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Micromechanics and damage in slide-ring networks
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We explore the mechanics and damage of slide-ring gels by developing a discrete model for the mechanics
of chain-ring polymer systems that accounts for both crosslink motion and internal chain sliding. The proposed
framework utilizes an extendable Langevin chain model to describe the constitutive behavior of polymer chains
undergoing large deformation and includes a rupture criterion to innately capture damage. Similarly, crosslinked
rings are described as large molecules that also store enthalpic energy during deformation and thus have their
own rupture criterion. Using this formalism, we show that the realized mode of damage in a slide-ring unit is
a function of the loading rate, distribution of segments, and inclusion ratio (number of rings per chain). After
analyzing an ensemble of representative units under different loading conditions, we find that failure is driven
by damage to crosslinked rings at slow loading rates, but polymer chain scission at fast loading rates. Our results
indicate that increasing the strength of the crosslinked rings may improve the toughness of the material.
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I. INTRODUCTION

In recent years, hydrogels have been of particular interest
to the field of polymer science as many of their designs ex-
hibit biocompatibility [1], controllable stiffness [2], and the
ability to self-heal [3]. This makes them desirable for many
applications ranging from tissue engineering [4] to adhesives
[5]. However, many potential applications of conventional
gels are limited by their fragile nature. To overcome this key
limitation, a variety of novel gels have been proposed [6].
These gels use specialized network structures to improve their
mechanical strength and include double-network gels [7,8],
nanocomposite gels [9,10], and slide-ring gels [5,11]. Slide-
ring gels are composed of polymer chains threaded by ringlike
molecules that are crosslinked together to form sliding junc-
tion points. Such gels exhibit many exceptional properties
such as the ability to recover from extreme deformations [12],
a low elastic modulus [13], and a high fracture toughness [14].
Despite these remarkable features, slide-ring gels have a low
mechanical strength that must be improved before they can be
used for structural applications [15].

A conventional chemical gel is composed of polymer
chains that are crosslinked with strong bonds at various junc-
tions, thereby forming a network of subchains that meet at
crosslinking junctions. Due to the crosslinking process as well
as natural polydispersity in chain length after polymerization,
there may be a wide variance in subchain length distribution
[16]. This inhomogeneity in chain length is largely cited as
the driving factor for a conventional gel’s fragility, as stress is
thought to become concentrated on shorter segments [17,18].
In turn, this leads to localization and void nucleation, which
begins the brittle fracture process [19]. By contrast, the ar-
chitecture of slide-ring gels offers an intrinsic mechanism
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for avoiding these inhomogeneities and their resulting vul-
nerability to localization. In these systems, the crosslinking
junctions are replaced by ringlike molecules through which
the underlying polymer network may freely slide [20]. This
allows the polymer chains to equalize the tension held in
its various subsections, thus increasing the stress a network
may sustain before rupturing. As a result, it is believed that
the mechanical strength of a slide-ring gel is not limited
by network inhomogeneities, but rather the strength of the
weakest network component [13,21]. While the distribution
of forces in a slide-ring network are more uniform, it is
still not trivial to determine the network component (chains,
crosslinkers, etc.) that is the most vulnerable to breaking.
This is not only a function of the dissociative bond energies
of the network components, but also network topology as
well as loading conditions. Damage initiation in these gels
must therefore be studied at the level of a network, rather
than that of a single chain. Many classical constitutive models
estimate the behavior of a polymer network by considering the
mechanical response of a representative unit cell. For instance,
the classical three-chain model considers a unit cell com-
posed of three chains that are each aligned with the loading’s
principal directions [22]. Such models typically assume that
chains follow an affine deformation, where the motion of a
single chain is governed exactly by the macroscopic defor-
mation. Furthermore, the length of a chain is considered to
be uniform and unchanging. In contrast, the chains forming a
slide-ring network are constantly changing their length, which
is expected to result in largely nonaffine motion. A model
by Ito [20] aimed at reconciling this particular shortcoming
by allowing for the redistribution of chain segments within
a three-chain formulation. While this was found to explain
some of the behavior of slide-ring systems, it was not until
five years later that a key missing ingredient was added in
the form of a novel ring entropy thought to arise from the
rings that remained uncrosslinked after the gelation process
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FIG. 1. Slide-ring network and its components. (a) Depiction of a slide-ring network with chains (black lines), rings (red), and stoppers
(black dots). (b) The coarse-grained model separates each chain into a collection of crosslinked rings and subchains. Crosslinked rings on a
chain are numbered from left to right starting from 1 to N . Similarly, subchains are numbered from 0 to N starting from a dangling end.

[23]. These so-called “mobile” rings are currently thought to
source an osmotic force that ultimately drives, or hinders, the
motion of chains within the network [24,25]. Recently, this
idea was formalized in a continuum model using the transient
network theory [26], which could explain key features of
the viscoelastic response of slide-ring gels. This formalism
has also been used to investigate damage in shear thinning
polymers [27] and dynamic polymer networks [28].

While continuum models have been able to capture many
of the complex behaviors of slide-ring systems, they are ill-
suited to study network-level dynamics. However, molecular
dynamics simulations have provided valuable insights into the
smaller-scale physics that govern the system. For example,
coarse-grained simulations have been employed to show that
chain sliding reduces tension in a network [29], to link chain
sliding to a network’s elastic response [30], and to explore the
damage mechanisms within a slide-ring gel [31]. However,
molecular dynamics are often computationally expensive and
are unable to model the long-term behavior of large slide-
ring networks. Alternatively, mesoscale (or network) models
consider a more heavily coarse-grained system and have a
relatively low computational cost. A variety of network-level
physics may be investigated within this framework; for in-
stance, dynamic crosslinking events in star-shaped polymers
[32,33] as well as topological rearrangement due to reptation
and chain sliding [34]. The advantage of studying systems
at this lengthscale is a compromise between incorporating
small-scale physics and computational simplicity

In this study, we extend the concept of a single chain
model to study the mechanical behavior of a slide-ring unit
(a single chain) connected to the surrounding network via
sliding connections (or rings). This unit is assumed to in-
teract with an effective medium, where crosslinking points
(but not the chains) deform affinely. To describe the me-
chanical response of the unit, together with the development
of internal forces within its elements (subchains and rings),
we develop a thermodynamically consistent model that ac-
counts for the combined entropic and enthalpic contributions
of flexible chains and mobile rings and their limit stretch.
This enables us to investigate the force-response and damage
initiation in the slide-ring unit as a function of its orientation in

the network and macroscopic loading conditions. We identify
various damage mechanisms, which depend on loading rates
and the relative strengths of the chains and the rings.

II. PHYSICAL LAWS OF A SLIDE-RING SYSTEM

We begin by deriving the basic physical laws that govern
a slide-ring system. Slide-ring gels are composed of flexible
polymer chains threaded by ringlike molecules [Fig. 1(a)]
and stopped by a bulky end-group. Historically, the back-
bone molecule is polyethylene glycol (PEG) and the rings
are α-cyclodextrin (CD) molecules, but other systems have
been synthesized [35,36]. For this study, we consider the most
common PEG-CD system. Furthermore, we assume that each
ring can freely move along its respective chain up to the
stopper. To form a network, two rings are crosslinked together,
forming a figure-eight structure that connects neighboring
chains. After the crosslinking process, there exist a number
of uncrosslinked rings (mobile rings) that remain untethered
to the network, but are still restricted to slide along their
respective chain.

Conceptually, a slide-ring gel can be described as a con-
nected network of subchains and crosslinked rings illustrated
in Fig. 1(b). With this description, a subchain is denoted as the
portion of the polymer chain (including any threaded mobile
rings) that is between two crosslinked rings or a stopper. Thus,
a ring-chain unit with N crosslinked rings is composed of
N + 1 subchains. Furthermore, the ith subchain of the unit
may be discretized into a collection of ni freely joint Kuhn
segments of length bi, such that its contour length is nibi. We
also define the end-to-end vector ri, which spans the distance
between the two crosslinked rings adjacent to the ith subchain.
Subchains i = 0 and i = N are referred to as dangling ends as
they are capped by a stopper; while they may contain a reserve
of Kuhn segments, their end-to-end vector is not constrained
in space and is thus treated as zero.

A. Motion and damage

We now discuss the physical processes that occur when
the system is perturbed from equilibrium. As discussed
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FIG. 2. Motion and damage in a slide-ring system. (a) Chain
sliding is driven by an osmotic force differential [π ]i between sub-
chains, whose source is mobile rings threaded along the chain.
(b) Translational motion of a crosslink is driven by a force differential
between adjacent subchains, [t]i = t i+1 − t i and the force exerted by
the adjoined ring, f i. (c) Kuhn segments are modeled as springs with
resting length b′. Each Kuhn segment in a subchain i is assumed have
the same length bi. (d) crosslinked rings are modeled as two springs
of length ci in series. The crosslinked rings are joined at the point xi

and the chain is attached on the opposite side of the ring x̂i.

previously, every subchain is threaded by mobile rings that are
assumed to be in constant motion due to thermal fluctuations.
As a result, the ith subchain experiences a one-dimensional
osmotic force πi directed along the contour of the chain
[Fig. 2(a)] [26]. Differences in this osmotic force drive chain
sliding between subchains as Kuhn segments move from sub-
chains with a high osmotic force to subchains with a low
osmotic force. This process is not instantaneous, but rather
a time-dependent process that is subject to frictional forces
between the polymer chain and the crosslinked rings. Let
ϑ̇i represent the velocity of a chain sliding through its ith
crosslinked ring and ζ be a time-dependent frictional parame-
ter. This relationship can be represented as

ζ ϑ̇i = [π ]i, (1)

where [π ]i = πi+1 − πi is the osmotic force differential across
the ith ring. The total change in segment number within a
subchain depends on the chain’s velocity at both adjacent
crosslinked rings. Thus, the number of segments in the ith
subchain is changing at a rate of ṅi = ϑ̇i+1 − ϑ̇i. Next, we turn
to the absolute motion of a crosslinking junction. For this, we
first note that a figure-eight junction may be described as two
individual rings that are connected via a covalent junction. For
simplicity, we assume here that the bond only carries tensile
forces such that each ring within the ith figure-eight applies an
equal and opposite force f i onto one-another. Besides, a ring
is also subjected to the forces from a threaded chains, that
takes the form of the vector [t]i = t i+1 − t i. Now considering
that a ring (at current position x) is immersed in a solvent
characterized by viscosity μ, its velocity is determined by the

over-damped equation:

μẋi = f i − [t]i. (2)

This equation of motion is schematically represented in
Fig. 2(b). Finally, we discuss the concept of damage as occur-
ring at the extreme limits of these processes. The formalism
used here is similar to the extendable chain model presented
by Mao et al. [19] and its expansion to crosslinking junctions
[37]. In brief, we model the components of each subchain as
storing their own elastic energy. Thus, each crosslinked ring
acts as a spring of length ci and each Kuhn segment acts
as a spring of length bi [Figs. 2(c) and 2(d)]. To maintain a
simple damage criterion, we assume that these components
may break after being stretched past a specified limit. Thus,
we track the motion of not only the end-to-end vectors of
the polymer chain, but also the stretch of the Kuhn segments
and crosslinked rings. For this, we require a framework for
describing the positions and orientation of the rings. Let xi be
the position vector of the junction point of a set of crosslinked
rings and x̂i be the position vector of the diametrically op-
posite position on the ring. We assume that the junction of
the polymer chain and the ring exists at x̂i and define the unit
vector ui = (x̂i − xi )/|x̂i − xi| to describe the orientation of
the crosslinked ring [Fig. 2(d)].

B. Free energy of a single chain

The behavior described in the previous question prompts
three key questions regarding our system: (i) what is the
osmotic pressure that drives relative chain motion, (ii) what
is the chain-force that drives crosslink motion, and (iii) un-
der what conditions do Kuhn segments or crosslinked rings
fail. To answer these questions, we here follow the general
approach described in Ref. [24] to develop a Helmholtz free-
energy functional for a single slide-ring chain. The free energy
is constructed by considering entropic contributions, which
scale with temperature T , and enthalpic contributions, which
are purely elastic. In a polyrotaxane chain, contributions from
both the polymer chain and the ring molecules are present. For
the remainder of the manuscript, we reserve a superscript m
for quantities relating to the mobile rings along the chain and
a superscript x for quantities relating to the crosslinked rings.
Then, our model accounts for the entropic contribution Si of
each subchain’s polymer chain, the enthalpic contribution Ui

of each subchain’s Kuhn segments, the enthalpic contribution
U x

i of each set of crosslinked rings, and the entropic con-
tribution Sm

i of the mobile rings within each subchain. The
free-energy functional thus takes the general form

F =
∑

0�i�N

[
(Ui − T Si ) − T Sm

i

] +
∑

1�i�N

U x
i . (3)

Recall, N is the number of crosslinked rings on a chain and
subchains are numbered from 0 to N . Hence, the first summa-
tion is performed over subchains while the second summation
is performed over crosslinked rings. The following paragraphs
define the explicit form of each term in this equation. For
brevity, we omit the subscript i in the following derivations.

Beginning with the entropic energy of mobile rings
threaded on the chain, we follow the definitions presented
in our previous work [26], which are similar in form to the
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original mobile ring entropy proposed by Mayumi et al. [23].
We consider a subchain is composed of n Kuhn segments
threaded by p mobile rings. By definition, the entropy gener-
ated by the mobile rings is of the form Sm = kb log(�) where
� is the total number of possible ring configurations on the
subchain. Assuming that each mobile ring occupies one Kuhn
segment and each Kuhn segment has an equal probability of
being occupied, this takes the form of the binomial

(n
p

)
. After

taking the logarithm and simplifying the following expression
using Stirling’s approximation [38], we obtain the required
expression:

Sm ≈ kb[n log(n) − (n − p) log(n − p)]. (4)

Note that we have neglected all timescales and energy dissi-
pation arriving from mobile ring diffusion. This assumes that
mobile rings remain in equilibrium and are able to move along
the chain at a timescale much faster than the relaxation time
of the unit. As we are eventually interested in the initiation
of damage in a slide-ring system, we require a description of
chain entropy that is valid for extensions up to the contour
length of the chain. The most commonly used formulation was
proposed by Kuhn and is referred to as the Langevin model
[39]. In our system, note that the contour length of a chain
may change due to varying the number of Kuhn segments n or
their length b. Furthermore, the Langevin function may be ex-
plicitly approximated by the Padé approximation proposed by
Cohen [40], L−1(x) ≈ x(3 − x2)/(1 − x2), which is valid for
the required domain of 0�x�1. The resulting chain entropy
functional takes the form

S ≈ −nkb

[
1

2

(
r

nb

)2

− ln

(
1 −

(
r

nb

)2
)]

. (5)

Moving on to enthalpic considerations, when a subchain’s
end-to-end vector approaches its contour length, the Kuhn
segments may be physically strained before reaching their
rupture point [41]. To capture this enthalpic stretch, we ex-
tend the Langevin model following the approach presented
in Ref. [19], which treats Kuhn segments as elastic springs
that may store their own enthalpic energy. The simplest form
of this enthalpic energy is a harmonic potential, which ap-
proximates each segment as a linear spring. Assuming that
each Kuhn segment in one subchain is stretched equally, the
enthalpic contribution of all n Kuhn segments in a subchain is
the product

U = n
E

2

(
b

b′ − 1

)2

, (6)

where E , with units of energy, is the elastic stiffness of bonds
in the chain’s backbone and b′ is the resting length of a Kuhn
segment [19].

Finally, we consider the enthalpic energy of crosslinked
rings. The movement of these rings is constrained by the ten-
sion in its adjacent subchains. If the tension in the surrounding
subchains is sufficiently large, crosslinked rings may begin to
stretch and eventually rupture. To account for this, we model a
set of crosslinked rings as two springs in series with stiffness
Ex and resting length c′ [37]. Once again, we use a harmonic
potential as a simple energetic penalty for stretching the rings.

The enthalpic contribution of a crosslinked ring thus becomes

U x = Ex

2

(
c

c′ − 1

)2

. (7)

C. Driving thermodynamic quantities

We may now answer the questions introduced in the pre-
vious section using the formalized free energy of Eq. (3).
Notice that each subchain has three quantities that may vary to
minimize its free energy: the end-to-end vector r with length r,
the number n of Kuhn segments, and the length b of each Kuhn
segment. Furthermore, the length c of each crosslinked ring
must be treated as their own independently varying quantities.
Each of these quantities will evolve to minimize the free
energy of the full chain, which ultimately gives rise to the
forces that drive the motion outlined in Sec. II A. Beginning
with the osmotic force π , we take the derivative of the free
energy with respect to n to yield

π = �(r, n, b) − kbTr2

b2n2

(
r2 − 3n2b2

r2 − n2b2

)
+ kbT log

(
1 − p

n

)
,

(8)

where the factor � is

� = E

2

(
b

b′ − 1

)2

+ kbT

[
1

2

(
r

nb

)2

− log

(
1 −

(
r

nb

)2)]
.

(9)

It is worth noting that as r approaches 0, Eq. (3) converges to
the energy functional based on Gaussian chain physics (pro-
vided n is sufficiently large). Next, we take the derivative with
respect to r to yield the tension t held in a flexible subchain,

t = kbT

nb2

(
r2 − 3n2b2

r2 − n2b2

)
r, (10)

where b is determined by minimizing the free energy, i.e.,
finding b such that F,b = 0 [28]. Note that we consider b
to remain in equilibrium, i.e., that the timescale associated
with stretching the Kuhn segment is very fast. As defined in
Eq. (2), the opposing force of this tension is provided by the
crosslinked rings. As the only term involving c is the enthalpic
energy U , we may take the derivative directly to yield

f = Ex

c′

(
c

c′ − 1

)
u, (11)

where c is determined by minimizing the free energy with
respect to c. To consider a damage criterion for our system, we
follow the approach of Mao et al. [19,37] and postulate that a
component (here, either a Kuhn segment or a crosslinked ring)
fails once a critical rupture energy is exceeded [i.e., in Eq. (6)
or Eq. (7)]. Physically, this corresponds to the bond storing
more energy than required for dissociation. In practice, this
requires determining the current Kuhn segment length b or
ring length c and determining if a critical stretch has been
exceeded. Once the critical energy has been exceeded, the
component is considered to rupture [19]. This is discussed
further in the following section.
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III. TRANSIENT MECHANICS OF AN ALIGNED CHAIN

To gain insight into the transient mechanics of a slide-ring
system, we here consider the response of a single slide-ring
chain composed of two crosslinked rings [Fig. 1(a)]. Such
a chain contains only one internal subchain, ensuring both
crosslinked rings are adjacent to a tension-free dangling end.
We refer to this system as an aligned chain as all forces are
aligned in the direction of the end-to-end vector r. For this
study, we assume that each subchain is initially composed
of n = 50 Kuhn segments, yielding nt = 3n = 150 total seg-
ments in the full chain. Additionally, we assign p = 10 mobile
rings to thread each subchain. The stiffness of both a Kuhn
segment and crosslinked ring is taken to be that of a carbon
to carbon bond, the weakest bond in the polyethylene glycol
chain, which was previously estimated to be EC-C = 2300kbT
[19]. For the remainder of this manuscript, we present bond
stiffnesses in units of EC-C, thus, E = 2 means E = 2EC-C =
4600kbT . Finally, we take the length of a Kuhn segment to
be twice the length of a dimer of the backbone polyethylene
glycol chain, yielding b′ = 22 Angstroms [42].

To set a reference point for the chain-level quantities,
we consider the equilibrium state of the chain when the
end-to-end vector is r = 0. In this condition, there is no
tension in the subchains and the Kuhn segments are evenly
distributed throughout the chain. Thus, each subchain has
n′ = nt/(N + 1) segments and a residual osmotic force of
π ′ = −kbT log(1 − p

n′ ). Furthermore, the minimum number
of segments in a chain is equal to the number of mobile
rings, thus, the maximum number of segments in the center
of the chain is n∞ = nt − 2p. As the time-dependent behavior
of the chain is governed by the timescale of sliding, we define
the following nondimensional loading parameter:

W = λ̇ζ

kbT
, (12)

where λ̇ is the rate at which the endpoints are separated.
This parameter thus governs the competition between sliding,
which tends to dissipate energy, and stretching, which stores
elastic energy. When W is low, chain sliding occurs at a much
faster timescale than the loading rate and energy is dissipated
immediately. Alternatively, the chain behaves elastically for
large values of W . Figure 3 plots the chain tension t , number
of segments in the middle subchain n, and Kuhn segment
and ring stretch b′/b and c′/c, respectively, for different val-
ues of W . Note that the tension is plotted on a logarithmic
axis to better visualize the response at high stretches and all
quantities have been normalized by their reference values. In
particular, we normalize n such that it vanishes at equilibrium
(n = n′) and approaches 1 after the dangling ends have been
depleted (n = n∞). We begin the analysis by discussing the
limiting cases of fast and slow loading (W → ∞ and W → 0,
respectively).

A. Rate-dependent chain response

1. Fast loading

A chain that is deformed at a sufficiently fast rate does not
have time to slide through its crosslinked rings. In this case,

FIG. 3. The mechanical response of a single chain being sepa-
rated at different rates. The limiting regimes of fast and slow loading
are illustrated with fine black lines, while intermediate loading rates
are shown as colored dashed lines. Note that all quantities have been
normalized by their reference quantities.

the effects of chain sliding are negligible and the crosslinked
rings can be treated as permanent bonds. As a result, the
governing equations [Eqs. (1) and (2)] become f = [t] and
ϑ̇ = 0, which dictates that n remains constant. This regime is
illustrated by the black lines in Figs. 3(b)–3(d) labeled “fast.”
Note the two force regimes characteristic of this scenario
[Fig. 3(b)], separated by the point at which chain components
begin to stretch [Fig. 3(d)], which occurs close to the contour
length of the reference chain (i.e., r ≈ n′b′). Before this point,
the tensile force of the internal subchain follows the Langevin
chain model for a chain with contour length b′n′. However,
as the chain is stretched further, it stiffens to the point that
the Kuhn segments and crosslinked rings start to stretch. As a
result, the tension does not diverge with further increase in r.
Note that this follows the behavior of the extendable chain
model proposed by Mao et al. [19]. Clearly, sliding is not
possible in this regime, which ensures that n = n′ for all r
[Fig. 3(c)].
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2. Slow loading

The slow loading limiting case is obtained when the rate
of deformation is much less than the rate of chain sliding.
Thus, the chain is permanently in a stable configuration, with
no differential of osmotic force across the chain. The gov-
erning equations for the slow loading response are f = [t]
and [π ] = 0. The solutions to these equations are illustrated
by the black lines in Figs. 3(b)–3(d) labeled “slow.” For this
case, there are three regimes of response during the loading
history. When loading begins, the segments in the dangling
end move into the internal subchain due to the increase in
osmotic force [Fig. 3(c)]. The chain tension thus softens as the
contour length of the middle subchain grows. However, there
is a limited number of Kuhn segments in the dangling ends.
Indeed, as n approaches its maximum value of n∞ (implying
that all Kuhn segments have moved into the middle subchain),
the force response of the internal subchains briefly converges
to the Langevin model for a chain with n∞ segments. Similar
to the fast loading case, the point at which segment and ring
stretch becomes significant may be defined as another transi-
tion point. Note that this occurs around the point r ≈ 3n′b′
because there are three total subchains [Fig. 3(d)]. Conse-
quently, when the chain is stretched past this point, the force
response of the inner subchain diverges from the correspond-
ing Langevin model in a similar manner as before.

3. Intermediate loading rates

Finally, we may discuss the behavior of the chain at
intermediate loading rates. In this scenario, there exists a
competition between storing elastic energy by stretching and
dissipating energy by sliding. In Figs. 3(b)–3(d), we illus-
trate the response of three loading rates defined by W = 1,
W = 10, and W = 100. Notice that all three of these curves
lie within the boundaries of our fast and slow limiting cases
discussed previously. For these loading rates, we again notice
three distinct regimes. Similar to the slow and fast loading
cases, the initial tensile response is dictated by the elastic
behavior of a chain with contour length n′b′ [Fig. 3(b)].
Eventually, a regime of sliding occurs, which represents a
smooth transition from the elastic response to the equilib-
rium response. The boundaries of this regime are indicated
by n > n′ and n → n∞ [reflected by the transition from 0
to 1 in Fig. 3(c)]. Notice that the width of these boundaries
indicates the rate at which energy is dissipated with respect
to the increase of r. This is also reflected in the force re-
sponse, which becomes more horizontal as the dissipation rate
increases, indicating that the applied energy is primarily being
used to drive sliding. Furthermore, we note that all three quan-
tities (force, segment count, and component stretch) transition
from the fast response to the slow response during the sliding
regime. Once the dangling ends have been depleted, sliding
halts and all curves converge back to the slow loading case.

B. Damage behavior

The damage behavior of the aligned chain is governed by
the relative loading rate W and the strength of the weakest
component. As discussed previously, the damage criterion
considered in this study is ultimately based on a critical bond

FIG. 4. Damage behavior of the aligned chain in the slow loading
regime (W → 0) with Ex = E . (a) Component stretch versus nor-
malized end-to-end distance for different component stiffnesses. At
a critical stretch λc, the component is assumed to fail. (b) Critical
separation distance rc/n′b′ versus normalized loading rate for differ-
ent component stiffnesses.

dissociation energy; when the enthalpic energy of a compo-
nent (rings or Kuhn segments) has exceed this critical energy,
it breaks. With the harmonic potentials defined in Eqs. (6) and
(7), this may also be considered as a critical stretch λc after
which the respective component has stored its critical energy.
As a result, two parameters directly govern component-wise
failure: the stiffness EK or ER and the critical stretch λc, which
may be varied for rings or Kuhn segments as well.

Let us consider the damage behavior of the aligned chain
with varying stiffnesses but a constant critical stretch (Fig. 4).
If the stiffness of a component, Ex or E for crosslinked
rings or Kuhn segments, respectively, is less than EC-C, the
component begins stretching at an earlier separation distance.
Thus, the component reaches its critical stretch λc at a smaller
critical separation distance rc. Alternatively, increasing the
stiffness of the component results in higher resistance to
stretching and, thus, a larger critical separation distance. Let
us first use Ex = E to illustrate the trends of our model. In
this case, the stretch b/b′ of the Kuhn segments and the stretch
c/c′ of the rings is always the same—if one component were
weaker, failure would always be dictated by that component.

Figure 4(a) plots the component stretch b/b′ (or, alterna-
tively, c/c′) versus the normalized separation distance r/n′b′
for three values of component stiffness: (i) E = 5, (ii) E = 1,
and (iii) E = 0.5 for the case of slow loading, i.e., W → 0.
The dashed gray lines indicate the critical stretch and corre-
sponding critical separation distance (only illustrated on the
E = 1 curve for brevity) for the three cases. For E = 0.5,
the components begin to stretch almost immediately with an
increase in r. This regime thus reflects a scenario where the
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FIG. 5. The simple 2D unit studied in this section is defined by
its crosslink density ρ = N/LH and its coil angle φ. We consider
deviatoric deformations of the unit in an arbitrary direction θ .

enthalpic stiffness of the Kuhn segments is close to the en-
tropic stiffness of the polymer chain. Here, the critical stretch
is reached before the chain has stiffened significantly, which
is unlikely for a physical polymer chain. In contrast, strength-
ening the components by a factor of five delays component
stretch as the entropic stiffness of the chain is much softer than
the enthalpic stiffness of the components. Thus, the polymer
chain is well into its stiffening regime before the components
stretch significantly.

To demonstrate the dependence of damage with respect
to relative loading rate, we plot in Fig. 4(b) the normalized
critical separation distance rc/n′b′ versus loading rate for the
same range of component stiffnesses. Generally, with larger
E , we observe a larger critical stretch rc. Furthermore, we
notice a transitional regime between rc ≈ 3n′b′ (the contour
length of the full chain as there are 3 subchains) and rc ≈ 1n′b′
(the initial contour length of one subchain) that occurs at dif-
ferent loading rates. For instance, the critical stretch of E = 5
and E = 0.5 is similar for W < 10 and W > 50. However,
between these loading rates, the chain with E = 5 is able to
stretch nearly three times as far as the chain with E = 0.5.
Thus, it is important to consider the regime of loading rates
that a chain will be subjected to as strengthening its com-
ponents does not have a large effect at very slow or very
fast rates.

IV. DAMAGE MECHANISMS OF A SLIDE-RING UNIT

In an isotropic network, a chain and its subchains may
have arbitrary orientation with respect to the loading direction
(Fig. 1). We therefore propose a simple study of a well-defined
volume element and report on its emergent behavior in terms
of damage initiation. The proposed slide-ring unit is a rectan-
gular domain of length L and height H composed of a chain
threaded by N crosslinked rings equispaced along its edges
(Fig. 5). The chain connects alternating rings from each side
to produce a “zigzag” pattern. The unit itself may be uniquely
defined by its crosslink density ρ = N/LH and the angle
created by the exterior subchain and the bottom of the unit
tan (φ) = (N − 1)H/L, the latter of which may be thought
of as a measure of how coiled the chain is in space. For ex-
ample, φ = 0 describes the perfectly aligned chain described
in the previous section. Alternatively, as φ approaches π

2 , we
observe a perfectly coiled chain that minimizes its occupied
volume. Note that this study is performed in 2D to illustrate
the basic predictions of the model.

To predict the response of differently oriented units, we
consider applying a purely deviatoric deformation in an ar-
bitrary direction. For instance, we may consider a global
deformation of the form F = diag{1/λ, λ}, where λ is the
macroscopic stretch ratio. While F is defined in a global
coordinate system ei, the deformation observed by an arbitrary
oriented unit may be considered as the equivalent deformation
in its local frame e′

i. Defining θ as the angle between ei and e′
i,

we, therefore, consider a general deformation of the form

F ′(λ, θ ) = R(θ )F(λ)R(θ )T , (13)

where the orthogonal matrix R defines the orientation of the
chain with respect to the principal stretch directions. For con-
venience, we normalize all lengths in the unit volume by that
of an undeformed Kuhn segment b′. To restrict the parameter
space, we considered an experimental system of low-inclusion
polyrotaxane with low crosslinking density as these systems
have been the most highly characterized [43,44]. According
to the experimentally measured crosslinked ring densities on
the order of 10 m−3 [44], we consider chains with N = 5
crosslinked rings, an angle of φ = π

4 , and a density of ρ =
0.05 b′−2, where b′ is considered as 22 angstroms [42]. As
the percentage of crosslinked rings on a single chain was
measured to range from 5–36% [44], we choose the number of
mobile rings per segment to be p = 8, which corresponds to
10% of the rings being crosslinked on the full chain. Addition-
ally, we assume the full chain contains 100 Kuhn segments,
each initially having the reference stiffness of the carbon-
carbon bond, E = Ex = 1. Furthermore, the critical bond
dissociation energy is assumed to be the same for each compo-
nent, yielding a critical component stretch of λc = 1.01. The
number of mobile rings per segment is initially chosen to be
p = 8, which reflects a relatively low inclusion polyrotaxane.
Finally, we consider the length of a crosslinked ring to be 0.75
times that of a Kuhn segment, which is consistent with the
ratio of the outer diameter of an α-cyclodextrin ring (about 15
angstroms [45]) to the length of a polyrotaxane Kuhn segment.
These values are summarized in Table I.

Note: The stretch-driven failure criterion implies that stiff-
ening an element (either ring or Kuhn segment) will delay its
rupture and therefore make it effectively stronger. Conversely,
a compliant element may be thought of as weak.

A. Transient behavior of a slide-ring unit

We begin by discussing the behavior of the slide-ring unit
whose deformation history χ(t ) is defined by Eq. (13). Once
again, the loading rate plays an important role as segments
rearrange within the unit to equilibrate tension. Rheological
studies of slide ring gels have determined relaxation times on
the order of 100 ms [46]. Furthermore, low inclusion slide
ring gels display extensibility of up to 1600% strain [12].
We here consider a wide range of loading rates parameterized
by the Weissenberg number W , which may be interpreted as
the loading rate λ̇ normalized by the relaxation time of the
material. For this study, we load each unit until one of the
components has failed, which indicates the onset of damage.

To better understand the behavior of the system, we may
define both unit-level quantities, which are a function of their
orientation θ , as well as ‘smoothed’ quantities, which are
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TABLE I. Reference parameter values (assumed in-use unless
stated otherwise) used to study the damage mechanics of a slide-ring
unit. *Note, lengths are normalized by the length of an undeformed
Kuhn segment (approximately 22 angstroms [42]) and stiffnesses are
normalized by the stiffness of a carbon-carbon bond (approximately
2300kbT [19]).

Loading parameters Symbol Values

Angle of loading θ From 0 to 2π

Macroscopic stretch λ Varied

Network parameters Symbol Values
Number of crosslinked rings N 5
Coil angle φ π

4
crosslinked ring density ρ 0.05 b′−2

Physical parameters Symbol Values
Number of Kuhn segments in chain nt 100
Mobile rings per subchain p 8
Initial Kuhn length∗ b′ 1
Initial ring length∗ c′ 0.75
Component rupture stretch λc 1.01
Kuhn segment stiffness∗ E 1
Crosslinked ring stiffness∗ Ex 1

averaged over all orientations. These may reflect the behavior
of an ideal slide-ring network undergoing affine deformation.
To begin, we define the virial stress [47] of a unit as

σ(θ ) = 1

LH

⎡
⎣ ∑

0�i�N

ri ⊗ t i +
∑

1�i�N

Ex(ci − c′)ci ⊗ ui

⎤
⎦,

(14)

where ⊗ denotes the dyadic (tensor) product. The left part of
this expression reflects the tension held within each subchain
while the right expression accounts for the enthalpic force
in the crosslinked rings. Note that the enthalpic contribution
of the Kuhn segments is already accounted for in the chain
tension t . As we are deforming units with arbitrary orientation,
we may consider the first principal stress σ̂ (θ ) as reflecting
the applied stress required to deform a unit whose edges are
aligned in the direction θ . Note that the direction of σ̂ may not
align with θ due to the anisotropy of the unit. Furthermore, we
may define the critical stress σc(θ ) as the stress at which the

unit fails. The other unit-level quantity of interest is the degree
of sliding that has occurred during the deformation history.
A simple measure of this is the fractional segment growth,
denoted α, which is a normalized quantity that describes the
influx of segments into the center subchains [26]. We formally
define it here as

α(θ ) = n̄ − n̄′

n∞ − n̄′ , (15)

where n̄ is the sum of Kuhn segments in the middle subchains
and n̄′ is its value before deformation. With this definition,
α vanishes at equilibrium and asymptotes to α = 1 once the
middle subchains have accumulated n∞ segments (i.e., the
dangling ends have been depleted). Thus, an increase in α

means segments have moved from the dangling ends into the
middle subchains, while a decrease in α means that segment
flux into the dangling ends has been preferred. The latter
case may occur with the application of a volume-shrinking
deformation, for instance. Finally, to observe the collective
response of an ideal network, we may consider the network
average of the quantities in Eqs. (14) and (15). For this, we
define the operator 〈·〉 to denote the average over all orien-
tations θ . Figure 6 plots the average principal stress 〈σ̂ 〉, the
average segment growth 〈α〉, and the critical stretch σc(θ ) for
units deformed in all directions 0 � θ � 2π to the point of
rupture at varying loading rates.

1. Fast loading

Once again, we begin by analyzing the case of fast loading
(i.e., W → ∞) as it is the simplest to conceptualize. When
loading a slide-ring network quickly, there is not sufficient
time for sliding, and the response is that of an elastic network.
This is illustrated by the invariance of α with λ in Fig. 6. As
with the aligned chain, the chain stiffens at the earliest point
and subsequently fails at the smallest strain. Note that we have
assumed the failure of any smoothed quantity to be governed
by the weakest unit—the orientation that fails earliest dictates
the critical stretch of the ensemble. Looking at the response
of each unit as a function of orientation, we observe that the
critical failure stress is roughly the same for all angles. Thus,
the orientation of the unit does not play a large role in its

FIG. 6. Mechanical response of arbitrarily oriented units. (Left) Average principal stress on the assembly versus stretch. (Right) Average
segment growth versus stretch. (Center) Critical stress versus orientation plotted on a logarithmic scale. All plots illustrate fast (W → ∞) and
slow (W → 0) loading as limiting cases. The intermediate loading rate of W = 1 is illustrated with a gray dashed line.
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FIG. 7. Damage behavior of the unit studied in this section. (Center) Polar plot of the critical applied deformation at which a component
breaks in a given orientation for fast, slow, and intermediate loading (W = 1, dashed). Shaded regions are colored by their preferred damage
mechanism at a given orientation and loading rate (red for rings, blue for Kuhn segments). (Left) Segment change versus applied stretch at
orientations A and B. (Right) Segment change versus applied stretch at orientation C. On both plots, the dashed curve is the response of W = 1.
Note that the shaded region is bordered on the right by its predicted critical stretch at other intermediate loading rates.

mechanics at high loading rates, as would be expected for an
(isotropic) elastic network.

2. Slow loading

In the limit of slow loading (W → 0), we expect a large
transfer of segments from the dangling ends into the middle
subchains (as before in the aligned case). Indeed, we notice
an immediate increase in the mean fractional segment growth
〈α〉, which converges to its maximum value of one before
breaking. We also predict an increase in critical stress, critical
stretch, and toughness over all orientations (Fig. 6). Thus, the
sliding of segments from the dangling ends increases resis-
tance to failure as in the previous section. This time, there is a
large effect of the orientation of the unit on the critical stress
σc. In particular, units aligned orthogonal to the principal
directions of loading illustrate nearly an order of magnitude
increase of σc from the fast loading case. Units unaligned
with the direction of loading experience a smaller increase in
σc, with the smallest difference being observed at θ = π/4
and its symmetric orientations. This is discussed further in
the next section, but is ultimately due to the redistribution
of segments within the middle subchains. Nonetheless, the
increased critical stress is observed over all angles due to
sliding and the subsequent delay of damage initiation. Thus,
we may expect that networks with arbitrary topology would
still have improved toughness at slow loading rates, as is
observed experimentally [5].

B. Damage mechanisms of a slide-ring unit

We may now begin to consider different damage mecha-
nisms that may occur in a slide-ring network. Recall, in this
study, we consider two different possibilities for damage: rup-
ture of crosslinked rings or rupture of Kuhn segments within a
subchain. For the aligned chain, the distinction between these
modes of damage was completely dictated by their relative
stiffnesses (Fig. 4). For a real network, however, local geome-
try, loading rate, and component strength may play a role. For

now, we maintain the parameters outline in Table I. This will
be loosened with a parametric study in the following section.

We illustrate the damage behavior of this unit in Fig. 7.
In the center, we plot the critical macroscopic stretch λcrit

at which a unit with orientation θ breaks for both fast and
slow loading. We color the lines in this plot by their damage
mechanism (which component broke first)—red for rings and
blue for Kuhn segments. Once again, we note that fast and
slow loading represent boundaries of the system’s response.
This time, we may also color the intermediate loading rate re-
gions with the color corresponding to their preferred damage
mechanism. Clearly, for this system, breaking Kuhn segments
is largely preferred over a majority of orientations. We also
note the slight asymmetry between angles 0 and π and angles
π/2 and 3π/2, which is due to higher forces being placed on
either the “middle” rings or the “outer” rings, and subsequent
preferred damage, as illustrated in the schematics. In Fig. 7,
the left and right subplots illustrate the change in fractional
segment growth α during loading for units aligned in the
direction of loading (A: θ = 0), perpendicular to the direction
of loading (B: θ = π/2), and offset to loading at π/4 rad. (C:
θ = π/4). Note that the shaded gray regions are bordered on
the right by the critical stretch λc and segment change α that
occurs at intermediate loading regimes.

1. Fast loading

As usual, we first consider the case of fast loading. Here,
the effect of geometry is clearly observed by the “diamond”
shape outlined in the polar plot of Fig. 7. As this is the elastic
regime, the reason for this is the affine deformation of the
two inner-most subchains, which consistently break after a
critical stretch in their respective orientation is reached. When
the orientation of the unit θ is exactly aligned with the coil
angle φ, i.e., at orientation C, we observe the smallest critical
stretch as the local stretch on one of the inner-most subchains
is exactly equal to the macroscopic stretch. In contrast, at
orientations A and B, we observe the largest critical stretch
as the relative alignment of each subchain with respect to
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the loading direction is equal. Interestingly, we only predict
ring failure at orientations near A and B. When the middle
subchains are evenly stretched, the rings sustain the highest
loads, making them more vulnerable to breaking. As this
regime is dominated by elastic deformation, we observe no
change in α for any orientation, yielding a constant value of
α = 0 up to the border of the gray region in the plots. At this
point, the unit breaks without any sliding having occurred.

2. Slow loading

In the slow loading regime, we again notice an increased
critical stretch over all orientations due to the influence of seg-
ment sliding. Interestingly, in this case, we observe the highest
critical stretch at orientation C, while the lowest occurs at
orientations A and B. Recall, when the unit is aligned nor-
mal to the deformation, all subchains are stretched uniformly.
Thus, the segments that flow from the dangling ends must be
evenly distributed to each subchain. This drains the dangling
ends faster, as observed by the slope of the α versus λ plots,
which results in a smaller critical stretch. In contrast, for the
offset orientations such as C, while some inner subchains are
extended, the others are compressed. This allows the com-
pressed subchains, as well as the dangling ends, to distribute
their segments into the more extended subchains. Thus, the
segments in the dangling ends are depleted more slowly, and
the unit is able to withstand further extension. Note that each
orientation converges to its maximum value of α = 1 before
breaking, where A and B approach this value faster than C.

C. Parametric study

We may now consider the effect of the chosen parameters
on the response of the unit. As shown in Table I, there are
seven physical parameters that govern the mechanical prop-
erties of the chain. We first note that the initial length of
Kuhn segments and mobile rings (b′ and c′, respectively) do
not affect the stress response or damage behavior as we are
considering linear spring behavior. Furthermore, the number
nt of Kuhn segments in a chain primarily dictates the point
at which the chain stiffens, i.e., the applied stretch at which
chains approach their contour length. Thus, the primary pa-
rameters governing the response of the unit are the strength of
the components, E and Ex, and the number of mobile rings
per subchain, p.

1. Effect of component stiffness

As demonstrated with the aligned chain, the component
stiffnesses E and Ex largely influence the mode of damage
preferred to the slide-ring network. For nonaligned geome-
tries, however, local strains and nonaffine deformations within
the chain create a large orientation-dependence as well. To
study the effect of varying the component stiffness, we con-
sider a numerical experiment in which we strengthen only
one of the components by a factor of five. Note that we are
neglecting the regime of E , Ex < 1 for the slide-ring unit as
it is unlikely to be physical (as discussed previously for the
aligned chain). Figure 8 presents the critical stretch versus
orientation plots for units with strong rings (i.e., Ex = 5) and
strong chains (i.e., E = 5). For the first case, we see that

FIG. 8. The effect of component stiffness on damage behavior
at fast, slow, and intermediate loading. (Left) Critical stretch versus
orientation for a unit with Ex = 5 and E = 1. Damage to Kuhn
segments is exclusively preferred. (Right) Critical stretch versus
orientation for a unit with E = 5 and Ex = 1. Damage to rings is
preferred at ≈40% of orientations.

damage to the Kuhn segments has been exclusively preferred.
As before, the fast loading case is driven by the geometry
of the unit, while the slow loading case delays damage. In
contrast, when we strengthen the chains by a factor of five,
damage to the rings is only preferred in roughly 40% of orien-
tations. Nonetheless, there is a slight increase in the critical
stretch over all orientations from the previous case due to
the increased chain strength. Notice that in orientations that
ring failure is preferred, which is once again centered around
units oriented normal to deformation, the critical trend of
λcrit versus θ remains continuous. Thus, ring damage may be
thought of as a limiting case in which rings fail just before the
chain. Interestingly, for fast loading, the first component to
fail is the chains, while for slow loading, the first component
to fail is the rings.

2. Effect of mobile rings

The mobile rings that remain uncrosslinked after creating
a slide-ring gel are known to largely influence the viscoelastic
properties and fracture behavior of the material [5,23]. In gen-
eral, having too many mobile rings hinders segment sliding
due to a larger residual osmotic force. In contrast, networks
with low inclusion ratios tend to have better viscoelastic prop-
erties and fracture resistance. Figure 9 illustrates the damage
behavior of units with only one mobile ring per chain up to
the limit of having the same number of mobile rings as Kuhn
segments in a subchain (denoted as pmax) for slow loading
and intermediate loading (W = 1). Interestingly, we observe
very similar trends from varying the number of mobile rings
as we did from varying the loading rate. Indeed, increasing
the loading rate and increasing the number of mobile rings
both effectively prevent chain sliding from occurring during
deformation. Thus, the curves illustrated for p = pmax are,
in fact, exactly the same as the curves for the fast loading
rate (independent of p). This time, we notice a large increase
(nearly double) of the critical stretch for units with sparse
mobile rings (p = 1) and units with completely full mobile
rings. This fits well with the experimentally observed effect of
varying the inclusion ratio [5] and further supports the claim
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FIG. 9. The effect of mobile rings on damage behavior for a
unit with mobile rings ranging from p = 1 to p = n′ (denoted pmax).
(Left) Deformation at the slow loading limit (W → 0). (Right) De-
formation at an intermediate loading rate (W = 1). In both cases,
p = pmax converges to the fast loading limit as sliding is not possible.
The dashed line indicates the case of p = 8 for reference.

that mobile rings at low inclusion ratios increase network
toughness. Once again, it is interesting to note that while
chain damage is preferred over a majority of orientations, ring
damage occurs first (i.e., at a smaller λcrit) in the case of slow
loading.

D. Discussion

To summarize our results from the previous section, it is
important to recall that fracture or failure of a material is
determined by its weakest component. In this case, we may
consider the orientation θ at which the critical stretch λcrit

is the smallest. In general, as supported by experimental evi-
dence [5], we find that units with higher degrees of sliding are
able to sustain more deformation and display higher tough-
ness, which, in this context, may be interpreted as the amount
of energy that can be supplied to a unit before failure of one of
its components. The two primary factors governing the ability
of a slide-ring network to slide efficiently are the loading rate
and the inclusion ratio, which is reflected by the number p of
mobile rings per subchain in our model. To obtain the toughest
material, one should aim to make these two quantities as small
as possible.

One aim of this study was to add a new perspective on
the potential parameters that may be adjusted to increase the
performance of slide-ring materials. The effect of inclusion
ratio and chain length on fracture properties are already well-
known [5], but the effect of toughening network components
is still unexplored. For each set of parameters studied in this
paper, we find that Kuhn segments within the polymer chain
are more susceptible to damage over a majority of orienta-
tions. Notably, we have observed that this is still the case
even after strengthening the Kuhn segments by a factor of five
(Fig. 8). This suggests that Kuhn segments are more suscepti-
ble to damage over more orientations, but does not necessarily
mean that failure in slide-ring networks is always driven by
damage to the polymer chain. Clearly, increasing the strength
of any component should positively affect the toughness of
the material. The question of which component should be
strengthened to best improve the network is determined by
the orientation and component that fails at the smallest critical
stretch.

FIG. 10. Schematic: damage modes of a slide-ring unit undergo-
ing slow loading.

When considering a slide-ring unit that can slide effectively
during deformation (i.e., at relatively low loading rates and
inclusion ratios), we find that the first component to fail is
always the crosslinked rings. Thus, we predict that increasing
the strength of crosslinked rings would yield a tougher ma-
terial. To extend our study to a more physical network, one
can consider two chains being loaded in tension (Fig. 10).
These may reflect two different parts of an isotropic slide-ring
network, for instance. If the affine motion of the crosslinked
rings creates a uniform deformation of the underlying polymer
chain (i.e., each subchain is stretched evenly), then segments
from the dangling ends are shared among each subchain,
increasing their strength uniformly, and concentrating more
force on the crosslinked rings. In contrast, a chain that ex-
periences nonuniform deformation, in which some subchains
are compressed while others are extended, the highly aligned
chains are much more susceptible to damage. In this study,
these two cases are reflected by: (i) a unit being oriented
orthogonal to the direction of loading, which creates uniform
subchain deformation, and (ii) a unit whose orientation is
offset to the direction of loading, which creates nonuniform
subchain deformation.

V. CONCLUSION

This paper introduced a sliding network model to describe
the elasticity, relaxation, and damage evolution in slide-ring
units experiencing large deformations. The model conceptu-
alizes an isotropic slide-ring network as a collection of simple
units with random, yet uniform orientations. This allowed us
to study a slide-ring network being deformed to the point of
either chain or crosslinked ring failure. Using this approach,
we find that damage to polymer chains is more likely over
a majority of orientations, but damage to crosslinked rings
are ultimately limiting the toughness of the network. Thus,
improving the strength of the rings used during synthesis may
increase the toughness of a slide-ring gel.

The present study shows how chain sliding enables the
extreme extensibility of slide-ring gels. However, many of the
other remarkable properties of slide-ring systems are thought
to be the result of their dynamic network topology. For exam-
ple, it is believed that the high fracture resistance of slide-ring
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gels is a product of local network rearrangements around a
fracture tip [48]. This is largely due to nonaffine motion of
the sliding crosslinks, which may be the subject of a future
study. In particular, we may consider a mesoscale network
whose components move according to local a force balance
[32,33]. This would naturally incorporate the pulley effect of
tension redistribution, which is thought to be a predominant
feature of slide ring networks [21]. Furthermore, this study
only considers regimes prior to the onset of damage. A full
network model would be required to investigate the propa-
gation of damage in a slide ring material. In this context,
the model can be used to validate many of the hypothesis
proposed in experimental studies, thereby offering a funda-
mental understanding on the role of network design (topology,
chemistry, etc.) on mechanical properties such as strength and
toughness.

For clarity of presentation, our analysis remained simplistic
and is therefore subject to several limitations. For instance,
we varied the relative stiffness of the rings and Kuhn seg-
ment while assuming each component breaks under the same
stretch. However, the stretch required to damage the bonds in

a ring may differ from that required to break bonds in a Kuhn
segment. More accurate results could, however, be obtained
by estimating the stiffness and stretch required to break the
weakest bond within each component’s structural backbone.
Additionally, the purposed criteria for chain damage is exclu-
sively the result of subchain tension. Consequently, a chain
can only fail along its internal subchains as its dangling ends
are tension free. However, a previous coarse-grained molecu-
lar dynamics simulation found that slide-ring chains primarily
fail in regions near their dangling ends [31]. This suggests
chain failure should also be dependent on the osmotic force
along each subchain.
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