warm for negative
values, respectively. This transport coefficient constitutes an
Onsager cross coefficient relating heat and particle flux within
the framework of nonequilibrium thermodynamics [28,39].
Considering symmetry arguments, the linearized set of partial
differential equations can be significantly simplified and thus
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the problem of calculating the thermal diffusion coefficient
Dy essentially reduces to finding a solution to a coupled
set of ordinary differential equations with suitable boundary
conditions, similar to the treatment of the problem of elec-
trophoresis by O’Brien and White [40]. While in the two
limiting cases of thin and wide Debye layers, the scale dis-
parity as well as weak surface charging allow for approximate
analytic solutions [17,29], a numerical approach is generally
neccessary to capture the subtle interplay of the underlying
transport mechanisms for the full range of parameters. Here
the focus lies on the response of the aqueous electrolyte to the
temperature gradient, in particular, how concentration gradi-
ents in the bulk solution and the accompanying thermoelectric
potential affect the thermal transport coefficient via boundary
conditions. Furthermore, effects arising from a strong surface
charging can be properly revealed only by retaining the full
nonlinear Poisson-Boltzmann equation governing the equi-
librium potential instead of applying its linearized form in
Debye-Hiickel approximation valid only for weakly charged
particles.

Based on these considerations, we provide here a compre-
hensive review of the thermophoresis problem of a charged
spherical colloid within linear response following the theo-
retical approach of Rasuli and Golestanian [38]. Moreover,
for completeness, we also discuss in detail the correct repre-
sentation of the electrolyte bulk behavior in terms of suitable
far-field boundary conditions since this has been paid lit-
tle attention to in the literature so far, but seems to be
crucial to correctly determine the thermal diffusion coeffi-
cient. Comparison with other most recent theoretical work
on thermophoresis [19] supports our explanations. This pa-
per is organized as follows: In Sec. II we reformulate the
generic thermophoresis problem within a hydrodynamic con-
tinuum approach. Then the linear response of the system
is addressed in Sec. II B, where we derive the relevant lin-
ear differential equations for thermophoretic transport, while
Sec. II C provides a short discussion of different contributions
to the thermal diffusion coefficient. In Secs. IID-IIG we
elaborate the techniques to considerably simplify these differ-
ential equations relying on strategies originally introduced by
O’Brien and White [40] to tackle the electrophoresis problem.
In the following Sec. III, the solution procedure to obtain
numerical solutions to the ordinary differential equations is
described, while in Secs. IV B-IV E the results are compared
to other theoretical approaches as well as to experimental data
on thermophoresis of DNA and polystyrene beads. Last, we
conclude in Sec V.

II. THEORY

In this section, we introduce a minimal theoretical con-
tinuum model for a charged single colloid in an aqueous
electrolyte solution exposed to a stationary and spatially uni-
form temperature gradient. Here a description in terms of field
equations is employed, where the behavior of the bulk solution
is accounted for by suitable far-field boundary conditions. In
particular, we elaborate the linear response of the system to
small temperature gradients in order to calculate the thermal
diffusion coefficient for arbitrary Debye layer width and pos-
sibly large surface charging.

Most theoretical approaches to thermophoresis of colloids
discussed in the literature [13,17,29,38,41] constitute exten-
sions of the theory of electrophoresis [16,18,40,42-45]. Our
theoretical description follows the same path. In particular,
when concerning the solution strategy of the corresponding
field equations using asymptotic expressions for the relevant
quantities, we strongly rely on the techniques of O’Brien and
White in their seminal work on electrophoresis [40].

A. Formulation of the thermophoresis problem

The system of interest is a charged chemical inert dielectric
spherical particle, immersed in a large electrolyte reservoir,
where the completely ionized solute consists of N different
ionic species of charge z;e with elementary charge e and va-
lences z; (i = 1,2, ..., N). This reservoir can exchange heat
with the surroundings and at the boundary a thin charged
layer emerges due to ionic density gradients setting up a ther-
moelectric field (see Appendix A). At the interface between
solid and electrolyte, a Debye double layer of characteristic
width 1/k forms, screening the surface charge of the col-
loidal particle. It comprises a thin immobile layer of adsorbed
counter-charged ions on the solid surface adjacent to an oth-
erwise diffusive cloud of mobile ions [46]. The double layer
connects smoothly to an electroneutral bulk region within the
electrolyte-domain boundary. Then a stationary and spatially
uniform temperature gradient VT is applied externally, result-
ing in a phoretic motion of the neutrally buoyant spherical
particle with steady-state velocity U y relative to the quiescent
electrolyte. This drift motion is a consequence of the local hy-
drodynamic stresses in the surrounding solution [13] induced
by gradients in ion concentrations and electric potential (see
Appendix A) in the bulk solution, as well as the corresponding
temperature-induced asymmetry of the Debye double layer.

In addition to the Debye length, a second length scale is
characteristic for the system, namely the distance from the
particle center to the hydrodynamic slipping plane [47]. The
solvent inside may remain attached to the particle surface
and a hydrodynamically stagnant layer builds up, except for
a small region of slip length A [48] accounting for the possi-
ble hydrophilic or hydrophobic nature of the particle surface
[49,50]. Thus, the slipping plane can be understood as the
effective or virtual boundary of the colloidal particle with
hydrodynamic radius a, where the electrolyte is assumed to be
unaffected by the applied temperature gradient. In the remain-
der, we employ a reference frame attached to the center of the
colloidal particle. Hence, in the far field the solvent flow ap-
proaches a uniform stream —U y and within the slipping plane
the velocity is zero. The accompanied temperature profile is
assumed to change only linearly in the temperature gradient

Tr)=Ty+r-VT, 2)

where Tj denotes the reference temperature in the center of
the spherical particle. The presence of the colloidal particle
does not alter the applied temperature gradient since ther-
mal conductivities of the solvent and the core material of
the colloid are assumed to be comparable. In contrast, for
metallic particles the local temperature variations around the
colloid may be of central importance [51]. Furthermore, the
ions are treated as noninteracting particles, dispersed in a
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fluid that consists mainly of solvent molecules, yielding an
ideal dilute solution. These assumptions justify a continuum
description of the thermophoresis problem, where the colloid
is considered as a macroscopic object compared to the solutes
and the surrounding solvent as a dielectric continuous medium
[52]. The fundamental equations governing thermophoretic
transport in terms of the electrostatic potential ¢(r), the ion
concentration n;(r) for each species i = 1, 2, ..., N, the pres-
sure p(r), and the velocity field u(r) within a stationary state,
are presented in the following.

1. Governing field equations

The Poisson equation relates the electrostatic potential out-
side the colloidal particle to the free charge density

N
p(r) = zien(r), 3)
i=1
via
1
V- [€OVem)] = - —p(). )

where the space dependence of the relative dielectric per-
mittivity €.(r) is inherited from the thermal gradient, since
the permittivity depends on temperature. Here n;(r) denotes
the local concentration of the ions and € is the vacuum
permittivity.

The current density of the ionic solutes is phenomenolog-
ically modified along the lines of Onsager’s linear response
relation between conjugate fluxes and forces [39] and reads

Ji(r) = ni(r)u(r) — i zien;(r)Ve(r)
— Dimn(O[SpVT () + Viegm(m].  (5)

It accounts for the combined effects of advection, electric
migration, and thermal and mass diffusion, where D;(r) =
,u?kBT(r) denotes the Einstein diffusion coefficients evalu-
ated at the local temperature. Thus the assumption is that the
ion mobilities /1,? are temperature-independent and the Stokes-
Einstein relation holds locally. The ionic Soret coefficients S
of the salt cations and anions comprises the thermophoretic
response of the solutes due to hydration by surrounding water
molecules [53-55] and a thermoelectric field [28,41,56] act-
ing on the ions (see Appendix A). In principle, these Soret
coefficients could also be temperature-dependent; however,
we shall be interested only in the effects linear in the tem-
perature gradient. Consequently we can evaluate them at the
reference temperature 7p. In the following, they are treated as
known input parameters.

In the stationary state, the currents are source-free and
satisfy the extended Nernst-Planck equations

V -ji(r) =0. (6)

In addition, we consider the momentum-balance equation for
the solvent and shall neglect effects of inertia in the limit of
small Reynolds number. It is known as the stationary Stokes
equation for a Newtonian fluid

VP(r) — nVZu(r) = f(r), (7)

accompanied by the incompressibility constraint
V. u(r)=0. ®)

The electric body force density is obtained as
€
1) = =1V (r) — ZEX) Verr), ©)

from the divergence of the Korteweg-Helmholtz stress tensor
for an electrically linear dielectric material [57-59]. The first
term on the right-hand side (r.h.s.) of Eq. (9) denotes the
electrostatic force density while the second is a dielectric
contribution accounting for the polarization of the solvent in
the local electric field E(r) = —V¢(r). For an incompressible
solvent, the electrostrictive contribution due to variations in
the relative dielectric permittivity with respect to the solvent
mass density o, as well as the hydrostatic pressure can be
absorbed in an effective pressure [60]

P(r) = p(r) - %me@f(@) . a0
Pm /T

Here p(r) denotes the hydrodynamic pressure and 7 is the
viscosity of the solvent. We ignore effects arising from a
possible temperature dependence of the viscosity.

2. Boundary conditions

At the stationary (virtual) surface of the colloidal par-
ticle with hydrodynamic radius a, the boundary conditions
are specified by means of the unit normal n pointing into
the solvent. Then, by virtue of the electric Gauss’ law, the
electric displacements in both the dielectric particle and the
solvent are connected to the effective surface charge density
o(r) by
o(r)

=——— (1D
€0

a - a .
[er(r)a—n¢(r) - Gﬁn(r)ﬁqﬁm(r)}

r=a

where €(r) is the dielectric permittivity of the core ma-
terial and 0/0n =n-V denotes the normal derivative at
the surface. In principle, the potential inside the parti-
cle ¢"(r) has to be obtained from Laplace’s equation V -
[eM(r)V¢™(r)] = 0, together with the continuity condition
[¢(r) — ¢™(r)]|,—. = 0. However, the ratio of the dielectric
permittivities is small for the particles of interest [61], such
that we can neglect contributions from the electric field inside
the particle.

Furthermore, the electrolyte solution within the region be-
tween the solid particle surface and the slipping plane is
assumed to be unaffected neither by the applied temperature
gradient nor by the accompanied electric field and displays
no macroscopic motion. Consequently, electrochemical reac-
tions, mostly from dissociation of surface functional groups
or adsorption of ions and surface conduction [62-64] due to
possible lateral motion within the slipping plane, are absent,
yielding a radially symmetric surface-charge density op on
the colloidal particle independent of the temperature. Then
Eq. (11) simplifies to

d¢(r) 90

on T e (12)

r=a
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Under these conditions, the ion currents together with the
velocity normal to the particle vanish:

(13a)
(13b)

n 'ji(r)|r:a = 07
n-u(r)l= =0,

since ions cannot penetrate the slipping plane. The velocity
obeys a Navier boundary condition [65]

A
w(r)|,—g = ;{0’(r) ‘n—[n-o'(r) nn}|,—, (14)

linearly relating the tangential component of the electrolyte
velocity u(r) = u(r) — [u(r) - n]n to the shear stress tensor
o' (r) = n{Vu(r) + [Vu(r)]"} at the slipping plane [48]. Here
A denotes the slip length, which we treat as a known input
parameter. For A = 0 the usual no-slip boundary condition is
recovered.

At large distances away from the colloidal particle within
the electroneutral bulk region (not yet in the vicinity of the
electrolyte domain boundary), the electric field approaches
the thermoelectric field as a consequence of the thermoelec-
tric force F; = z;eE™ directly acting on the ions [19,56]. To
linear order in the thermal gradient the thermoelectric field is
uniform,

lim Vé(r) = —E" = ¢th2, (15)
|r]—o00 Ty
where the response coefficient ¢ is referred to as the thermo-
electric potential (see Appendix A).

Furthermore, the ion concentrations approach their bulk
behavior arising from the redistribution of the salt ions [41]
due to the temperature gradient. To linear order in the thermal
gradient (Appendix A), the ion concentrations behave asymp-
totically for |r| — oo as

ni(r) ~n(r) = ndo(1 — Spr- VT). (16)

This is a striking difference to other phoretic transport pro-
cesses, such as diffusiophoresis [66] or electrophoresis [19],
since there one avoids the interdependence of companion
fields in the bulk, whereas in thermophoresis, the inher-
ent coupling of the thermoelectric field and the gradient in
ion concentrations has to be accounted for [see especially
Eq. (AS5) in Appendix A].
Finally, we have to specify the far-field stream velocity
lim u(r) = —-Ur, 17)
r|—o00
by the requirement for phoretic motion, that the total force
acting on the colloidal particle vanishes [52]. There is no need
to include a zero-torque constraint, as the problem displays
axial symmetry. Here Uy denotes the thermophoretic velocity
attained by the particle under steady-state conditions. The
calculation of its magnitude |Uz| constitutes the goal of our
investigations.

B. Linear-response theory

We are solely interested in the linear response of the system
to an externally applied temperature gradient. Correspond-
ingly relative temperature changes over distances of the order
of the extend of the colloid including its Debye layer, a + «;; "

are considered to be small as characterized by the following
condition:

VT
To

(a+xyh < 1. (18)
Here the inverse (equilibrium) Debye screening length «y is
defined via

N
1
2 22 b
Ky = ——— E zen,, 19
O kgToepe? &= M0 (1

with dielectric permittivity € and constant bulk ion con-
centration n,, evaluated at the reference temperature 7y. In
this case, the electrical double layer is only slightly distorted
from its equilibrium configuration by the applied temperature
gradient and the subsequent particle motion. This allows lin-
earizing the governing nonlinear partial differential equations,
together with the corresponding boundary conditions, in the
perturbation with respect to the spherically symmetric ref-
erence state, which corresponds to thermal equilibrium with
a uniform temperature 7y, such that no solvent flow uy = 0
occurs. Consequently, we can write the field variables within
linear response as

u(r) = su(r), (20a)
ni(r) = nd(r) + dni(r), (20b)
P(r) = Py(r) + 8P(r), (20c)
B(r) = ¢o(r) + 8¢(x), (20d)

where n?(r), Py(r), and ¢y (r) denote the reference quantities
with » = |r| and the perturbation terms are proportional to
[VT| to lowest order. The thermophoretic velocity is thus
linearly related to the weak temperature gradient by

Uy = —D; VT, @21)

defining the thermal diffusion coefficient as Dr. Consequently
the calculation of |Ur| to linear order in the temperature
gradients is equivalent to determining Dr.

1. Reference system

Substituting the expansion [Egs. (20)] into the nonlinear
field equations [Eqgs. (4) and (6)—(8)], we arrive to zeroth order
in the perturbation at the equilibrium electrokinetic equations,

0 = V2o(r) + —5p0(r), (22a)
€0€;

0= VPy(r) + po(r)Veo(r), (22b)

0=V [uzen)(r)Veo(r)+ D)Vn)(r)],  (22¢)

with charge density pp = ), z,-en?(r) and spatially uniform
diffusion coefficients DY = u%%gTy. A solution for the conti-
nuity equation [Eq. (22c)] exists for vanishing fluxes, j(r) =
0, recovering the Boltzmann distribution

0 b ziepo(r)
)(r) = nt — , 23
n; (r) =n;,exp |: toTo (23)
where the potential vanishes in the electroneutral bulk,
lim ¢o(r) = 0. 24)
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Inserting this ion distribution into Eq. (22a) and using the
spherical symmetry yields the nonlinear Poisson-Boltzmann
equation

1 d d
ﬁa[’zd_r%(’)} =~ Z(E’O), (25)

determining the overall electrostatic potential [67]. The corre-
sponding boundary condition [Eq. (12)] reduces to

deo(r)
dr

0o

(26)

€oed

r=a

Furthermore, a local balance between pressure gradients and
electric body forces [Eq. (22b)] maintains a spherically sym-
metric solvent distribution around the colloidal particle with
local solute (osmotic) pressure

N
Po(r) = ksTo Y [nd(r) — nly]. @7)

i=1

and vanishing pressure at infinity, Py(r) — 0 as r — oo.

2. Linearized equations

Retaining only first-order perturbation terms, a set of cou-
pled linear field equations is obtained:

0= VZ5¢(r) + —58p(r)
€0€;
<r -VT )
—aV - (Ve ), (28a)
T
0 = nV2u(r) — VSP(r) — po(r)Vép(r) (28b)
1, ,VT
—38p(r)Veo(r) + S @€0es [Vo(r)] T (28¢)
0
0=V. I:n?(r)u(r) — D?n?(r)V (82(1.))
n;(r)
— ,u?z,-en?(r)Vch)(r) — D?nﬁ.)(r)SiTVT
—p'Z VT Vn?(r):|, (28d)
0

with charge density variations §p(r) =), z;edn;(r). Here
gradients in the dielectric permittivity have been evaluated as
Ve (r) = —ae’VT /Ty by expanding the dielectric permittiv-
ity in temperature gradients

de ae
0 r 0 r
&(r)=c¢€ — |Jr- VT =¢ — r-VrT, 29
() =€ + (8T> T (29)
with logarithmic derivative « = —d1lne/0InT.

This set of generalized electrokinetic equations [Egs. (28)]
for thermophoresis, requires the solution of the full non-
linear Poisson-Boltzmann equation [Eq. (25)] as input. In
principle, these coupled partial differential equations consti-
tute a possible starting point for theoretical investigations of
thermophoresis. However, to streamline the further analysis,
we follow Ref. [38] and introduce a set of ionic potential

functions

8n;(r)

nd(r)

z;edp(r)
kg Th
_ zielgo(r) + ¢ r- VT
kgTy Ty '

Qi(r) = +Sir- VT +

(30)

which is suggested from the linearization of a Boltzmann-type
ansatz

ni(r) = "?,0 exp [—Zj?g; + Q;(r)
; zier - E®
—Syr-VT(r) — —kBT(l‘) :|, 3D

for the ion concentrations. Here the first term in the exponen-
tial is of a local-equilibrium form, the last two terms anticipate
the thermophoretic motion of the ionic solutes in the bulk
(see Appendix A) and €2;(r) parametrizes the residual genuine
nonequilibrium effects. Then Eq. (28d) yields

2oy ey L€V P0(r) ey ()
V=E2(r) Ty [VQI(I') na }
__zeVo(r) <1 _ zielgo(r) + 45”‘])2’ (32)
kT kg T T

after spelling out the divergence. Gradients in the perturbed
pressure 6 P(r) and the electrostatic potential §¢(r) are elimi-
nated by taking the curl of Eq. (28b), leading to

N
NVZ[V xu(m)] — ) zien)(nVQi(r) x Veo(r)

i=1

N ) th
- Zz,-en?m[% - S"T%]VT: X Vo (r)
i=1

T, , VT
— —ae’V|Vo(r)|> x —. (33)
2 T

The introduction of the potential function £2;(r) considerably
simplifies the task of computing the thermal diffusion co-
efficient D7, since it decouples Egs. (28b) and (28d) from
the Poisson Eq. (28a). Note that the r.h.s. of Egs. (32) and
(33) depend (nonlinearly) on the reference system, while the
dependence on the unknowns €2;(r) and u(r) on the left-hand
side (1.h.s.) is linear by construction.

To obtain a complete specification of the thermophoresis
problem, it still remains to determine the boundary conditions
for the perturbed field quantities u(r) and €2;(r). At the col-
loidal surface, we impose the Navier condition for the solvent
velocity [Egs. (14) and (13b)], together with a vanishing radial
ion current [Eqgs. (13a)], yielding within linear response

082;(r) zielgo(r) + ¢"n- VT
on ks Ty To

r=a

=0. (34

r=a

In the far field, the velocity obeys Eq. (17) to lowest order in
the temperature gradients. Furthermore, by means of Egs. (15)
and (24) the perturbed potential behaves asymptotically as

VT
S(r) ~ ‘hrT for |r| — oo, (35)
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as a consequence of the thermoelectric migration [Eq. (A3)].
In addition, according to Eq. (16) the perturbation in ion
concentrations should tend to

dn;(r)

b
Mo

~—8Lr-VT for [r|— oo, (36)

arising from the gradients in bulk concentration. Hence, it
follows from Eq. (30) that we have to impose
lim Q;(r)=0, 37
|r|—o00
within the bulk region. These boundary conditions together
with the corresponding Egs. (32) and (33) enable us to cal-
culate the response of the isolated colloidal particle to the
small temperature gradient and its accompanying fields. In the
next sections we shall show that the asymptotic behavior of
the functions u(r) and €2;(r) completely determines the linear
response, i.e., the thermal diffusion coefficient. The linearized
Poisson equation [Eq. (28a)] is redundant.

C. Different contributions to thermophoresis

In principle, the thermal diffusion coefficient Dy is
determined by four contributions. The first is due to the elec-
trostatic energy density of the different ionic solutes within the
temperature-induced asymmetric Debye double layer [19] and
is represented by the term va Zfezn?(r)qbo(r) in Eq. (33).
A second stems from polarization effects of the solvent in
the local electric field and can be interpreted as hydration
enthalpy density [19,28,59]. It corresponds to the last term
on the r.h.s. of Eq. (33). The last two contributions originate
from the thermophoretic behavior of the ions in the bulk solu-
tion encoded in the term Ziv zien?(r)(zieqbth ks Ty — SiT To)
and the far-field boundary conditions [Egs. (35) and (36)].
We refer to it as ion hydration effect. More specifically, we
define the contribution arising from the boundary condition
for the disturbed electrostatic potential only as electrophoretic
contribution to ion hydration, as it is reminiscent of the elec-
trophoresis problem.

Since the field equations for the perturbed fields are linear,
we can disentangle the different contributions by discarding
inhomogeneities or changing the far-field boundary condi-
tions. For example, the electrostatic contribution is obtained
by keeping in Eq. (33) only the relevant energy-density terms
and imposing the far-field boundary conditions

lim 8¢(r) = 0, (38a)
|r|—>o00

dn;
lim @ =0. (38b)
[r|—o00 no

Similarly, by retaining the original boundary conditions and
artificially switching off the relevant terms related to electro-
static energy, contributions from ion and colloid hydration can
be compared.

D. Decomposition of the problem

The appearance of the thermal diffusion coefficient Dy in
the far-field boundary condition [Eq. (17)] for the velocity
makes the problem of solving the governing generalized elec-
trokinetic equations intricate. Using the technique of O’ Brien

and White [40], we circumvent this difficulty by exploiting
the linearity of the derived field equations together with the
corresponding boundary conditions and writing the overall
solution as a superposition of the solutions for the following
two simpler auxiliary problems:

(1) The spherical particle held fixed in a flow field —U in
the absence of any applied temperature gradient VT yielding
the far-field boundary conditions

lim u(r) = -U, (39a)
|r|—o00
lim 8¢(r) =0, (39b)
|r|—o00
on;
lim ”b(r) —0. (39¢)
[r|—>00 1

i,0

(2) The spherical particle held fixed in a temperature gra-
dient VT in a quiescent electrolyte far away from the colloidal
particle with far-field boundary conditions

lim u(r) = 0, (40a)
|r|—o00
s¢(r) ~ —r-E" for |r| —» oo, (40b)
Sni(r) ;
5 — ~ —=Spr- VT for [r| — oo. (40c)

Mo

The sum of the solutions to the Eqs. (32) and (33) for each
of these problems then satisfies the desired far-field boundary
condition [Eq. (37)]. Concomitantly, we have to ensure the
constraint that for thermophoretic motion the net force acting
on the particle is zero [52]. Within linear response, the forces
required to hold the colloidal particle fixed for each problem
read

F =0y, (41a)
vT
F® = <2>T0, (41b)

where ¥ and y ) are constants to be determined. The super-
position of the forces gives then rise to a vanishing net force
F=FD + F® =, provided we choose

y@vr
U= —"——. (42)
Yy Ty
Thus, by comparison with Eq. (21) the thermal diffusion co-
efficient is read off as

y 1

TZWFO‘ (43)

Furthermore, this method yields also the diffusion coefficient
D = kgTy/yV of a charged spherical particle from the solu-
tion to problem (1).

E. Symmetry considerations

The reference system without gradients exhibits spherical
symmetry, while both auxiliary problems display only axial
symmetry due to the imposed perturbations either by the flow
U or the thermal gradient VT'. We choose the origin of the
coordinate system to be at the center of the colloid and the
z direction to be aligned with the flow, respectively with the
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FIG. 1. Schematics (not to scale) of the colloidal particle with
hydrodynamic radius a carrying a surface charge density o in a
particle-fixed reference frame. A small temperature gradient VT is
applied from outside. The short-dashed line denotes the outer edge
of the slightly distorted Debye double layer of width 1/k, while the
dotted line corresponds to the fluid-domain boundary located at a
macroscopic distance from the colloid. The integration boundary 45
in the electroneutral bulk is shown as big-dotted line. The solvent
displays a spatially varying dielectric constant €(r) due to the tem-
perature gradient.

thermal gradient (see Fig. 1). Thus the temperature is repre-
sented as

Ta)=Ty+r-VT =Ty + |VT|rcos?. (44)

Furthermore both auxiliary problems (1) and (2) are discussed
in parallel by introducing

_ ]y, (1)
X_{VT/TO, Q). (45)

To linear order in X all scalar potentials are then of the form
f(r)(r/r)- X with some spherically symmetric function f(r),
while no pseudoscalar fields can be constructed. Accordingly,
a convenient representation of the solenoidal velocity field is
introduced by

ur)=V x [ry(r)] = V x [r x Vx(r)], (46)

in terms of two scalar functions, called toroidal ¥ (r) and
poloidal Debye potential x (r) [68]. Owing to the fact that no
pseudoscalar fields arise within linear response with respect
to X, the velocity fields can be written as

ur)=-Vx[rxVyxym]-U, (1)
u(r) = -V x[r x Vx(r)]. 2)

(47a)
(47b)

Finally, we express the ion potentials and the poloidal Debye
potential as

Qi(r) = wi(r)(r/r) - X,
x(r) = R(r)(r/r)-X,

with radially symmetric unknowns w;(r) and x () for each of
the two problems.

With these symmetry-adapted forms for u(r) and €2;(r),
the linearized partial differential equations [Egs. (32) and
(33)] reduce to a set of coupled linear ordinary differential
equations, drastically simplifying the task of calculating the
thermal diffusion coefficient.

(48a)
(48b)

F. Calculating the force acting on the colloid

In order to obtain the thermal diffusion coefficient, we first
have to determine the forces acting on the colloidal particle for
each problem (1) and (2). A common procedure is to integrate
viscous and electrical traction forces over the surface of the
spherical particle relying on the calculation of gradients in
the potential and velocity. However, we avoid this cum-
bersome procedure following again a method suggested by
O’Brien and White [40] for the electrophoresis problem and
compute the forces from the asymptotic form of the velocity
field u,s(r) behind the Debye double layer in the bulk solution.
This is possible, since in the momentum-balance equation nei-
ther inertial terms no body forces enter, rather all forces derive
from a stress tensor. Thus, by Gauss’ theorem the total force
on the colloid is the same as the total force on any concentric
sphere containing the colloid. At large radii, this force will
be only due to the viscous drag, since forces due to electric
fields either rapidly decay or cancel upon integrating over the
sphere. Another convenient aspect of this approach is that it
does not require computing the disturbances in the potential
8p(r).

Hence, we consider a large sphere S enclosing the particle
and the Debye double layer. Its radius has been taken suffi-
ciently large in order to enclose the region where the charge
density p(r) is nonnegligible, since in the bulk solution local
charge neutrality holds (see Fig. 1). Consequently the fotal
electric force on the combined system becomes zero and the
external forces F for problems (1) and (2) are counterbalanced
by integrating viscous traction forces over the surface 95 of
the sphere,

F= —f o(r)-nds, 49)
3s

where
a(r) = —P®)I + n{Vu(r) + [Vu@®)]’}, (50)

denotes the viscous stress tensor for the respective problems.

Next, we show how the velocity and pressure fields behave
asymptotically for large distances and calculate the corre-
sponding forces. The electric forces decay rapidly in Eq. (28b)
as r — oo leading to a simplified momentum-balance equa-
tion

—nV x V xu(r) — V§P(r) =0, on

together with the corresponding boundary conditions
[Egs. (39a) and (40a)] for each problem in turn. Since
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charge neutrality is assumed to hold in bulk, we can also
safely neglect the term o po(r)8¢(r) in Eq. (28b). Taking
the curl of Eq. (51) eliminates the pressure and using the
representation of the velocity field in terms of the poloidal
Debye potential [Eqgs. (47)] yields for the scalar function
R = R(r) the ordinary linear differential equation

ZLIZB)](r) =0, (52)
with the differential operator
> 2d 2
L=—+-——-=. 53
dr? + rdr r? (53)
An asymptotic solution then reads
C
R(r) ~ Cyj1 + —22 for r— oo, (54)
r

with constants Cy 1, Cy.2 to be determined, where the nota-
tion is adopted from Ref. [40]. By symmetry and linearity in X
the perturbation in the scalar pressure field assumes the form
8P(r) = w(r)(r/r) - X with a radially symmetric field 7 (r)
which can be calculated for large distances from Eq. (51) to

2nCn41
2

w(r) ~ n%[rf(R)] = for r—o00. (55)

The magnitude of the force F = FX/|X] exerted by the fluid
on the particle

F = —/dS[a,r(r)cosﬁ — oy ,(r)sin ], (56)

is now evaluated from the viscous stresses in spherical coor-
dinates

du, (1)
r

6C, 12C
:_,7< N+1+—i\’+2>|X|COS§’
r

I du,(r) = Oup(r) uy(r)

g ¢ 09 or r

6Cn2
o

Urr(r) - —P(I’) + 277

(57a)

72

Oﬂr(r) =

= IX| sin 9. (57b)

We thus arrive at
F =87nCyi1X, (58)
and consequently it follows from Eq. (43) that

2)
_ Gl (59)
e Ty

N+1

T

where the constants C 1(\121 ,C ,(v%)rl have to be extracted from the
asymptotic behavior of R(r) [Eq. (54)] for problems (1) and
(2). As an additional result, we obtain the diffusion coefficient
for the particle as D = kgTy /8 nC, 1(\,21.

G. Nondimensional formulation and reference scales

We employ a dimensionless formulation, measuring
lengths in units of the particle radius a and electrostatic
potentials in units of the thermal voltage kgTp/e. The Pois-
son equation [Eq. (28a)] suggests then measuring surface

charge densities in units of €ye’kpTpy/ae, while the viscos-
ity in Stokes’ equation [Eq (28b)] sets the unit of velocity
to Uy = €9e’(kpTy)?/e*na. Rather than using dimensionless
concentrations n;(r)a®, we follow tradition and introduce the
dimensionless concentrations by n;(r)/2I (and similarly for
the reference concentrations n? o/21) with the constant ionic
strength in the bulk solution

N
1 2 b
=3 ;zi nto- (60)

For a monovalent salt assuming completely dissociated
ions, the dimensionless concentrations simplify to ”3.0 /21 =
n® o/2I = 1/2 for cations (+) and anions (—) as the valences
evaluate to +1. Similar expressions can also be found for
divalent or trivalent salts. Consequently, this renders the prob-
lem independent of the equilibrium ion bulk concentrations,
except for the dimensionless inverse Debye screening length
Kko. It characterizes the limiting cases of a thin (ko > 1),
respectively wide (ko < 1), double layer as compared to the
particle radius a. Once we fix the dimension of the particle, «g
can only vary with the ionic strength 7.

Then the Poisson-Boltzmann equation for the dimension-
less equilibrium potential ¢o(r) reads

1d

rrdr

N
|:r2%¢o(r)i| = —«} ;zinf’,o exp [—zigo(r)], (61)

subject to the boundary conditions

lim ¢y(r) = 0, (62a)
o)\ _ 4. (62b)
dr r=1

Here o denotes the dimensionless bare colloidal surface po-
tential. Further, using the symmetry-adapted ansatz for the
ionic potential and the velocity field [Egs. (47) and (48)], we
obtain from Egs. (32) and (33) the coupled linear ODEs in
dimensionless form

o) 40 [dwm b 2R<r>]
dr dr
_ d¢0(r) Pei’ (1)
=iy, {z,-[¢>o(r)+¢>th] 1 @), ©
N
LLRY) + Kg d(ﬁ;r(r) sz?(r)wiir)
i=1
deo(r) &
=~ >
[l (1)
Zibo(r) + 2™ — ST, (2)
0, (1
) {a%% @, (©30)

for the nondimensional functions w;(r) and R(r). In the pre-
ceding equations, we have introduced the ionic Péclet number
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[61]
U()Cl

PC,’ = D—?,

(64
quantifying the ratio between convective and diffusive ion
transport. The corresponding far-field boundary conditions
translate to

Iim w;(r) =0, (65a)
r—00

R

lim X _ o, (65b)
r—oo
dR

lim X0 _ (65¢)
r—oo dr

and at the surface of the colloidal particle, the boundary con-
ditions assume the form

dw;(r) o, €})
dr |,_,  |=zleoMl=1 + 9", (),
(662)
RO 172, (1)
s R ) (66b)
dR(r) d*RNH| (172, (1)
ar |, " Mam | T @ (66¢)

Eventually, these equations are solved numerically to deter-
mine the thermal diffusion coefficient Dr (o, o, A)3Ty/2Upa
as a dimensionless function of the rescaled bare colloidal
surface potential oy, the normalized inverse Debye width «
and the reduced slip length A for different salt species. Similar
to the electrophoresis problem [40], the additional factor of
3/2 is introduced for a convenient comparison with other
theoretical approaches [19,38].

III. NUMERICAL SOLUTION OF THE DIFFERENTIAL
EQUATIONS

In this section we describe the numerical methods em-
ployed to obtain approximate solutions of the ODEs in
dimensionless form as elaborated in the previous subsection
for the relevant functions ¢ (r), w;(r) and R(r). The Poisson-
Boltzmann equation is solved relying on a Chebyshev spectral
collocation method [69,70]. For the coupled linear ODEs
[Egs. (63)] a shooting method [71], together with asymp-
totic matching is applied adapting the solution procedure of
O’Brien and White [40] for the electrophoresis problem.

A. Solving the Poisson-Boltzmann equation with the Chebyshev
spectral collocation method

Since the dimensionless potential, as well as its first and
second derivative are required as coefficients in Egs. (63)
and in the corresponding boundary condition [Egs. (66a)], we
have to determine numerically first these quantities from the
nonlinear Poisson-Boltzmann equation.

Thus after mapping the half-infinite domain [1, c0) to the
half-open interval [—1, 1) by a diffeomorphism, this two-
point boundary value problem (BVP) [Egs. (61) and (62)]
can be solved efficiently and with high accuracy by applying
a Chebyshev spectral collocation method to the transformed

BVP (see Appendix B). Here a nonlinear coordinate transfor-
mation of the form

@, [-1,1) — [1, 00),

+1, (67)

is used, where L > 0 denotes an adjustable mapping param-
eter. The advantage of the chosen algebraic transformation
is its smoothness and robustness, i.e., the decreased sensi-
tivity on L [70,72,73]. Then in the finite domain [—1, 1] we
approximate the solution to the problem ¢y(¢) by a global
Lagrange-interpolation polynomial of degree M [70,74] that
satisfies the mapped BVP at the Chebyshev-Gauss-Lobatto
points

r .
t = — ], =0,...,M. 68
; cm<M> y (68)

The pth derivative (p = 1, 2) is obtained by differentiating the
interpolant at these nodal points {¢;}, defining the discretized
derivative operators which can be represented by Chebyshev
differentiation matrices D [69,70]. Accordingly, the numer-
ical differentiation may be performed as

y(p) — D(”)y, (69)

where y and y” are the vectors of function values, re-
spectively approximate derivative values at these nodes, and
D® = (DM, The transformed BVP is now converted to
a set of M + 1 nonlinear algebraic equations that is solved
by the Newton-Raphson method with an appropriate initial
guess (for further details see Appendix B). We choose the
mapping parameter as equal to the dominant length scale of
the solution L = 1/ky, i.e., the Debye length in units of the
particle radius and vary the total number of Chebyshev nodes
depending on the rescaled bare surface potential o ensuring
a rapid convergence of the polynomial series coefficients for
different . This rapidity facilitates the high accuracy of the
calculated numerical solution, as well as the stability of the
numerical scheme [72,75]. Finally, an approximate solution
for ¢o(r) is obtained on the unbounded interval [1, c0) in
terms of a transformed barycentric interpolant [76] using the
inverse transform CDZI (see Appendix B). Similar expressions
for the first and second derivatives of ¢(r) are also derived.

B. Solving the coupled linear ODEs with a shooting method and
asymptotic matching

The algorithm for solving the coupled set of linear ODEs
[Egs. (63)] is based on a predictor-corrector Adams-multistep
method adaptively choosing both step size and order [77].
We start the numerical integration at large radial distance
ro = 1 4+ 20/ko, i.e., in the bulk, with the asymptotic forms
for the functions w;(r) and R(r) and terminate it after reaching
the rescaled (virtual) colloidal surface with r = 1. Neglecting
exponentially small terms due to the electrostatics in Egs. (63)
for r — o0, the asymptotic behavior can be obtained from

Lwi(r) =0,
L(ZLR)r)=0,

(70a)
(70b)
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for both problems (1) and (2) obeying the far-field boundary
conditions [Eqgs. (65)]. This yields

w;(r) ~ _21‘, (71a)
I
C
R(r) ~ Cys1 + 1:2” (71b)
for r — oo with asymptotic constants C;, i =1,...,N +2

for problems (1) and (2), respectively. The second expression
is reminiscent of the results for the velocity field obtained in
Sec. I F, however, now in their nondimensional forms. We are
aiming to determine the set of asymptotic constants

C=(Ci,....Cn2)", (72)

for the two problems from the slipping plane boundary con-
dition [Egs. (66)]. The linearity of the coupled ODEs allows
writing a general solution as the following linear combination:

N+2

Y() = Your (1) + Y Ce¥bom (1), (73)
k=1

by superimposing a particular solution yp. () for each prob-
lem (1) and (2) with N + 2 homogeneous solutions y}’jom(r).
Note that the homogeneous solutions yﬁom(r) are the same for
both problem (1) and (2).

First, we define the kth solution (k =1, ..., N 4+ 2) to the
homogeneous problem as

Veom(r) = (), ..., &l (r), RE(r) . (74)

In addition, the initial condition for this solution set is de-
termined by the asymptotic forms [Eqgs. (71)] in combination
with the particular choice

Ch=6y, i=1,....,N+2, (75)
for the asymptotic constants C;. Utilizing these initial condi-
tion, we then solve for each value of k = 1,..., N + 2 in turn
the homogeneous forms of Egs. (63)

d dw; 2R
Lo(r) — 00O i) 5 2RO 76w
dr dr r
dgo(r) ¢ wi(r)
2¢¢0 0 i _
LER) + 15— = Y aml(n—— =0, (76b)

i=1

by numerical integration from r = ry down to the virtual col-
loidal surface at r = 1.
Second, to obtain a particular solution denoted as

Yourt (1) = (@1 (r), .. ., wn(r), R(r)T, (77)

the inhomogenous ODEs [Egs. (63)] are again numerically
integrated from r = ry down to the slipping plane at r = 1
for problems (1) and (2). Here all asymptotic constants are set

to zero,
=0 i=1,...,N+2. (78)

Substituting the general solution [Eq. (73)] into the boundary
conditions at the colloidal surface [Eqgs. (66)], yields a linear
system of N + 2 simultaneous equations of the form

A.C=B (79)

for the N + 2 asymptotic coefficients C for problems (1) and
(2). The coefficient matrix A and the vector B for both prob-
lems can be found in Appendix C. We solve these equations by
Gaussian elimination with maximum pivoting. The method
presented requires that the homogeneous ODEs have to be
solved N + 2 times and the inhomogeneous ODEs are solved
once for each problem in turn.

As the thermal diffusion coefficient is calculated from the
asymptotic constants determined from the boundary condition
at the slipping plane, our approach requires the functions to be
resolved with high accuracy within the Debye double layer, as
well as in the bulk region which may have considerably vary-
ing length scales. This is justified for the equilibrium potential
¢o(r), since the combination of the algebraic transforma-
tion, together with the Chebyshev collocation method yields
high accuracy to possibly machine precision. Especially in
the outer region (bulk), the transformation allows the poten-
tial to be sufficiently resolved notwithstanding that it decays
exponentially.

Furthermore, we also have extended the computational
domain far enough to capture the power-law behavior of the
respective functions. We have found by varying the radial dis-
tance ry that our choice 1 4 20/« (corresponding to 20 Debye
lengths) is an acceptable lower bound, balancing computa-
tional effort and accuracy of the results. The relative changes
between each trial amounts to approximately ~10~> for all
ko. Thus, the results for Dy are identical within four to six
(significant) digits.

IV. RESULTS AND DISCUSSION

In the following, we first validate the numerical pro-
cedure described in Sec. III by comparing our results for
the electrostatic potential and thermal diffusion coefficient
with (semi-) analytical expressions from previous theoreti-
cal studies [38,67]. Then the theoretical work by Rasuli and
Golestanian [38] is carefully reexamined with the main focus
on the effect of the thermoelectric field in bulk. Afterwards,
a detailed comparison with a different theoretical approach
[19] is performed, where besides the mentioned effect of
electric migration in bulk also several other contributions to
the thermal diffusion coefficient are investigated. At the end,
we compare experimental results obtained in Refs. [8,10] on
thermophoretic drift motion of single-stranded DNA, respec-
tively polystyrene beads, to our theoretical predictions with
particular emphasis on the hydrodynamic boundary condition,
the effect of buffer dissociation and surface charging. The
characteristic parameters chosen to represent a typical aque-
ous electrolyte with different salt added, are summarized in
Appendix D and used to generate Figs. 1-6. We point out that
all quantities in this section are presented in a nondimensional
form (see Sec. II G for the corresponding characteristic units)
unless otherwise stated.

A. Code validation in Debye-Hiickel approximation

First, we test our numerical approach for the case of weakly
charged colloids, where some analytic progress can be made.
The Debye-Hiickel approximation [67] for a weakly charged
colloidal particle states that for |z;¢9| < 1, the nonlinear
Poisson-Boltzmann equation [Eq. (61)] can be simplified
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FIG. 2. (a) Numerical results for the rescaled equilibrium potential and its first derivative (inset) as a function of the distance r from the
particle surface for intermediate Debye screening and weak negative surface charging, oo = —0.08 (~ 2.1 mV). The black dashed lines denote
the analytical results within the Debye-Hiickel approximation [Eqgs. (80)]. (b) Variation of the numerically obtained zeta-potential values
¢o(1) with the dimensionless Debye screening length for different 0. Thermal diffusion coefficient for an aqueous solution with (¢) KCI and
(d) NaOH added. Compared are numerical solutions (solid lines) with analytic expressions from Ref. [38] for a no-slip boundary condition.

by expanding the Boltzmann factor exp(—z;¢9) = 1 — zipp +
Ol(zi¢y)?] to obtain a linear differential equation for the
rescaled equilibrium potential ¢o(r), using the electroneutral-
ity condition in bulk. Then assuming a monovalent salt an
analytic solution for the potential and its first derivative fulfill-
ing the boundary conditions [Eqgs. (62)] are readily obtained as

_ % 1 1 80
do(r) = T+ xo ~exp [—xo(r — D], (80a)
deo(r) _ _(l + K0>¢0(”)' (80b)
dr r

Our numerical approach to solve the nonlinear Poisson-
Boltzmann equation by a Chebyshev collocation method (see
Sec. IITA) can now be validated by comparison with this
analytic expression [Egs. (80)]. As shown in Fig. 2(a), for
weak negative surface charging oy = —0.08 (= 2.1 mV) and
intermediate Debye screening, our results are in perfect agree-
ment with the theory.

Moreover, Rasuli and Golestanian [38] have successfully
derived semianalytic formulas for the thermal diffusion co-
efficient by solving the coupled system of linear differential
equations for the hydrodynamic solvent flow and the gen-

eralized ionic potentials [Eqgs. (32) and (33)] within the
Debye-Hiickel approximation. In particular, the crossover be-
tween the two limiting cases of thin (ko > 1) and wide (k¢ <
1) Debye layers is elaborated. However, they have neglected
the advection current and the coupling between ionic and
electric potential functions which effectively disconnects the
dynamics of the solutes from that of the solvent flow, provid-
ing an analytically tractable problem. We start by comparing
our numerically determined results for the rescaled thermal
diffusion coefficient Dy with these analytic formulas for two
aqueous solutions, adding exclusively the salt KCI, respec-
tively NaOH, for different bare surface potentials oy and a
no-slip boundary condition (A = 0). By artificially setting the
thermoelectric potential to zero, we have modified our nu-
merical treatment to account for the difference in the ionic
potential functions of both theoretical approaches (see also the
next Sec. IV B). In addition, focusing on binary electrolytes
equal ionic Soret coefficients S; = S; = (Sf + S;)/2 for
cations (4) and anions (—) are used. Here S = oL /kBTO2
is related to the ionic heat of transport due to water hydration
effects for infinite dilution; see Ref. [54] and Appendix A.
This helps in rearranging the pertinent equations into a form
equivalent to those of Ref. [38]. Then for small bare sur-
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FIG. 3. Numerically obtained thermal diffusion coefficients for
an aqueous solution in the presence of (a) KCl and (b) NaOH plotted
against the inverse Debye screening length for different bare surface
potential oy and a no-slip boundary condition A = 0. The solid lines
take into account the electrophoretic contribution to the ion hydration
effect while the dashed lines discard it (as suggested in Ref. [38]).

face potentials the numerical results agree very well with the
predicted analytic expressions for the full range of Debye
screening lengths and in fact, only for increasing bare po-
tential values small deviations occur, since the Debye-Hiickel
approximation ceases to be valid, as shown in Figs. 2(c) and
2(d). Here the numerically calculated zeta-potential values
¢o(1) at the slipping plane, which varies with ionic strength
and thus with the dimensionless Debye screening length «,
as oy is fixed, corroborates this argument [see Fig. 2(b)]. The
precise agreement with the semianalytic formulas does not
only confirm our numerical approach, but also shows that the
solution techniques of O’Brien and White [40] are reliably
applicable to the problem of thermophoresis.

B. Comparison with the model of Rasuli and Golestanian

The theoretical continuum model for thermophoresis pro-
vided in Ref. [38] merely differs from our approach by
the asymptotic behavior of the overall electrostatic potential.
Since we properly account (to linear order) for the thermo-
electric field behind the Debye double layer in bulk [see
Egs. (15) and (16) or Egs. (35) and (36), respectively], Ra-
suli and Golestanian seemed to have implicitly discarded this
electrophoretic contribution to the ion hydration effect in their
treatment by not (directly) specifying a far-field boundary

condition for the electrostatic potential. At least, it was not
mentioned, neither in their paper [38] nor in its Supplemental
Material. Consequently, their choice of the ionic potential
functions misses a (rescaled) term o z;r - E? = z;¢%r - VT.
In addition, they also have claimed, that an appropriate bound-
ary condition for » — oo consists of a vanishing potential
functions w;(r) (see the Supplemental Material of Ref. [38]).
Clearly within these assumptions, the steady-state distribution
of the ionic solutes in bulk cannot be correctly recovered
to linear order in thermal gradients (see Appendix A) with
ramifications for the thermal diffusion coefficient.

Already for an aqueous solution titrated solely with KCI,
which gives rise to a rather weak thermoelectric effect,
respectively electrophoretic contribution, with ¢ = —0.42,
deviations from our numerical results for the thermal diffusion
coefficient over the whole range of inverse Debye screening
lengths and for different surface potentials with a no-slip
boundary condition become apparent [Fig. 3(a)]. Although
their theory correctly predicts the sign of Dy, the differ-
ence increases up to six orders of magnitude once very thin
double layers are considered. However, the discrepancies be-
come even more prominent, when accounting for electrolytes
with a strong thermoelectric effect. While for an aqueous
solution adding exclusively the base NaOH (¢ = —2.8),
the theoretical model of Rasuli and Golestanian [38] yields
only strictly positive thermal diffusion coefficients in the full
parameter range, our numerical results for the transport coef-
ficient Dy with A = 0 show an inverse thermophoretic effect
(Dr < 0) for weak charging, together with a sign reversal
around k(y =~ 1, as the bare surface potential approaches large
values [see Fig. 3(b)]. The work in Ref. [19] strongly sup-
ports our findings (see also Sec. IV C for details) rendering
the ambiguous treatment of the boundary condition for the
electrostatic potential and the corresponding choice of the
ionic potential functions in Rasuli and Golestanian’s work
[38] exclusively applicable in the limit of very small ther-
moelectric potentials ¢ < 1. This severe restriction holds
only for a few salt species, such as LiCl and NaF as the
magnitude of the (rescaled) thermoelectric potential can reach
up to &3 (=100mV) and its sign depends strongly on the
relative difference of the ionic heat of transport; see Ref. [41]
and Appendix D. To account for this inconsistency, Rasuli
and Golestanian also incorporated a possible salt dependence
of Si in their theoretical treatment when comparing with
experiments which has not improved the situation yet.

C. Relation to the work of Burelbach and Stark

A different semianalytical formula for the transport co-
efficient of a weakly charged colloidal particle with a
hydrodynamic slipping surface undergoing thermophoresis
has been proposed by Burelbach and Stark [19]. Based on
an alternative hydrodynamic approach [28] within the frame-
work of nonequilibrium thermodynamics using Onsager’s
reciprocity relations, the colloidal drift velocity can be derived
irrespective of how the screening length 1/ky compares to the
particle size a. In our approach, we strongly rely on momen-
tum conservation in a force-free system to obtain the thermal
diffusion coefficient beyond the limiting cases of strong and
weak screening. Again, we numerically determine the thermal
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FIG. 4. Net thermal diffusion coefficient (a—d) and its different contributions (e—h) of a colloid with different bare surface potentials oy
for an aqueous electrolyte in the presence of the salt KCIl, respectively NaOH, as a function of the inverse Debye screening length for a
no-slip (A = 0) and a perfect slip boundary (A — 00). Our predictions and results from Ref. [19] are shown in solid and dashed-dotted lines,
respectively.

diffusion coefficient for a colloidal particle with different sur- In general, their calculations for the rescaled ther-
face charging immersed in a water-based electrolyte solution mophoretic mobility predict qualitatively similar behavior
with the salt KCl, respectively the base NaOH, added. In within the range of our testing parameters and both salts.
Fig. 4 the results are presented as a function of the inverse Especially, the overall strong enhancement of Dy in magni-
Debye screening length, together with the predictions from tude, together with the flattening out to a plateau for strong
Ref. [19] for both, no-slip (A = 0) and perfect-slip (A — 00) shielding ko > 1 as the slip length X is increased, are common
boundary condition. features [Figs. 4(b) and 4(d)]. In addition, for bare surface
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FIG. 5. Soret coefficient Sy as a function of the inverse Debye
screening length «, for 22mer single-stranded DNA in the presence
of (a) KF and (b) NaF. Symbols correspond to the experimental data
from Ref. [10], lines represent numerical predictions without any free
fitting parameters for a = 1.7 nm, an effective charge of Z = —13.8
and different slip length A. The theoretical calculations also take into
account the influence of buffer dissociation.

potentials |og| = 6.0, the sign reversal in the thermal diffusion
coefficient for the base NaOH occurring independently of the
slip length when k¢ ~ 1 is also covered by both theoretical
models [Figs. 4(c) and 4(d)]. Nevertheless care has to be
taken again, when comparing our predictions with those of
Ref. [19], since for an increasing oy, the dimensionless zeta
potential ¢o(1) can become large [Fig. 2(b)], such that the
Debye-Hiickel approximation is no longer valid. Thus, the
theoretical approach suggested in Ref. [19] does not apply
in this regime. Fortunately, we do not encounter this prob-
lem, since the rescaled potential ¢(r) is calculated from the
full nonlinear Poisson-Boltzmann equation [Eq. (61)]. Con-
sequently, our findings suggest for screening lengths o < 1
and large o( a different though still complex behavior. To
gain further insight into it, we also have computed the various
contributions to the net thermophoretic transport coefficient
D7 as mentioned in Sec. II C for different 0. Here we display
only both limiting cases of weak (o9 = —0.08) and strong
(09 = —12.0) charging for illustration purposes [see Figs. 4(e)
and 4(f)]. Independent of the slip length A and strength of
the thermoelectric effect, encoded in ¢‘h, the term arising
from the colloidal hydration is still the dominant contribution,
yet significantly smaller as compared to the predictions from
Ref. [19] [Figs. 4(f) and 4(h)]. Consequently, our numerical

10°

10%
103

102

St

10!

a = 100 nm

go
—24.3
—60.7 —-—
: —401 —-—
10*1 Ll 1 I | I L
10 100

Ro

10°

URRRLLL B R R LU IR ELL I R IR
RTINS R T BRI TTT SR AT A RTTIT MR

FIG. 6. Soret coefficient Sy vs the inverse Debye screening
length « for carboxyl modified polystyrene beads of radius a =
100, 250, and 550 nm exclusively titrated with KCI. Symbols re-
late to the experimental data from Ref. [8]. Solid colored lines
represent numerical predictions for a no-slip boundary condition
A = 0 together with an effective surface charge density of oy =
—4500 ¢/um? corresponding to different bare surface potentials oy,
and solid black lines are the analytic solutions from Ref. [15] for
the same o,. Dashed-dotted lines denote numerical results with
artificially increased oy. Short and long-dashed lines represent the
semianalytical solutions from Ref. [19] for identical parameters.

results exhibit neither an extended shoulder in the curve for
the salt KCl [see Figs. 4(a) and 4(b)] nor a pronounced peak
in the function for the base NaOH [see Figs. 4(c) and 4(d)]
around ko =~ 1. In the limit of thin Debye double layers, re-
spectively high ionic strength, Burelbach und Stark [19] have
derived an analytic expression for the dimensionless thermal
diffusion coefficient

Dy = p.¢", (81)

as the product of the thermal potential and the electrophoretic
mobility

2
290 for A = 0, ko> 1
3/(0

He = ) (82)
Z2_00h A £0, kS
3(1+21) P 0

Hence, independent of the salt added Dy converges either to
zero for a no-slip boundary condition [Figs. 4(a) and 4(c)] or
to a constant value, as the slip length is increased [Figs. 4(b)
and 4(d)]. Whether a negative thermophoretic effect occurs,
depends on the sign of oy and ¢™. Furthermore, the ion
hydration effect is presumed to be the dominant contribution
to the transport coefficient for strong screening and arbitrary
slip length A [Figs. 4(e)—4(h)]. Our numerical predictions
support all these findings, although we have observed a dif-
ferent scaling for the thermophoretic transport coefficient Dy
and particularly its ionic hydration contribution since the
electrophoretic mobility u. differs by a factor of ~1.5, as
compared to the results of Ref. [19], yielding the famous
Helmholtz-Smoluchowski [78] expression oy/ky for A =0
and a generalized version of it for a very thin Debye double
layer with a slipping boundary condition. In Ref. [19], they
also offer a possible explanation for this discrepancy referring

044602-14



THERMOPHORETIC MOTION OF A CHARGED SINGLE ...

PHYSICAL REVIEW E 107, 044602 (2023)

to the dielectric permittivity of the colloid which was assumed
to be equal in their treatment, whereas we have considered
it to be negligible. Here they have used a similar argument
as in their treatment of the heat flow in the boundary layer
approximation (see Appendix of Ref. [28]).

Nevertheless, for weak surface charging (Debye-Hiickel
approximation) both predictions are in very good agreement
with maximal relative deviations remaining below 5% over
a wide range of Debye screening lengths « [see Figs. 4(a)
and 4(b) and inset of Figs. 4(c) and 4(d)]. In particular, at
low ionic strength (kg << 1) both results seem to obey an
identical limiting behavior, which also has been obtained in
Ref. [29] within the point-particle limit a — 0. Besides that,
perfect accordance is also achieved for the colloidal hydration
contribution to thermophoretic transport [Figs. 4(e) and 4(g)].

D. Thermophoresis of single-stranded DNA

In this section, we compare our predictions for the ther-
mophoretic transport coefficient to experimental results from
Ref. [10] on 22mer single-stranded DNA molecules im-
mersed in a TRIS-HCI [tris(hydroxymethyl)aminomethane-
hydrochloride] buffered aqueous electrolyte with different
monovalent salts added. The measurements have been con-
ducted at room temperature and with 1 mM TRIS-HCI buffer
to stabilize the pH value around 7.5. These oligonucleotides
exhibit a hydrodynamic radius of the order of the Debye
length (1/k¢ &~ 1) and carry a rather high negative surface
charge (Jog| < 6), requiring the electrical potential to be
derived from the full nonlinear Poisson-Boltzmann equa-
tion [Eq. (61)]. Thus, our theoretical approach provides a
promising candidate to be tested against the experimental
measurements. In general, the effect of buffer dissociation
on the thermophoretic transport coefficient has been ignored
when fitting data points from experiments since the ionic heat
of transport (see Appendix A), as well as the ion mobilities
of the buffer molecules are not known or difficult to obtain
experimentally [10,17,38,79]. Yet, for the given pH value, the
TRIS-HCI buffer is almost fully dissociated and hence the
contribution from the TRIS-H™ cation to the thermoelectric
effect cannot be neglected, as it sets a lower bound for ky when
the salt concentration is decreased. Although the oxonium
(H30™) and hydroxide ions (OH™) serve as a very efficient
source for the thermoelectric potential, their influence can be
safely ignored for the given pH value [10].

In the presence of NaF and KF, the experimental data is
well fitted by our numerical results for the dimensionless Soret
coefficient S; without any free fitting parameters provided
that a partial hydrodynamic slip is imposed at the DNA sur-
face [see Figs. 5(a) and 5(b)]. In particular, concerning the salt
NaF a slip length of A = 0.25 (*0.43 nm) is used, whereas
changing the cation, Nat — K™ yields an even smaller value
of L = 0.125 (=0.21 nm). For both salts a similar trend yet
lower in magnitude is predicted for A = 0. Here the Soret
coefficient relates to the nondimensional thermal diffusion
coefficient as follows [19]:

3a 1421
Sp =Dyt it

T 205 14310

(83)

where (g = e?/4mepe’kpTy is defined as Bjerrum length,
resulting from the balance of electrostratic and thermal en-

ergies. For water at room temperature, it takes the value
0.7nm. In addition, the fitting in Figs. 5(a) and 5(b) has
been carried out with a hydrodynamic radius of a = 1.7nm
and an effective charge number Z = —13.8, connected to the
bare surface potential by oy = Z{g/a. Owing to the fact,
that the average values a = 2nm and Z = —11.6 obtained
in Refs. [10,79] from experiments display rather big uncer-
tainties, we have achieved a reasonable agreement with these
numbers and consequently a, as well as Z are not used as
free-fitting parameters. Moreover, the effective charge per
base pair Z/22 = (.63 matches also with electrophoresis re-
sults using coarse-grained molecular-dynamics simulations
[10,80] and the value A = 0.25 for the slip length is consistent
with current experiments in Ref. [81] on electrophoresis of
DNA in nanopores, where a value of A = 0.29 have been
suggested to explain their findings. However, we can only
speculate about the salt-dependent decrease in the hydro-
dynamic slip at the DNA surface. Obviously, modeling the
single-stranded DNA molecule as a spherical particle with a
homogeneously distributed surface charge neglects some of
its important structural properties. The nucleobases inside the
DNA grooves are hydrophobic, leading to large hydrodynamic
slip effects [82], while the negatively charged phosphate
groups of the backbone are known to be hydrophilic. How-
ever, the latest atomistic molecular dynamic simulation [83]
provides evidence also for a nonzero tangential velocity along
the DNA backbone. Possibly the K* ions provides an en-
hanced efficiency in shielding these hydrophilic regions as
the ionic radii of the cations K™ and Na™ differ by around
30% and it is more likely for them to be located nearby
the negatively charged phosphate groups due to electrostatic
interactions, resulting in a smaller overall hydrodynamic slip
length A for our simplified model. It is also likely that a
nonuniform surface conductivity [16,62—-64], which we did
not account for in our theory, can effectively reduce the hy-
drodynamic slip.

To incorporate the effect of buffer dissociation in the nu-
merical calculations, we follow Ref. [19] and choose for the
ionic heat of transport (see Appendix A) of the TRIS-H* ion
the same value as for the Na* ion. In addition, the data for the
mobility necessary to determine the ionic Péclet number (see
Appendix D) in the corresponding equations [Egs. 63] is taken
from a similar organic compound, the amino acid leucine
[84]. The influence of the buffer dissociation is highlighted
by changing the salt concentration and keeping the one of
the buffer fixed. This is illustrated in Figs. 5(a) and 5(b) for
the different salts KF and NaF. While for intermediate De-
bye lengths (1/k¢ = 1), the contribution from the dissociated
buffer ions to the Soret coefficient is of little significance inde-
pendent of the added salt, in the regime of low ionic strength
(ko < 0.5) it is to a large extent determined by the buffer
ions which only moderately improve the agreement with the
experimental data, especially for the salt NaF [see Fig. 5(b)].
In general, our findings are in accord with the results obtained
in Ref. [19], except for the decrease in the hydrodynamic slip
length as the cations are exchanged.

When accounting for the buffer molecules, the electrolyte
consists of two monovalent salts which are assumed to be
fully dissociated. Hence, both buffer ions TRIS-H* and CI1-,
together with the ions for the different salts KF and NaF,
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are present in the aqueous solution with corresponding va-
lences +1. Consequently, the dimensionless concentrations
(see Sec. I G) no longer evaluate to a constant, rather they
explicitly depend on the Debye screening length 1/ via

2
ot 1 (k"
21 AW

E _l - <Kguf)2

21 2 ko ) |’
where we have defined ng as the dimensional equilibrium bulk
concentration of the added salt ions and ny,s as the respective
concentration of the buffer ions. Here K(')’“f = (87 lgnpur)'/?
represents the dimensionless number for the inverse Debye
screening length k¢ in the absence of salt. Then by varying
only ng a fixed buffer concentration of ny,s = 1 mM yields
a lower bound of 0.18 for «y. Using Egs. (84), the thermal
potential can be recast into

T «cbuf 2 . ~
th__ ‘o) (Ko TRIS-HY _ oCl
o = 2{(K0>(ST s

cbuf 2
+[1 — (°—> }(S; — ST‘)}, (85)

Ko
with S;t = QjE/kBTO2 for cations (4+) and anions (—) and
corresponding values for the buffer molecules. Similar ex-
pressions can be derived for n?(r) /21 by applying the same
strategy. Thus, these quantities, especially the thermal poten-
tials, are essentially dominated by the ions of the dissociated
buffer at low ionic strength. Apparently the dependence on
the Debye screening length 1/k( vanishes upon the presence
of only one species of salt, and we recover the case of a binary
electrolyte.

(84a)

(84b)

E. Thermophoretic motion of polystyrene beads

We also carry out numerical calculations for the exper-
iment of Duhr and Braun [8] performed on carboxylate-
modified polystyrene beads (PSBs) of various sizes in the
Debye-Hiickel regime. Similar to the 22mer single-stranded
DNA molecules, these PSBs are immersed in an aqueous
solution buffered with ny,r = 0.5 mM TRIS-HCI at a pH value
of 7.6 and are titrated solely with KCI at different concentra-
tions. From free-flow electrophoresis measurements on PSBs
with radius ¢ = 40 nm and identical carboxyl-surface modi-
fications at fixed nondimensional Debye length 1/ky = 0.24,
an effective surface charge density of o] = —4500 ¢/um? has
been observed. Thus, the colloidal bare surface potential takes
different values oy = —4mwo. ¢ /ea depending on the size of
the PSBs.

Then, a comparison between our theoretical predictions
and the experimental measurements for the Soret coefficient
St is presented in Fig. 6 for three different PSB sizes and a
no-slip boundary condition A = 0, since these PSBs hardly
show a hydrodynamic slippage at their surface. In addition,
no further adjustable fitting parameters are involved in the cal-
culations. As a result, deviations between one and two orders
of magnitude from our numerical results emerge. However,
a satisfactory agreement can only be achieved by artificially

increasing the surface charge density by a factor of 6 for
the PSBs with radii ¢ = 100 nm and a = 250 nm, while for
the largest PSBs, it has to become 18 times larger than the
experimental determined value, which is far from every phys-
ical realistic number for colloidal charging. A very similar
behavior is observed when applying the semianalytical for-
mula proposed by Burelbach and Stark [19] to calculate the
Soret coefficient of a weakly charged colloidal particle (see
Fig. 6). Also for this theoretical approach, only an increase
in the surface charge density leads to a good fit of the ex-
perimental data. In all these considerations, we have ignored
contributions arising from buffer dissociation, as the quali-
tative behavior of the Soret coefficient of the PSBs changes
only marginally.

Moreover, it is instructive to study the dependence of both
the thermal diffusion coefficient Dy and the Soret coeffi-
cient Sy on the size of the colloidal particle. Therefore, we
compare our numerical predictions with experimental mea-
surements conducted by Eslahian et al. [85] and Braibanti
et al. [24], as well as Duhr and Braun [8] for PSBs with
different surface modifications and stabilizing buffers. While
the first experiment is performed on sulfated PSBs immersed
in a deionized-water-based electrolyte adding nn,c; = S mM
of the the salt NaCl, the last two experimental studies are
carried out on carboxylated PSBs in an aqueous solution only
buffered with ny,r = 1 mM TRIS-HCI. Our theoretical results
for these quantities are shown in Fig. 7 as a function of the
inverse Debye screening length. Here «o varies exclusively
with the particle radius a, since both the salt and buffer
concentrations have been fixed in the experiments as well
as for the numerical calculations, where we account for the
relevant parameters of the dissociated buffer ions according to
Sec. IV D. Furthermore, the bare surface potential oy becomes
then also a function of the particle radius. A good agreement
with the data from Ref. [8] for the measured effective surface
charge density o,; = —4500 ¢/um? can only be found for the
smallest particle radii a < 50 nm and a drastic increase in o
does not significantly improve the situation [see Fig. 7(a)].
This discrepancy is even more pronounced considering the
semianalytical predictions for the thermal diffusion coefficient
derived by Burelbach and Stark [19] for equal surface charge
density variations [see again Fig. 7(a)].

The agreement is not much better, when comparing the
predictions from theory with the experimental measurements
from Braibanti et al. [24] and Eslahian et al. [85] for the Soret
coefficient. Since both experiments are performed for various
temperatures, we have extracted data at room temperature
To ~ 300K. Assuming the same surface charge density o
as in Ref. [8] significant deviations are found for the exper-
imental observations from Ref. [24]. However, increasing its
magnitude by a factor of 3.5 agreement can be obtained [see
Fig 7(b)]. Similarly, relying on the measured zeta potential for
the data of Ref. [85] overestimates the Soret coefficient. Yet
using a zeta potential roughly 20% smaller than compared to
the measured value yields reasonable agreement with our the-
oretical approach [see again Fig. 7(b)]. Note that we account
for a constant zeta potential in the thermophoresis problem
by replacing the boundary condition for the derivative of the
dimensionless equilibrium potential [Eq. (62b)] at the col-
loidal surface by a constant surface-potential value ¢o(1). In
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FIG. 7. (a) Thermal diffusion coefficient Dy and b) Soret coef-
ficient S vs the inverse Debye screening length « for polystyrene
beads in an aqueous solution at room temperature with a fixed salt
concentration corresponding to a varying particle radius. Measure-
ment data (symbols) are taken from Refs. [8,24,85]. (a) Solid colored
lines denote numerical predictions for a no-slip boundary condition
and different surface charge densities o). Dashed lines represent the
semianalytical results from Ref. [19] for different o, the full black
line is the analytic solution from Ref. [15] for oy = —4500 ¢/um?.
(b) Solid colored lines denote numerical predictions for a no-slip
boundary condition using the measured surface charge densities oy,
respectively zeta potentials ¢ (1). Dashed-dotted lines correspond to
numerical predictions using the surface charge density resp. the zeta
potential as free parameter.

the spectral collocation method this transforms then to the
even simpler expression ¢y = ¢o(1) for the noncollocated
endpoint 7, (see Appendix B) leading to a set of M nonlinear
algebraic equations to be solved.

In contrast, other theoretical approaches derived within
irreversible thermodynamics [8,15,21] under local thermo-
dynamic equilibrium conditions are able to explain the
experimental observations obtained by Duhr and Braun [8]
[see again Fig. 6 and 7(a)], while our model predictions
can only fit the data from different experimental studies on
PSBs in aqueous solutions [8,24,85] when the parameters
are strongly tuned such that the fitted surface charging dif-
fers strongly from the directly measured values. It appears
questionable that these discrepancies can be rationalized by
experimental uncertainties. This suggests that other effects
than these studied here should become important in control-
ling the behavior of the system.

V. SUMMARY AND CONCLUSION

In this work we have numerically investigated the ther-
mophoretic transport of a single spherical particle immersed
in an electrolyte solution in linear response to an externally
applied temperature gradient, addressing both moderately and
highly charged solid surfaces exhibiting hydrodynamic slip
for arbitrary Debye layer width. As a result of the linearization
with respect to the spherically symmetric reference system
at thermal equilibrium and by observing the axial symmetry
of the thermophoresis problem regarding the imposed per-
turbations by the thermal gradient, a set of coupled ordinary
differential equations has been systematically derived. More-
over, the dynamics of ions in the essentially electroneutral
bulk solution is incorporated to linear order by appropriate
far-field boundary conditions.

In solving these linear differential equations, we have
successfully utilized the solution techniques of O’Brien and
White from their original treatment of the electrophoresis
problem [40]. The excellent agreement with (semi-) analytic
expressions from former theoretical work [38,67] for weakly
charged particles provides confidence in our numerical cal-
culations, thereby validating our numerical predictions of
the thermal diffusion coefficient, as well as the electrostatic
potential.

Moreover, in Ref. [38] a similar theoretical model for
thermophoretic motion has been presented, yet with a dif-
ferent treatment of the bulk solution behavior. Consequently,
we have examined their far-field boundary conditions for
the potential functions by considering electrolyte solutions
with both a strong and a weak thermoelectric effect. Our
analysis reveals that the electrophoretic contribution to the
colloidal hydration term is crucial to correctly predict the
overall trend of the thermal diffusion coefficient. In particular,
the inverse thermophoretic effect (Dy < 0) for strong thermo-
electric potentials cannot be explained as long as this term
is missing.

Only recently a description of colloidal thermophoresis
based on Onsager’s reciprocal relations has been introduced
[28] and later on general expressions for the thermal dif-
fusion coefficient of a weakly charged spherical particle in
an aqueous electrolyte have been derived [19]. Altogether,
our numerical predictions have essential features in common
with their results. First, we also have observed the thermal
diffusion coefficient to be sensitive to the hydrodynamic slip
at the particle surface. In particular, this is accompanied by
a constant thermal diffusion coefficient for strong shielding
ko > 1 and nonvanishing slip length A # 0, which is shown to
be proportional to the electrophoretic mobility [19]. Second,
for the base NaOH both models display a sign reversal in the
thermophoretic transport coefficient independent of the slip
length. This agreement corroborates our critical analysis of the
far-field boundary condition for the electrostatic potential in
Ref. [38]. In addition, we expect the negative thermophoretic
effect to be an intrinsic feature of electrolytes with a strong
thermoelectric potential, especially when hydroxide or oxo-
nium ions are present, for example, the sodium hydroxide
(NaOH) or hydrochloric acid (HCI). This numerical findings
are also confirmed by experimental measurements on micellar
solutions of sodium dodecyl sulfate [86].
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Also, our numerical predictions agree well with the ex-
perimental data on 22mer single-stranded DNA molecules
in a TRIS-HCI buffered electrolyte [10], which suggests the
occurrence of hydrodynamic slippage along the surface of
the DNA in accordance with Refs. [19,81]. As part of this
comparison, we further have probed the influence of the buffer
dissociation on the thermal diffusion coefficient and ascertain,
that for low overall ionic strength the buffer ions dominate
the bulk behavior by setting the value for the thermoelectric
potential.

Further, we have expected, that after modifying the the-
oretical model provided in Ref. [38] by accounting for the
dominant thermoelectric effect in bulk, our numerical re-
sults should also explain the experimental measurements on
PSBs in the Debye-Hiickel regime [8]. Unfortunately, only
an unphysically large increase in the bare surface potential,
respectively surface charge density, leads to a sufficient agree-
ment. By examining the dependence of our hydrodynamic
approach for thermophoretic transport on the colloidal par-
ticle dimensions, we have revealed similar results. A varying
surface charge density does not yield agreement between the
theoretical predictions for the thermal diffusion coefficient
and the experimental data measured by Duhr and Braun [§]
on PSBs and for the experiments conducted by Braibanti et al.
[24], as well as Eslahian et al. [85] we can achieve a consistent
description only by tuning parameters to regimes which are
hard to reconcile with the measured values. In particular, this
discrepancy in our theoretical analysis of the thermal diffusion
coefficient of PSBs revives a prolonged debate initialized in
Ref. [87]. It deals with the question whether different regimes
exist, where either the system is in local thermodynamic
equilibrium by maximizing the number of microstates of the
counterions in the Debye layer surrounding the particle [25]
or dissipation via local fluid flow dominates the phoretic
motion thereby characterizing nonequilibrium transport. In
the first regime, thermal fluctuations may become important,
while in the other regime hydrodynamic stresses determine
the phoretic drift velocity. The experiments on PSBs appear to
fall into the first regime, where theoretical models based on ir-
reversible thermodynamics are suitable and the hydrodynamic
approach alone fails since it display only small corrections to
the thermal diffusion coefficient [21]. A detailed analysis of
thermophoresis beyond local thermodynamic equilibrium is
provided in the companion paper [88].

More generally speaking, our theoretical treatment corrob-
orates the hydrodynamic character of thermophoretic motion
to be a force-free interfacial phenomenon with local solvent
flow in the vicinity of the colloid by showing that an explicit
dependence on the hydrodynamic boundary condition occurs.
This was also argued in Ref. [19]. Thus, a careful treatment
of the surface properties of the colloidal particle plays a crit-
ical role in thermophoretic phenomena. Moreover we have
also generalized the force-free argument beyond the bound-
ary layer approximation used in other theoretical approaches
[17,29,41].
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APPENDIX A: SORET EFFECT OF THE IONS

We follow a commonly used approach describing ionic
thermophoresis caused by hydration effects [19,41,56]. Here
the different ionic species are understood as a dilute gas of
noninteracting charged particles enclosed by hydration layers
of water molecules. The current densities of the ionic solutes

. b b Q;k vTr ZieE[h(r)

Ji(r) = —Din; (r)|:V logn;(r) + Wl T ‘o :|,
(AD)

in the bulk solution with ion concentrations n}’(r) comprise
mass and thermal diffusion as well as thermoelectric migra-
tion. Here the Einstein diffusion coefficient is evaluated at
the reference temperature 7' and Q; denotes the temperature-
independent heat of transport for each ionic solute due to
hydration by surrounding water molecules in the limit of
infinite dilution [53-55].

Switching on the temperature gradient, the corresponding
currents [Eq. (A1)] accumulate ions in a thin layer of thickness
~1/ko close to the hot and cold boundaries of the system.
Then the thermoelectric field E"(r) is fixed by the steady
state of the solutes, where the ion currents j;(r) = O vanish.
This may be justified by the significantly slower reaction
of the colloidal particle as compared to the ions [28,89]. In
bulk, we further use the condition of local charge neutrality
> Zien}’(r) = 0 (at least over spatial scales larger than the
characteristic width of the Debye double layer and far away
from the reservoir boundaries). Then in the equation for the
total current ), z;ej;(r) = 0, the terms originating from gra-
dients in the concentration cancel, leading to

N VT N
(Z zien}?(r)Q;‘) - - (Z}: z?ezn}?(r)> E"(r) = 0. (A2)

i=1

To linear order in the thermal gradient, we replace the ion
concentration and temperature by their unperturbed values
nib(r) > nﬁo, T (r) — Tp, such that the thermoelectric field
becomes uniform

vT
BN = ¢t —, (A3)
0
where we define the thermoelectric potential as
N
¢th _ Zi:l Zinib,()Q;k (A4)
Y Zenty
i=1%i Mo

Substituting the obtained thermoelectric field in Eq. (A1), the
steady state of the ionic solutes in bulk is governed to linear
order in the thermal gradients by

v b r * i th vT .
”{)( ) Gt ad VT givr
”5,0 kBT() E)

(AS5)

From the last identity we read off the ionic Soret coefficients

Zie¢th

S =8+ —,
T T+ kBTOZ

(A6)

with 8§ = Qf/kgTi?. The first contribution arises from hy-
dration effects of the water molecules and is connected to
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the ionic heat of transport QF, whereas the second contribu-
tion originates from electric migration in the thermoelectric
field E®.

APPENDIX B: CHEBYSHEV SPECTRAL COLLOCATION

Using the nonlinear transformation @, (¢), the derivatives
with respect to the new variable ¢ are readily calculated as

dgo(r) _ (- 1)* dpo (1)

(Bla)
dr 2L dt

d*o(r) (@ — 1) d?po(t) | (t —1)* dgo(t)

dr2 412 dr? + 202 dr (B1D)

by successively applying the chain rule. Consequently, the
transformed nonlinear differential equation with respect to the
variable t € [—1, 1) reads

(t — D* d?¢o (1) { t—DYL-1) }d¢o(t)
42 dr 2[L+1+t(L— D] ar

N
+ x5 )z expl—zigo(1)] = 0, (B2)

i=1

and the boundary conditions transform to

}irr} ¢o(t) =0, (B3a)
dgo(t) _ _EG (B3b)
dt |__, 2

The solution ¢ (¢) is approximated at the Chebyshev-Gauss-
Lobatto nodes

jm .
tj = — ), =0,...,M, B4
(), -
by a global polynomial interpolant
M
Po(t) ~ pu(t) =Y guli(0), (B5)
k=0

where ¢ := ¢o(t;) and £;(z) denotes the Lagrange polyno-
mial basis functions satisfying £, (¢;) = 8, [70,74]. Then, the
approximation of the pth derivative of the function ¢y(¢) is
achieved by differentiating the interpolant and evaluating the
result at the nodal points {¢;} defining the Chebyshev differen-
tiation matrices D) with entries

dPl (1)

drp (B6)

(p) _
DY =

t=t;

For the first-order differentiation matrix D, this yields

[69,70]
[ (—1)/tk
D(l) — {L‘k tj—Ik ’
Jk M (1)
! - Zk:o,k;éj Djk ’

where j,k=0,....M, co=cy =2 and ¢; =1 for [ =
1,..., M — 1. Here we reduce possible cancellation errors in
the diagonal elements of the differentiation matrix as M in-
creases by calculating them from the analytic expressions for
the off-diagonal elements [90-92] [see first line in Eq. (B7)].
Furthermore, the summands in Eq. (B7) are rearranged in

j#k

B
j =k, @7

ascending order to avoid smearing. Moreover, the second-
order Chebyshev differentiation matrix can be obtained from
D@ = (DW)?, applyinég the same correction technique for
the diagonal entries D'* which leads to significantly higher
accuracy. Consequently, the numerical differentiation at the
Chebyshev collocation points ¢; can be written in vector form

y(p) — D(p)y, p=1,2, (BS)

with the coefficient vectors
yi= (90, o), (B9a)
YO = (ol elf) (B9b)

The collocation method states that the polynomial interpolant
[Eq. (BS)] satisfies the nonlinear ODE [Eq. (B2)] at the inner
collocation points {z;}, j=1,...,M — 1, yielding the dis-
crete approximation

t—D*L -1 wm - G=D
: D + : 2 D]k (0](

;{2L2[L+1+rj(L— D] * 4L

M

N
+ &5 Zz;nf’,o exp (—zigr) = 0.

i=1

(B10)

Evaluating the boundary conditions at the noncollocated end-
points ty and 7,

@ =0, (Blla)

M
L
k=0

results in a set of M + 1 nonlinear algebraic equations for
the variables ¢y, ..., ¢y which are solved using a Newton-
Raphson method with a constant initial guess ¢; = 1 for all
j=1,..., M. An approximate solution on the unbounded do-
main [1, oo) in terms of a transformed barycentric interpolant
then reads

(B11b)

Yo Wi,
Yo Wir)

with W;(r) = (=1)/w;/[®;'(r) — @, '(r;)] and the re-
duced barycentric weights wo =wy =2 or w; =1, j=
1,...,M — 1 [76]. Similar expressions for the first and sec-
ond derivative can be obtained by substituting ¢; with DV¢;,

respectively D@¢ I

do(r) ~ pu(r) = (B12)

APPENDIX C: MATRIX REPRESENTATION FOR THE
ASYMPTOTIC CONSTANTS

From the solutions wf(r), R (r), k = 1,..., N + 2 for the
N + 2 linear ODEs we can calculate the components of the
coefficient matrix A for the linear problem [Eq. (79)]

daw*
Ay =20 (Cla)
dr r=1
Aviix = R5())m1, (Clb)
AR (r) AR (r)
Avins = . (@l
N+2.k ar |, | (Clo)
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TABLE I. Typical values for the different parameters used to determine the numerical predictions in Figs. 1-5 for different monovalent
ions and the corresponding salts immersed in an infinitely dilute aqueous solution. lonic heats of transport to calculate Si. = QF /kzT;? have
been taken from [55] and the electric mobilities are converted from ion limiting condictivities [93] at temperature 7 = 298.15K (25 °C).
Péclet numbers Pe; and thermoelectric potentials ¢™ are calculated from these values. Concerning the TRIS-HCI buffer, relevant numbers are

mentioned in the text.

Ton K* Na* TRIS-H* cl- F- OH™
SL[1074K™'] 35.1 46.9 N/A 7.18 53.2 233
ué 108 m2v—"1s71] 7.62 5.19 N/A —~7.91 —5.74 -20.5
Pe, 0.263 0.385 N/A 0.253 0.349 0.0976
Salt KCl NaOH TRIS-HCI KF NaF

o —0.416 2.77 N/A 0.270 0.0939

with i=1,...,N and k=1,...,N + 2. In addition, the
components of the corresponding vector B are given as

dw;(r) 0 (1)
B =— -9 , (C2
ar | {zi[¢o<r> + ¢l @)
_ R0 172, (1)
BN+1 - r |r=l + {0, (2), (Czb)
dR(r) d*R(r) 1/2, (1)
Byiy = — —_— ’ C2
=T e Tl @ O
with i =1, ..., N. Thus the asymptotic coefficients for each
problem can be calculated formally as
C=A"'.B. (C3)

APPENDIX D: TYPICAL VALUES FOR
RELEVANT PARAMETERS

In this Appendix we provide typical values of the vari-
ous parameters for an aqueous electrolyte in the presence of
different salt ions. Unless otherwise stated all values are
determined at reference temperature 7, = 298.15K (25°C).
Here the solvent is modeled as pure water with relative di-

electric permittivity €’ = 78.304 [94], logarithmic derivative
o = 1.35 [93] and solvent viscosity n = 890.45 x 10~ °Pas.
In addition, Soret coefficients S’ arising from hydration ef-
fects of the water molecules, electric mobilities ¢ = zien?
and the corresponding ionic Péclet numbers Pe; for dif-
ferent ion species are summarized in Table I and refer
to an infinitely dilute aqueous solution. We also list the
dimensionless thermoelectric potential ¢ for the various
monovalent salts. It can be calculated as ¢" = —(S; —
S;)Ty/2 from St = Q*i/kBTO2 for cations (+) and anions
(—) arising from the heat of ion hydration Q%, which had
been measured experimentally by [55] at temperature T
for a broad range of different ionic solutes. Again, since
relevant values for the TRIS-H™ are not available, we fol-
low Ref. [19] and choose STRISH™ = SNa" together with
the mobility & o .. = 2.67 x 10~ m? V157! taken from
a similar organic compound, the amino acid Leucine [84].
All other mobilities are converted from limiting equivalent
conductivities of the ions [93]. Moreover, using the Stokes-
Einstein relation, the ionic Péclet numbers are computed from
Pe; = Upa /D? = €0e’kpTozi/ nu{ where only properties of the
dissolved ions except for the solvent viscosity determine their
values.
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