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Emergent statistical laws in single-cell transcriptomic data
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Large-scale data on single-cell gene expression have the potential to unravel the specific transcriptional
programs of different cell types. The structure of these expression datasets suggests a similarity with several
other complex systems that can be analogously described through the statistics of their basic building blocks.
Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common
set of genes just as books are different collections of words from a shared vocabulary, genomes of different
species are specific compositions of genes belonging to evolutionary families, and ecological niches can be
described by their species abundances. Following this analogy, we identify several emergent statistical laws
in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology, or genomics. A
simple mathematical framework can be used to analyze the relations between different laws and the possible
mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics
to disentangle the actual biological variability from general statistical effects present in most component systems
and from the consequences of the sampling process inherent to the experimental technique.
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I. INTRODUCTION

Almost every cell of an organism has the same gene con-
tent, but how these genes are expressed ultimately defines
the cellular phenotype. If the gene repertoire is the genomic
vocabulary, the transcription program represents how the dif-
ferent words are actually used by different cells to determine
the cell identity [1]. Single-cell RNA sequencing (scRNAseq)
technologies have recently given access to these cell-specific
transcription programs [2], and large-scale expression atlases
have been compiled collecting thousands of single-cell ex-
pression profiles for all the major organs of different species
[3–5].

The analogy between word statistics in a collection of
texts and gene expression profiles in a large population of
cells suggests that the transcriptome can be looked at as a
complex component system [6]. Several complex systems of
different nature and origin, from linguistics to biology, have
an analogous modular structure with identifiable basic com-
mon building blocks that are used with different statistics.

*These authors contributed equally to this work.
†matteo.osella@unito.it

This statistics should contain information about the genera-
tive processes and the architectural constraints of the system.
Books are composed of words, genomes of different species
are collections of genes of different evolutionary families or
associated with different biological functions, and ecological
niches are compositions of species with different abundances.
Analogously, the transcriptional profiles of single cells are
the sums of specific amounts of RNAs transcribed from a
repertoire of common genes, and scRNAseq provides a pic-
ture of these profiles. The advantage of looking at single-cell
transcriptomics as a complex component system is that a
modeling framework and a set of analysis tools, based on
statistical physics, have been developed for these systems. In
fact, common statistical regularities have been characterized
quantitatively in the different component systems described
[7–11], and simple models have been proposed to explain
their emergence. The first question we will address is if
analogous statistical laws can be identified in large-scale tran-
scriptomic data. While only a few general regularities have
been already recognized in transcriptomic data [12–14], this
work presents a detailed and systematic exploration across
different datasets and experimental techniques. A quantita-
tive systematic description is important for the development
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and test of simple statistical models that can capture the
connections between seemingly independent emerging laws.
These data-driven models can in turn be used as “null mod-
els,” for example to disentangle genuine biological variability
from technical or statistical effects in the context of tran-
scriptomics. In fact, the observed variability in single-cell
expression experiments typically has several possible sources,
such as technical noise due to the experimental techniques, the
intrinsic stochasticity in gene expression, and the biological
variability actually setting the cell identity in terms of cell type
and cell state (such as the cell cycle stage) [1,15]. In particular,
sampling noise associated with RNA capture and sequenc-
ing is inherent in RNA-sequencing techniques and can be a
dominant source of noise, especially in single-cell transcrip-
tomics where the starting RNA material is limited. This work
focuses on cell atlases, as illustrative examples of large-scale
scRNAseq datasets, with this complex systems perspective.
We will identify emergent statistical laws in these datasets
and assess their universality by comparison with properties
of other component systems. Using a general and simple
mathematical framework, we will show that several statistical
properties of scRNAseq datasets can actually be explained
as a result of the combination of heterogeneity in average
expression levels and a sampling process. For example, we
will show how this simple description can largely explain the
empirical data sparsity in scRNAseq datasets, whose origin
is still a debated topic in the field [16,17], without invoking
convoluted or ad hoc assumptions.

On the other hand, some data features are not fully captured
by this basic model, suggesting where to focus in order to
extrapolate actual properties of biological variability. In fact,
models based on empirical statistical laws, such as the one
presented here or its potential future advancements, can be
used as null models, for example to select the genes whose
expression pattern is significantly divergent from the model
expectation because of technical or biological reasons. We
will show few illustrative examples of this model-driven gene-
selection procedure. Analogously, the extant of the general
discrepancy of a dataset properties from the model predictions
should be related to intrinsic characteristics of the dataset,
such as the degree of diversification of cell types. We will
show that this indeed seems to be the case.

Data-driven statistical models are also instrumental to gen-
erate simple but realistic simulated datasets, where the key
parameters are fully under control, in order to benchmark
analysis methods or computational pipelines. The develop-
ment of realistic benchmark datasets of controlled complexity
is a crucial problem in the field [18], where a plethora of
computational methods have been proposed, but it is not
straightforward to quantitatively assess their relative perfor-
mances.

Finally, we will discuss how the addition of transcriptomic
data to the increasing large set of systems displaying seem-
ingly universal statistical properties is a relevant case study in
the context of model generation. In complex systems theory,
different general models and principles behind these ubiqui-
tous laws have been proposed, and new empirical examples
such as transcriptomic data can be useful for model testing and
selection. Therefore, this systematic exploration of statistical
laws in single-cell transcriptomics could help to bridge the

gap between mathematicians and physicists building general
quantitative descriptions of complex systems, and computa-
tional biologists that could use the same descriptions to extract
useful biological information from large-scale datasets.

II. MATERIALS AND METHODS

A. Data sources

The Mouse Cell Atlas (MCA) was selected as the main
illustrative dataset. In the MCA more than ∼4 × 105 single
cells were profiled using scRNAseq from all major organs
[3,19] using the microwell-sequencing technique, a high-
throughput and low-cost scRNAseq platform. An advantage
of this dataset is the use of unique molecular identifiers
(UMIs) [20]. This technique allows the identification of the
absolute number of unique RNA molecules detected by se-
quencing, thus eliminating the amplification noise. In the
context of single-cell gene expression assays, this method
provides a reliable estimate of the number of mRNAs detected
for coding genes and an estimate of the transcriptome size
sampled. Our analysis therefore mainly focuses on absolute
molecule counts, rather then relying on normalization tech-
niques, which are still a research area in sequencing data
analysis.

We also analyzed the compendium of Tabula Muris (TM)
for comparison. This atlas comprises an analogous number of
cells from 20 organs and tissues [4,21] that were processed
with the Smart-seq2 protocol [22], which produces a full-
length transcriptome profiling but does not use UMIs.

A dataset of bulk RNA-sequencing of healthy human tis-
sues from the Genotype-Tissue Expression (GTEx) Project
[23] was used to test the results on population-averaged tran-
scriptomic data.

Finally, we analyzed two additional single-cell datasets,
relative to a human embryonic kidney (HEK) cell line and
to mouse fibroblasts, profiled with the recently introduced
Smart-seq3 protocol [24].

B. The data structure for component systems

A transcriptomic dataset, and more generally a component
system, can be described by a matrix {nc

i } where each entry
represents the counts relative to transcript (i.e, the component)
i ∈ {1, . . . , N} in cell (i.e., the realization) c ∈ {1, . . . , R}.
N is the total number of different transcripts that could be
present (the number of genes as a first approximation), which
is essentially the vocabulary of our system. R is the number
of cells analyzed. Each column of the data matrix is a vector
{nc

. } = {nc
1, . . . , nc

N } that fully describes the expression profile
of a single cell c. The size of the transcriptome of a cell
captured in the experiment is defined as Mc = ∑N

i=1 nc
i . While

in other component systems, such as texts of natural language,
this parameter is simply the size of the realization (e.g., the
book size), in our context Mc represents the measured tran-
scriptome size. Therefore, it does not necessarily correspond
to the total number of transcripts in the cell because of the
sampling process involved in RNA capture.

As described in the previous section, this work mainly
focuses on two scRNAseq atlases: the MCA and the TM
compendium. In these datasets, the total numbers of genes N
(i.e., the genes with at least a single detected transcript) are
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respectively around 38 × 103 and 23 × 103, while the num-
bers of cells R are 34 × 103 and 41 × 103. The distribution of
transcriptome sizes Mc is quite broad and dataset dependent.
In the MCA, the average number of UMIs per cell is �1200
and the distribution is reported in Fig. S1 of the Supplemental
Material [25].

C. An analytical framework to model gene expression data

This section develops the mathematical framework that
will be used to describe the datasets. Using this frame-
work, simple null models can be built to characterize the
expected statistical behaviors given the model assumptions.
The same mathematical description was applied in the context
of metagenomic data [11], while an analogous approach was
previously introduced for scRNAseq data [26] and is the basis
of a recent Bayesian procedure for data normalization [27].

The key underlying assumption is that the observed mRNA
counts nc

i are the combined result of the inherent biological
variability between cells and of the sampling process due to
RNA capture and sequencing [11,27]. Therefore, the proba-
bility of observing a specific expression profile {nc

. } in a cell
c, from which Mc transcripts have been sequenced, is given
by

P({nc
. }|Mc, { f c

. }) = Mc!∏N
i=1 nc

i !

N∏
i=1

(
f c
i

)nc
i , (1)

where f c
i represents the true frequency of the mRNA i in

cell c. The cell-to-cell variation in gene expression can be
described by an unknown probability distribution ρ({ f.}) set-
ting the mRNA frequencies in the different cells. Thus, the
probability of an expression profile in a cell with M observed
transcripts becomes

P({nc
. }|M, ρ({ f.})) =

∫ ∞

0
[df ]ρ({ f.})

M!∏
i nc

i !

∏
i

( fi )
nc

i . (2)

Focusing on a single gene i (by marginalizing the above ex-
pression), we have the probability of observing n counts as

Pi(n|M ) =
∫ ∞

0
df ρi( f )

(
M

n

)
f n(1 − f )M−n

�
∫ ∞

0
df ρi( f )

e− f M ( f M )n

n!
. (3)

The Poisson approximation is valid when the number of
mRNAs is large, M � 1, and even highly expressed genes
occupy a small fraction of the total, which is typically the
case in the datasets we want to analyze. In the presence of a
dataset in which a gene transcript covers a large fraction of the
total transcriptome for a non-negligible percentage of cells,
the simplifying Poisson approximation does not hold. In those
cases, the full model has to be considered and spurious nega-
tive correlations between genes can arise because of finite size
effects. The distribution ρi captures the variability in expres-
sion of gene i due to both the different cell identities present
in the cell population and the contribution from stochastic
gene expression. On the other hand, the sampling variability is
explicitly captured in the model by the binomial distribution.
The average frequencies fi can be directly estimated by the

empirical ones in the dataset [11]:

fi � 1

R

R∑
c=1

nc
i

Mc
. (4)

The ambitious goal would be to infer the distributions ρi,
and to distinguish the different contributions to the biologi-
cal expression variability. Here, instead, we first consider a
simple limiting case in which the actual biological variability
is negligible with respect to the sampling noise. In this case,
the distributions ρi are extremely peaked with respect to the
sampling noise and can be approximated with delta functions,
i.e., ρi( f ) � δ( f − fi ). In this simplified scenario, the proba-
bility of observing an expression profile {n.} is given by the
expression

P({n.}|M ) = M!∏
i ni!

∏
i

( fi )
ni . (5)

This model was previously analyzed to understand the ori-
gin of statistical regularities in different component systems
[28].

We will compare the predictions of this simple model with
empirical expression data. The idea is to understand what
can actually be explained from the natural heterogeneity in
average expression levels and from pure statistical effects due
to the sampling process. One advantage of this model is that
it is analytically treatable and provides mathematical predic-
tions that can be directly tested against data. The situation
of a dominant sampling noise can also be easily simulated.
The transcript frequencies fi can be estimated from data with
Eq. (4) and an ensemble of synthetic cells can be generated by
randomly drawing Mc transcripts, with Mc values matching
the empirical ones. The resulting surrogate datasets reproduce
precisely the average expression levels and the sampling depth
of the empirical dataset.

III. RESULTS

A. Robust emergence of Zipf’s law for the gene
expression levels at different scales

One of the hallmarks of complex systems, from real-world
networks to natural language, is a high level of heterogeneity,
which is often epitomized by the emergence of power-law
distributions [29]. For component systems in particular, the
frequency of components is often well described by a power
law known as Zipf’s law [6,9,29,30]. In natural language,
this law describes the distribution of word frequencies in a
corpus of texts, typically reported as a rank plot. In the con-
text of transcriptomics, this would translate in a law for the
distribution of gene expression levels in a large-scale dataset.
Figure 1(a) reports the rank plot of the relative expression
levels fi calculated by averaging across cells belonging to the
same organ (different curves correspond to different organs)
in the Mouse Cell Atlas (MCA) [3]. The distribution is largely
compatible with a power-law decay with an exponent close to
−1, as in the classic Zipf’s law, followed by an exponential
tail. The shape of the distribution does not depend on the
specific dataset or on the experimental technique used. An
essentially identical plot [Fig. 1(b)] is obtained by looking
at the same organs in an alternative mouse expression atlas,
i.e., Tabula Muris [4], in which different sequencing methods

044403-3



SILVIA LAZZARDI et al. PHYSICAL REVIEW E 107, 044403 (2023)

FIG. 1. A robust Zipf-like law for gene expression levels. The average relative expression levels fi are estimated as described by Eq. (4)
and reported as a function of their rank. The distributions reported correspond to averages over single cells belonging to different mouse organs
from the Mouse Cell Atlas (a), from the Tabula Muris database (b), and to bulk RNA sequencing data from samples of healthy human organs in
the GTEx database (c). Each curve corresponds to a single organ or tissue and the corresponding color code is reported in Fig. S2 [25]. (d) The
relative gene expression levels evaluated in single cells (without averaging) follow an analogous Zipf-like trend. We report the distribution
relative to 100 cells from the heart sample in Tabula Muris. Similar results can be obtained from other organs or from the Mouse Cell Atlas
(Fig. S3 [25]). The dashed lines are just a reference power-law scaling with exponent −1.

were adopted. Even if the relative gene expression levels
measured in the two atlases are correlated, the variability is
substantial (Fig. S4 [25]). Besides biological variability, the
two atlases adopt different protocols, therefore it is not so sur-
prising that the measured expression levels are not perfectly
conserved. However, Zipf’s law is robustly emerging. Also
limiting the analysis to noncoding genes in the MCA, we still
find the same distribution (Fig. S5 [25]). This statistical prop-
erty seems indeed very general and not limited to scRNAseq
data or to the specific species in analysis. For example, the
same law emerges considering bulk RNA sequencing mea-
surements across healthy tissues in human from the GTEx
database [23] [Fig. 1(c)]. This result corroborates previous
observations based on microarray and SAGE (serial analysis
of gene expression) datasets that reported a power-law distri-
bution of gene expression levels across different species and
experimental conditions [31,32], as well as previous observa-
tions based on RNA sequencing data [13,14].

A natural question that can now be asked thanks to
single-cell transcriptomics is if this emerging behavior is a
consequence of the averaging process or a property of the gene
expression program of single cells. Figure 1(d) shows an illus-
trative example of the gene expression distributions in single

cells. Besides some variability, the distributions recapitulate
the population ones reported in the other panels. Therefore,
the Zipf-like behavior is an inherent property of single-cell
expression profiles.

In conclusion, Zipf’s law appears to be a robustly emerg-
ing statistical property of gene expression data from bulk to
single-cell experiments. This law sets the only free parameters
fi of our null sampling model [Eq. (5)] that can be used to
test what properties of the system can be explained merely by
sampling effects.

B. A Zipf’s law with multiple regimes

At a coarse grained view, the rank plot of gene expression
levels can be described as a power law followed by an expo-
nential tail. The presence of a double scaling in the component
frequency distribution again is a general feature of several
component systems. A similar behavior can be observed by
looking at protein domain frequencies in genomes of different
species [6], where an exponential tail can be identified after
the power-law scaling. A double scaling was also observed in
natural language [33], where it was tentatively explained by
a model with two different classes of words: common words
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FIG. 2. Multiple regimes in the rank plot of the average ex-
pression levels. By considering the fitting error using a power law
function in a window with variable width (Fig. S7 [25]), we were
able to identify the part of the distribution well explained by a
single power law, and consequently the two other regimes for highly
expressed and lowly expressed genes. Excluding or including the
noncoding genes from the analysis only influences the exponential
tail of the distribution. The figure refers to the MCA dataset as an
illustrative example.

(high rank) composing a core vocabulary and the rest of more
specific words in a vast vocabulary. This double scaling was
not characterized in previous analysis of the Zipf’s law based
on RNA sequencing data [13,14]. However, two different
groups of genes can be analogously distinguished in bulk
transcriptomic data: a core of highly expressed genes with
active promoters and a second group of lowly expressed and
putatively nonfunctional transcripts [12]. This distinction was
originally based on an observed bimodality in the histogram
of expression levels in several bulk experiments. The same
trend is present also in scRNAseq data from mouse organs
(Fig. S6 [25]), and it is reflected in the drastic change of
regime in the Zipf’s law, where the exponential tail contains
the lowly expressed genes (Fig. 1). Figure 2 shows that this
exponential tail is also enriched in noncoding genes, that are
indeed generally lowly expressed.

However, a more detailed and quantitative analysis indi-
cates that also the top highly expressed genes deviate from
the general power-law behavior with exponent close to −1
(Fig. 2). In fact, it is possible to identify three different
regimes that are approximately captured by two power laws
with different exponents before the exponential tail. In order
to quantitatively support these observations, we selected a
window of ranks (e.g., identified by the dashed-dotted lines
in Fig. 2) over which we performed a power-law fit of the
frequencies. For different positions of the window boundaries,

the coefficient of determination R2 = 1 −
∑

i[g(i)− fi]2∑
i ( f̄ − fi )2 can be

evaluated to select the range of ranks where the distribution
is best explained by a power-law function. In the expression
above, g(i) = B × i−γ2 is the power-law function of rank i
obtained by fitting, while fi are the empirical frequencies
with average f̄ . Once the boundaries and the best power-

law fit of the central part of the distribution are defined by
this procedure, the first regime (low ranks and high frequen-
cies) can be fitted with an independent power-law function
g(i) = A × i−γ1 , and the third regime (high ranks and low
frequencies) with an exponential function g(i) = C × e−γ3i.
Figure S7 [25] presents a more detailed illustration of this
fitting procedure.

Considering all the cells in the MCA, highly expressed
genes (around 100 genes) follow a power law with exponent
close to −0.5, while the central part of the distribution is
well described by an exponent close to −1 as in the classic
Zipf’s law. Interestingly, a very similar law with three regimes
was observed in a quantitative transcriptomic study of fission
yeast [34]. The same behavior can be observed by considering
the different tissues in the MCA separately (Fig. S8 [25]).
Also the gene expression levels in single cells [Fig. 1(d)]
seem to generally display three classes, but the higher level
of fluctuations does not allow a refined analysis.

A Zipf’s law with three regimes emerges also across differ-
ent datasets, as can be qualitatively observed from Fig. 1. The
precise values of the boundaries and of the fitted exponents are
dataset dependent as reported in the Supplemental Material
[25], Tables S1 and S2. However, the general trend appear
to be conserved: few highly expressed genes with a flatter
expression distribution are followed by a central region of
expression levels well described by a power law with exponent
close to −1. Finally, the distribution shows an exponential tail
for lowly expressed genes.

The highly expressed genes in the first regime belong to
specific functional classes. For example, the most enriched
gene ontology (GO) categories for the genes with rank lower
than 100 in the MCA are associated with the basic protein
translation processes (e.g, “structural constituent of ribosome”
or “translation”) with Benjamini-corrected P values lower
than 10−20. GO enrichment analysis was performed using
DAVID repository [35] and cross-checked using Metascape
[36]. The lists of the most-enriched GO terms are reported in
the Supplemental Material (Tables S3 and S4 [25]), where also
the links to the full gene lists are presented. The genes in this
first regime are quite common across organs, e.g., around 70%
of them is in the top 100 highly expressed genes in at least
half of the organs. In particular, 35 genes appear in the first
regime of the 70% of the organs (Table S5 [25]). These genes
present an enrichment for GO terms such as “ribosome” and
“ribosome subunit” with P values lower than 10−20. There-
fore, the first regime is composed of highly expressed genes
related to basic functions. This first core is followed by ac-
tively expressed genes that are more tissue specific and whose
expression approximately follows the classic Zipf’s law with
exponent −1.

C. The average number of detected transcripts follows
Heaps’s law as predicted by a sampling process

A complex biological system such as an organ is com-
posed of multiple cell types with transcription programs
differentiated according to their functional role. Even the
repertoire of genes that have to be transcribed is expected to
vary from cell to cell as a function, for example, of the level
of specialization of the cellular phenotype. Therefore, a basic
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FIG. 3. The number of detected different transcripts follows Heaps’s law. (a) The number of mRNAs with at least one detected transcript
h(M ) is reported as a function of the transcriptome size as measured by the number of UMIs, i.e., Mc = ∑

i nc
i . Each point in the scatter plot

thus corresponds to a single cell, for the illustrative example of cells in the bone marrow from the MCA. The average empirical sublinear scaling
(blue dots) is compared to the results of a stochastic sampling process using detailed simulations (orange dots) and analytical predictions from
Eq. (8) (red dashed line). (b) The same sublinear average scaling is approximately conserved in all organs reported in the MCA.

observable difference between single-cell expression profiles
could be the total number of genes that are actually tran-
scribed. Resuming the analogy with texts of natural language,
different texts typically use a different vocabulary (i.e., total
number of different words), and the size of the vocabulary
can depend on several factors such as the author style or the
topic complexity. However, the average vocabulary of texts
empirically displays a specific and well conserved sublinear
scaling with the text size, known as Heaps’s law [9,37,38].
Again, an analogous law relates the number of different genes
or protein domains to the genome size in prokaryotes [10].
Transcriptomic data present the additional complication that
the number of detected transcripts also depends on the sam-
pling process due to RNA capture. This naturally introduces a
dependence on the sampling efficiency which is proportional
to Mc, i.e., the total number of captured transcripts from a
cell, c. Figure 3(a) shows the number of different mRNAs
as a function of the total number of UMIs as an estimate of
the total number of detected mRNAs. This analysis cannot
be naturally applied in the absence of UMIs, since a reliable
measure of the sample size is needed.

The sublinear power-law scaling is very similar to the one
found in other component systems [9,10]. This empirical trend
can be compared with predictions from the model presented
in Eq. (5). The model assumption is that the probability of
observing a specific mRNA i in the sampling process is only
determined by its empirical average frequency fi. It is easy
to show [38] that according to this model the probability of
not observing a mRNA given the total number of transcripts
sampled M is well approximated by

Pi(0|M ) � e− fiM . (6)

From this expression, we can calculate the expected number
of detected different transcripts h as

〈h(M )〉 = N −
N∑

i=1

Pi(0|M ) � N −
N∑

i=1

e− fiM, (7)

where N is the total number of possible mRNAs, given by
the number of genes considered in the experiment, which
is around 30 × 103. The formula above reproduces well the
results of direct simulations of the sampling process (see the
Methods section for details) reported as orange dots, and
also captures quite accurately the empirical average scaling.
Therefore, the observed repertoire of expressed genes in these
scRNAseq experiments is on average mostly determined by
the sampling process. This trend has to be carefully taken into
account in order to reliably estimate the biological variability
in transcript repertoires.

A quantitative difference between the empirical average
number of expressed genes [blue line in Fig. 3(a)] and the
expectation from sampling (orange line) can be observed. In
fact, the sampling model slightly overestimates the empirical
trend. In other words, cells typically express a lower number
of genes to a higher expression level than expected. This small
discrepancy is linked to the statistics of zero values that will
be discussed in detail in the following sections.

As illustrated in Fig. 2, two power-law regimes followed
by an exponential decay can be sketched for the expression
levels. The model can be simplified by exploiting this observa-
tion. Instead of considering all the fi values as free parameters
that have to be inferred from data, we can assume the double
power-law scaling, with exponents γ1 and γ2 estimated by
fitting, and the exponential tail for low frequency components.
In this case, it can be shown [38] that the expression for h(M )
simplifies to

〈h(M )〉 = N −
i∗∑

i=1

(1 − Ai−γ1 )M −
i∗∗∑

i=i∗+1

(1 − Bi−γ2 )M

−
N∑

i=i∗∗+1

(1 − Ce−ki )M . (8)
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FIG. 4. Fluctuation scaling in the number of detected transcripts follows Taylor’s law. (a) The variance in the number of measured expressed
genes is reported as a function of its average value for all cells in the MCA. Data are compared to a quadratic scaling (red dashed line) and
to the Poisson scaling predicted by a sampling process (blue dashed line). (b) The fluctuation scaling is conserved by considering separately
different organs and tissues. (c) Probability density function of the exponents k obtained by fitting the curves in panel (b) with C〈h〉k .

The factors A, B,C are defined by imposing normalization and
continuity conditions between the three regimes:

A(i∗)−γ1 = B(i∗)−γ2 ,

B(i∗∗)−γ2 = Ce−k(i∗∗ ),

A
i∗∑

i=1

i−γ1 + B
i∗∗∑

i=i∗
i−γ2 +

N∑
i=i∗∗

Ce−ki = 1. (9)

i∗ is the rank at which the change of power-law exponent
is estimated, while i∗∗ is the rank at which the exponential
regime starts. This is the theoretical prediction reported as a
dashed red line in Fig. 3(a).

If the sampling process is the dominant factor setting the
repertoire of observed transcripts, the trend should not depend
crucially on the biology of the system in analysis. Indeed, the
sublinear scaling is well conserved across different organs as
reported in Fig. 3(b).

D. Variability in the repertoire of expressed genes follows
Taylor’s law and reveals deviations from a sampling process

As discussed in the previous section, the scaling of the
average number of detected genes can be well explained as
a result of the sampling process. However, there is substantial
variability in the empirical data, i.e., cells with the same total
number of UMIs can have expression repertoires of largely
different sizes. The question is if this variability can be again
explained as sampling fluctuations. The model provides a
precise prediction for the variance σ 2

h as a function of the
average value 〈h〉. Fig. 4(a) compares the model prediction
of a Poisson scaling (blue dashed line) with the empirical
scaling (grey dots) evaluated over all the cells in the MCA
dataset in order to have large statistics. The empirical variance
displays a power-law scaling with the average vocabulary
size that is not compatible with a Poisson scaling. Fitting the

empirical scaling with the function C〈h〉k leads to an exponent
k = 1.64 ± 0.18. This value is significantly different from the
Poisson scaling expected from sampling (Z = 3.5) and more
compatible with the quadratic scaling (R2 = 0.94 and Z < 2)
that has been observed for several other complex systems
[11,39,40].

Focusing on single cells belonging to the same organ the
phenomenology is quite diversified, also due to the reduced
cell numbers [Fig. 4(b)]. With the caveat that the reduced
statistics makes the fitting procedure less robust, we can
still fit the organ-specific fluctuation curves with the func-
tion C〈h〉k finding a distribution of exponents peaked on 2
[Fig. 4(c)]. Although the distribution is quite large, this sug-
gests that an approximately quadratic scaling is an inherent
property of the transcriptome diversification and it is not only
due to differences between organs. Interestingly, we have
found an emergent statistical law that cannot be explained by
the sampling process inherent to RNA sequencing, and that
can thus contain information on biological variability. How-
ever, this quadratic fluctuation scaling is yet again a common
feature of several complex component systems, from linguis-
tics to ecology, known as Taylor’s law [11,39,40]. Therefore,
a general explanation, which goes beyond the specific prop-
erties of expression profiles, could be at the origin of this
scaling.

E. Poisson noise sets the lower bound and the scaling
of gene expression cell-to-cell variability

A commonly analyzed property of cell-to-cell variability
in single-cell expression studies is the coefficient of varia-
tion (CV = σn/〈n〉) of gene expression levels across cells.
In particular, the CV2

i of each gene i is often reported as a
function of the mean gene expression level in order to identify
highly variable genes at a given average value. In fact, this
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FIG. 5. The coefficient of variation CV2
i as a function of the average expression. The red dashed lines report the Poisson scaling, i.e.,

σ 2
n = 〈n〉. The horizontal orange dashed lines correspond to the maximum possible value of CV2 = R − 1, which is achieved if a gene is

expressed in only one cell. The different panels correspond to data from (a) Mouse Cell Atlas, (b) Tabula Muris, (c) GTEx limited to protein
coding genes, (d) GTEx limited to noncoding genes. As explained in the Methods section, for the MCA database we considered the UMI
counts, while for Tabula Muris and GTEx the raw read counts are reported.

criterion is often used to reduce the number of features (i.e.,
genes) to consider in further analysis [41,42]. We analyzed
this fluctuation scaling in the two scRNAseq atlases, and in a
bulk RNAseq large-scale experiment (GTEx; see the Methods
section) for comparison.

Figure 5(a) shows the CV2
i scaling for cells in the MCA.

The red dashed line is the analytical prediction (confirmed by
simulations) of the expected scaling for a sampling process,
which is basically a Poisson scaling. The measured values
follow essentially the same scaling, but the observed gene
expression fluctuations are larger than the Poisson prediction,
which essentially sets the lower bound of measurable variabil-
ity.

The analogous plot for the Tabula Muris dataset displays
the same scaling but with a clear shift. This can be simply ex-
plained by the amplification process used before sequencing.
In fact, a Poisson random variable multiplied by a constant
has a translated CV2.

In general, the random variable representing the observed
mRNA counts x for the different genes has average value
〈x〉 = μ (set by the true average expression level) and a
variance at least with a Poisson scaling σ 2

x = c μ introduced

by the sampling process. The fluctuations can be larger
depending on the true expression distribution, hence the un-
known factor c that could have an additional dependence on μ.
We can now define the new variable y = kx, where k is a con-
stant describing a supposedly constant amplification factor.
The mean and variance of y are simply given by 〈y〉 = kμ and
σ 2

y = k2cμ. Therefore, the CV2 can be written as a function
of 〈y〉 as

log10(CV2
y ) = − log10

(
k2cμ

k2μ2

)

= − log10〈y〉 + log10 (kc)

� − log10〈y〉 + log10 (k), (10)

where the last equality derives from the observation [Fig. 5(a)]
that when there is no amplification, i.e., k = 1, most of the
genes display a true Poisson scaling, thus c = 1. This natu-
rally implies that amplification leads to a simple translation of
the CV2 scaling, precisely as in Fig. 5(b).

Figures 5(c) and 5(d) are instead obtained using data from
GTEx (see the Methods section) and each point represents a
tissue in a bulk RNA-sequencing experiment. In bulk RNA
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sequencing, the sampling is performed on a large sample of
cells, and we are essentially averaging over N cells the random
variable representing the gene expression value. Indeed, the
sampling process is performed on the sum of mRNAs from
all N cells, and finally the counts are typically normalized
with a factor proportional to the number of cells. Therefore, in
bulk RNAseq experiments, the normalized number of detected
transcripts of a gene should have mean 〈x〉 � μ, as simply set
by the average expression in single cells, and variance σ 2

x �
μ

N , which is the variance of the average of N independent
random variables with a Poisson scaling. The amplification
again introduces a constant factor k, and the CVy of the new
amplified observable y (with average 〈y〉 = kμ) is

log10

(
CV2

y

) = log10

(
k2μ

N

1

k2μ2

)

= − log10〈y〉 + log10

(
k

N

)
. (11)

Equation (11) shows that the amplification factor k is sup-
pressed by the term N (i.e., the number of cells sequenced)
in the CV2 expression for bulk RNAseq experiments. This
explains why in Fig. 5(d) the data still show the Poisson trend
without the translation observed for single cells [Fig. 5(b)].

The CV2 has a natural upper bound that is reached when a
gene is expressed in only one cell. If the only not-zero count
is n, the average expression is n/R (where R is the number
of cells), and the CV2 is R − 1, which does not depend on n.
This upper bound is reported as a dashed orange line in Fig. 5.
Note that the highest variability reported in the Tabula Muris
atlas closely approaches the bound.

In bulk RNA sequencing data, the effects of sampling
and stochasticity in gene expression should be averaged out
by extracting RNA from a large number of cells. In fact,
the CV profile is radically different if calculated on protein-
coding genes in the GTEx dataset [Fig. 5(c)]. The empirical
variability is far from the sampling limit and the CV seems
typically weakly dependent on the average expression level.
However, focusing on noncoding genes [Fig. 5(d)], which
are typically lowly expressed, we observe the Poisson trend
emerging again. This indicates that, as expected, sampling
has to be carefully taken into account when the variability of
lowly expressed genes is analyzed even in the context of bulk
RNAseq data.

This analysis shows that the sampling process sets a lower
bound on the measured variability in gene expression, and
data from single-cell RNA sequencing are generally close to
this bound. Clearly, the observed expression variability is not
captured by our simple null model which focuses on sampling
and thus can only produce Poisson distributions.

Note that a Poisson scaling could also be explained by
a simple model of stochastic gene expression in which
transcription and degradation are modeled as reactions with
constant rates [43,44]. This description also leads to Poisson
distributions for mRNAs and thus to the same scaling of the
CV. However, transcription can be more complex than a birth-
death process, for example it can be characterized by bursts
of expression [45]. Models accounting for bursty production
naturally lead to overdispersed expression distributions such
the negative binomial distribution (or its continuous analog

gamma distribution), or even to more complex bimodal dis-
tributions [45–47]. Moreover, the presence of extrinsic noise,
i.e., fluctuations in global cellular factors [48], can induce
a constant CV with respect to the average expression [49],
and there could be an additional basal technical noise be-
sides sampling fluctuations in scRNAseq data [26]. Indeed,
empirical CV2 values typically present a double scaling, with
a Poisson-like dependence for lowly expressed genes (where
intrinsic noise and/or sampling effects are relevant) and a
constant “floor” noise at higher level of expression both for
proteins and for mRNAs [27,49]. This constant floor noise is
also evident in bulk transcriptomic data (Fig. 5), as well as
for highly expressed genes in scRNAseq datasets, although
the double scaling is more evident for single-cell datasets ob-
tained with the Smart-seq3 technology that will be introduced
in a following section. A constant CV is precisely equivalent
to a fluctuation scaling of the type σ 2

n ∝ 〈n〉2. While this
functional form is again reminiscent of Taylor’s law [39], gene
expression fluctuations are not equivalent to the fluctuations
in the number of expressed genes, i.e., the fluctuations around
Heaps’s law that we previously described (Fig. 4). In other
words, a quadratic scaling of expression fluctuations, for ex-
ample due to stochastic gene expression, does not necessarily
induce a quadratic scaling of the fluctuations around Heaps’s
law. A simple model experiment can be used to prove this
point. We assume that genes have gamma-distributed expres-
sion levels, with mean values following a Zipf-like law. We
also assume that the CV of the expression levels is constant,
thus it follows a Taylor’s law for expression fluctuations, by
appropriately fixing the variance of each gamma distribution.
These gamma-distributed expression levels are then randomly
sampled to obtain a CV2 that displays a double scaling as in
many empirical observations (Fig. S9A [25]). However, the
fluctuations in the number of expressed genes, i.e., the analog
of Fig. 4, can still show an approximately Poisson scaling
(Fig. S9B [25]). Therefore, more realistic models of stochastic
gene expression can in principle explain the empirical levels
and the scaling properties of expression fluctuations, but they
do not necessarily reproduce the Heaps’s law fluctuations.

F. The statistics of transcript sharing

While the repertoire of expressed genes can be highly cell
specific, it is natural to expect a certain degree of overlap
between the genes that have to be expressed in different cells.
This overlap should depend on the specific gene functions and
on the similarity of the cell types in analysis. For example, we
intuitively expect a core set of genes, linked to basic cellular
functions, to be expressed in essentially every cell. In order
to quantify the statistics of the overlaps between the expres-
sion profiles of different cells, we analyzed the occurrence
distribution. The occurrence oi of a transcript is defined as the
fraction of cells in which it is detected (i.e., it has a nonzero
count). Figure 6(a) reports the occurrence distribution for cells
belonging to a single tissue (the bone marrow in the example).
Surprisingly, most of the genes appear to be expressed in very
few cells and the number of genes expressed in all cells seems
negligible. However, a quantitative comparison with the null
model suggests that this is mainly an effect of the sampling
process. In fact, given the empirical average expression levels

044403-9



SILVIA LAZZARDI et al. PHYSICAL REVIEW E 107, 044403 (2023)

FIG. 6. The occurrence distribution of gene expression. (a) The probability of observing a mRNA in a fraction oi of cells is reported for
the illustrative example of cells in the bone marrow as profiled in the MCA. (b) The empirical fraction of genes expressed in at least θ cells
(different θ values correspond to different curves) is compared with the corresponding predictions of the sampling process.

fi, the sampling model [Eq. (5)] gives the expected occurrence
for each gene i as

oi = 1 − 1

R

R∑
c=1

Pi(0|Mc) � 1 − 1

R

R∑
c=1

e− fiMc
. (12)

From this expression, the probability density of the occur-
rences can be extracted. It is reported as a dotted red line in
Fig. 6(a) and provides a good approximation of the empirical
distribution. An equivalent result can be obtained from direct
simulations of the sampling process.

As previously shown [6], the occurrence distribution takes
a particularly simple functional form if we approximate the
distribution of relative expression levels with a single power
law ( fi ∼ i−γ , with γ � −0.8), and we assume that all cells
have the same average number of total UMIs (M � 1500
transcripts in this case). The resulting expression is

p(o) = (1 − o)
1

M−1

γ MNα1/γ [1 − (1 − o)
1
M ]1/γ+1

. (13)

Despite the crude approximations, this analytical prediction
[blue dashed line in Fig. 6(a)] can still reproduce reasonably
well the data, and can thus be used in general for an easy
first prediction of the effect of sampling noise on mRNA
occurrences. While a simple Poisson sampling process can
largely explain the shape of the occurrence distribution, there
are quantitative differences. In particular, there is a clear
difference between the two distributions for high occurrence
levels [Fig. 6(a)]: ubiquitously expressed genes, or core genes,
seem under-represented in the data. A more detailed compar-
ison can be done by explicitly looking at the core size and
how it scales with the total number of sequenced transcripts
M. The core size c can be defined as the fraction of genes
expressed in at least a fraction θ of the cells in the population,
i.e., genes with oi > θ . Considering again the approximation
of a power-law distribution of average expression levels, the
sampling process predicts a specific scaling for the core size
with the sample size M [6]. The core size is indeed described

by the expression

c(M ) = M
1
γ

α
1
γ N

[− log10 (1 − θ )]−
1
γ , (14)

where α = ∑
i i−γ is a normalization and γ � 0.8 is es-

timated from data. Thus, the scaling is expected to be
approximately linear if γ is close to 1. This qualitative pre-
diction is confirmed by empirical data [Fig. 6(b)]. In this plot,
core sizes, defined by different values of θ , are measured over
cells with a different number of detected transcripts M [dots in
Fig. 6(b)]. The empirical scaling can be compared with direct
simulations of the sampling process or with the equivalent
numerical integration of Eq. (12) [dashed lines in Fig. 6(b)].
The linear trend described by Eq. (14) is observed in both
data and simulations. However, the empirical curves have
slightly smaller slopes and they systematically show smaller
core sizes. In other words, given the average gene expression
levels, there is a smaller than expected number of genes that
can be detected in a large fraction of the cell population. The
origin of this discrepancy is closely related to the statistics of
zero values in scRNAseq datasets that will be addressed in
more detail in the next section.

G. Predicting presence from transcript abundance
and the statistics of zero values

The sparsity of scRNAseq data and the possible origins of
the detected zero values have been, and still are, an active
field of research and debate [16,17,50]. Using our simple
null model, we can identify what level of data sparsity is
expected from sampling only. Moreover, we can isolate genes
whose zero statistics is unexpected, and thus possibly linked
to biological variability or technical noise not included in
our description. As discussed in the previous section, the
sampling model provides a prediction for the occurrence oi,
i.e.,the number of cells in which the count is not zero, for
each gene [Eq. (12)]. This prediction can be directly com-
pared with the empirical occurrence as in Figs. 7(a) and
7(b). The first observation is that the density of points is
mostly located on the diagonal, where the number of zero
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FIG. 7. Explaining the empirical occurrences from average expression and sampling. The number of cells in which a transcript is present,
oi,empirical, is reported with respect to the occurrence predicted by sampling oi,predicted for (a) bladder and (b) muscle. (c) The distribution of
oi,predicted − oi,empirical is extremely peaked on zero, but with a right tail indicating a higher level of sparsity in empirical data. The blue dashed
line represents the distribution of the typical occurrence deviations between sampling realizations, thus providing an estimate of the deviations
that are compatible with sampling fluctuations. (d) Scatter plot of the relation between the Fano factor (σ 2

n /〈n〉) of expression levels and
oi,predicted − oi,empirical in muscle as an illustrative example.

values predicted coincides with the sampling expectation. In
fact, the probability density of the differences between the
predicted and the empirical occurrences is extremely peaked
on zero as reported in Fig. 7(c) (note that the y axis is in
logarithmic scale). Therefore, the zero values are precisely
those expected from sampling for most genes, and this result
suggests that complex zero-inflated models, which are often
introduced to capture the data sparsity [51,52], are generally
not needed. This observation is in line with recent analysis
of scRNAseq data based on UMIs [17,27,52]. However, the
fraction of data points that deviates from the diagonal are
mostly above it, showing that indeed genes whose zero count
statistics is not well described by sampling have an excess
of zero values. This leads to a general level of data sparsity
that is slightly underestimated by the model. For example,
97% of entries in the Muscle dataset reported in Fig. 7(b)
are zero values, while the sampling process predicts 96% null
entries on average. Such a minor discrepancy should not be
surprising since our model is an intended oversimplification of
the system. For example, we are not considering the inherent
variability due to stochasticity in gene expression. We are
approximating the true gene expression distributions as delta
functions (see Methods section), which become Poisson

distributions only through the sampling process. The under-
estimation of expression variability is explicitly depicted in
Fig. 5, where the variance of empirical expression values is
often larger than Poisson. The Fano factor or index of dis-
persion (i.e., σ 2

n /〈n〉) can be used to quantitatively measure
how large is the deviation. In our case, it measures how far
is a gene expression variability from the sampling prediction.
As intuitively expected, the Fano factor is correlated with the
difference between the predicted and observed occurrences
for each gene [Fig. 7(d)]. However, the scatter plot does not
show a clear and simple relation, thus suggesting a complex
interplay between expression variability and zero count statis-
tics. Given its inherent simplifications, the model provides a
simple and quantitative way to select the genes whose zero
value counts are “atypical” and thus that are potentially inter-
esting for further analysis [53]. This excess of zero values can
derive from technical reasons (often called “dropouts”), from
biological variability due to cell-type heterogeneity or even-
tually from particularly noisy promoters. Subsequent analysis
of the selected genes could select the most likely contribu-
tions. While we leave this step for future work and specific
applications, we propose an illustrative example. We selected
the genes with the top values of oi,predicted − oi,empirical [de-
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picted in color in Figs. 7(a) and 7(b)] in different organs
and performed a GO enrichment analysis. Some categories
are over-represented. The presence of enriched GO categories
already indicates that if a dropout phenomenon is present,
it is not random across genes. All the significantly enriched
categories are reported in Table S6 of the Supplemental Ma-
terial [25] together with links to the full gene lists. Highly
enriched categories could indicate biological signals as well as
technical reasons not captured by a simple sampling. For ex-
ample, the presence of general categories such as “ribosomal
proteins,” “extracellular exosome,” or “blood microparticle”
could be due to the insertion of few zero values at the initial
filtering procedure. Ribosomal proteins are expected to be
expressed in essentially every cell type at a relatively high
level. This is generally the case in the data, since those genes
are in the high-rank region of Zipf’s law (Table S2 [25]).
Therefore, the few empirical zero counts cannot be explained
from sampling given the high average expression levels. In
this example, the sampling model could be a potentially useful
check of the technical procedures. Note that sampling is a
stochastic process, thus the predicted number of zeros for a
given gene has a confidence interval determined by sampling
fluctuations. These fluctuations can be evaluated using an
ensemble of sampling realizations and measuring the distribu-
tion of gene occurrences across the ensemble and the typical
differences between sampling predictions that can be com-
pared with the empirical ones [blue dashed line in Fig. 7(c)].
For example, the small fraction of genes that are detected
in more cells than expected given their average expression
[negative values in Fig. 7(c)] can be explained by sampling
fluctuations. As a further test of the significance of analyzing
the deviations from our data-driven null model, we consider
a few datasets composed of cells from different organs in
the MCA, and we focus again on genes whose zero value
statistics significantly differ from expectation. The rationale
is that genes whose expression is, for example, tissue specific,
will typically have expression distributions far from the null
model expectation when they are evaluated over cells belong-
ing to different organs. This would also reflect in their atypical
zero value statistics. In fact, the genes selected based on their
anomalous occurrences (as the coloured dots in Fig. 7) across
cells from “brain” and “ovary” are significantly enriched in
the GO term “myelin sheath” (P value 6.8 × 10−16) which
is clearly a tissue specific function that characterize only a
fraction of the cells in analysis. The same GO term appears
when cells from “brain” and “muscle” are considered (P value
of 8.4 × 10−11). Considering cells from “muscle” and “blood”
instead leads to the selection of genes significantly associated
with “haptoglobin” and “hemoglobin” (P values <10−6). The
GO term “spermatogenesis” is associated with genes with
atypical occurrences in a dataset joining cells from “ovary”
and “testis.” The full lists of the selected genes in these il-
lustrative examples are reported in the Supplemental Material
[25] (Tables S7–S10). Besides gene selection, a dataset of
overall deviation from the prediction of the corresponding
null model should be related to the inhomogeneity of the
cellular transcription programs it includes, thus ultimately
to the “complexity” of the cell population analyzed. As a
preliminary test of this hypothesis, we focus again on the
number of detected genes in datasets composed of cells be-

longing to a different number of organs. The number of organs
included can be used as a rough measure of the dataset in-
homogeneity. We observe a clear correlation between this
number and the statistical deviation from the sampling model
(Fig. S10 [25]). Although we are only focusing on the discrep-
ancy between model and data in the gene occurrences (thus
essentially on the Heaps’ law), this result suggests that the
null model is a useful tool to measure and quantify intrinsic
properties of the dataset.

H. Checking the robustness of the statistical laws

As a further test of the robust emergence of the described
scaling laws, we analyzed two additional datasets of cells pro-
filed with the recently introduced protocol Smart-seq3 [24].
The Smart-seq3 protocol combines high sensitivity with the
use of UMIs, providing reliable molecule counts and data
matrices typically with a lower degree of sparsity. Despite the
differences in the protocol and in the cell types considered,
the same phenomenological laws reported for the large-scale
Mouse Cell Atlas are clearly observable. Also in this case,
the general trends can be framed in our analytical framework
and partially explained by a sampling process. Figure 8 shows
some of these laws for the example of a HEK cell line,
while the analogous results for mouse fibroblasts are reported
in Fig. S11 [25]. The rank plot of the average expression
levels is again a Zipf-like law characterized by three clearly
distinguishable regimes with a central power-law scaling with
exponent close to −1 [Fig. 8(a)]. Interestingly, the UMI-based
datasets present a fitted exponent with values very close to
the classic −1 (Table S2 [25]). The trend predicted by the
sampling process for Heaps’s law [Fig. 8(b)] is compatible
with the empirical number of detected transcripts, with a slight
sampling overestimation that is linked to the zero-value statis-
tics. The cell-to-cell variability in expression levels shows a
Poisson scaling for lowly expressed genes. However, given
the higher sensitivity of the Smart-seq3 protocol, the regime
of approximately constant CV, which was observed for bulk
data (Fig. 5), is now detectable for highly expressed genes,
where sampling effects are less dominant. Interestingly, this
double scaling of the CV2 is analogous to the one reported
for protein fluctuations in large-scale single-cell experiments
based on fluorescence [49,54].

In the cell line considered for Fig. 8, the empirical fraction
of zero values is 45%, while the sampling expectation is 41%.
Therefore, the zero statistics is again largely explained by
sampling effects. Indeed, the occurrence distribution is largely
recapitulated by the sampling model [Fig. 8(d)]. Thanks to
the protocol’s higher sensitivity, leading to lower data sparsity
and larger realization sizes M, occurrences clearly display the
typical U-shaped distribution that robustly emerges in several
complex component systems [6]. The observable deviations
from the model only derive from the small fraction of tran-
scripts that present more zero values than expected [Figs. 8(e)
and 8(f)], in perfect analogy with our results for the MCA.
Typical occurrence fluctuations only due to sampling [blue
line in Fig. 8(d)] are expected to be larger for this dataset
with respect to the MCA because of the lower number of cells
profiled (i.e., 117 cells for the HEK cell line). For this reason,
we considered the fibroblasts dataset which contains 369 cells
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FIG. 8. Emergent statistical laws from a HEK cell line profiled with Smart-seq3. (a) Zipf’s law with the three scaling regimes. (b) Heaps’s
law: number of detected transcripts as a function of the total number of UMIs per cell. (c) Expression variability CV2 as a function of the
average expression level for all detected transcripts. (d) The empirical transcript occurrence distribution compared with the model expectation
(red continuous line). (e) The relation between the empirical occurrences oi,empirical and the expected values from the sampling model oi,predicted.
Error bars represent the variability (one sigma) between different realizations of the sampling process. (f) Distribution of oi,predicted − oi,empirical.
As in Fig. 7(c), the blue dashed line identifies the differences compatible with sampling fluctuations.

to select genes with more zeros than expected and perform
GO enrichment analysis. The results show cell-cycle and cell-
division related terms as enriched (Table S11 [25]). Indeed,
in a nonsynchronized proliferative cell line such as the one in
analysis, we should expect nontrivial expression distributions
for genes related to the cell-cycle progression [24].

As an additional robustness test we also considered single
cells profiled with the alternative 10x genomics protocol in the
Tabula Muris database. Figure S12 [25] reports the summary
of the statistical laws obtained for bone marrow cells as an
illustrative example. Basically, there are no significant differ-
ences in the emerging laws (by comparing for example with
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Fig. 8), suggesting that they do not crucially depend on the
specific sequencing protocol (as long as UMIs are present to
remove amplification factors).

In conclusion, the presented statistical laws seem to be a
robust emergent property of single-cell RNAseq data. The
proposed mathematical framework provides an explanation
for most of the general trends, and thus can be a useful simple
null model to identify significant deviations of biological or
technical origin.

IV. DISCUSSION

The identification of statistical laws is a key step in
designing effective descriptions of complex systems [55].
Leveraging large-scale regularities, phenomenological models
can be built, in the spirit of statistical physics, to capture
relevant system properties without focusing on a detailed
description of the high number of degrees of freedom. For
example, the presence of quantitative empirical laws in cell
composition of fast-growing bacteria has led to simple models
of cell physiology that can explain several large-scale gene
expression patterns using just a few key parameters such as
the growth rate [56]. Analogously, the emergence of different
cell identities and their organization in tissues and organs is
driven at the molecular level by the complex orchestration
of the expression of large sets of genes. However, simple
coarse-grained descriptions can be hopefully extracted with-
out resorting to all the molecular details. As a first step in
this direction, we identified several statistical laws emerging
in single-cell transcriptomic profiles using large-scale expres-
sion atlases of mouse tissues. Strikingly, analogous laws are
ubiquitously found in different complex component systems
from linguistics to ecology [6,9,11,57].

An additional complication of scRNAseq data is the pres-
ence of a sampling process inherent to the experimental
technique. Therefore, the observed expression statistics is
due to a combination of natural cell-to-cell variability and
stochastic sampling. We focused on modeling the sampling
process given a basic system property, which is the specific
average heterogeneity of gene expression levels described by
the classic Zipf’s law. This law is apparently a hallmark of
several component systems [29,58]. While it has been pre-
viously reported for gene expression values [13,14,31], we
showed that it is an intrinsic property of single cells robustly
emerging in different datasets, and that different regimes can
be identified apparently related to the gene functions.

The proposed simple model essentially neglects biologi-
cal expression fluctuations and tests what can be explained
from sampling only. In this framework, there is a natural
predicted connection between Zipf’s law and other statis-
tical regularities such as Heaps’s law and the U-shaped
statistics of shared components [6,38]. We first showed that
indeed these additional empirical laws emerge in transcrip-
tomic data, and second that they can be well explained as
consequences of stochastic sampling. This result suggests that
downstream analyses typically performed on these datasets,
such as clustering to identify cell types or expression fold-
change analysis, have to carefully take into account sampling
and the statistical regularities it generates.

However, we identified some clear deviations from sam-
pling predictions. Specifically, the empirical variability in the
cell expression repertoires, captured by the fluctuation scal-
ing of the Heaps’s law, cannot be reproduced by the model.
This result could conceal a biological motivation linked to
the differentiation of expression programs in different cell
types. However, the very same scaling is a recurrent fea-
ture of several complex systems, often called Taylor’s law
[11,39,40], suggesting a more general mechanism behind its
emergence.

This fluctuation scaling is closely linked to the statistics
of zero values, which is a central theme in scRNAseq data
[16,17,50,52]. In this regard, we first showed that the vast
majority of zero counts in the data can be simply explained as
a sampling effect. Therefore, there is not a clear indication that
complex (and parameter rich) models, such as zero-inflated
models, are needed to capture the technical noise [52]. Despite
this general trend, the model is a tool to identify specific
deviations. A possible application of a data-driven null model
that captures general statistical properties of scRNAseq data
is to focus on the empirical deviations from its expectation.
For example, in several datasets a fraction of genes are ex-
pressed in less cells than expected from sampling (i.e., they
have an excess of zero counts). We discussed few examples
in which the atypical expression distribution of these genes
can be explained by their associated biological functions,
suggesting the potential use of our null model for gene selec-
tion. Interestingly, a similar approach to identify informative
genes by comparing their expression variability to a simple
random null model was recently proposed [59], precisely
leveraging the analogy between linguistics and transcriptomic
data.

The sampling model provides essentially a lower bound for
the number of zero values of a transcript given its average
expression level. This should be expected since the expression
variability in the model only derives from sampling, and thus
does not match the typical CV values observed.

The subsequent step, which we leave for future work,
would be to include progressively more realistic models of
the stochastic process of gene expression in order to leave out
from the description only the cell-to-cell variability coming
from the diversity of gene expression programs in the cell pop-
ulation. The price of increasing the complexity of null models
is that more parameters have to be introduced and inferred
from data. More realistic models of gene expression simply
correspond to the selection of an appropriate distribution ρ

in Eq. (3). As previously discussed, a natural choice could
be the gamma distribution, since it is a good description for
bursty stochastic gene expression [46]. If ρ( f ) is a gamma
distribution and the sampling is still a Poisson process, it is
easy to show that the expected distribution for the observed
counts should be a negative binomial distribution [52]. The
negative binomial is indeed the standard overdispersed distri-
bution often used to fit RNA-sequencing data [17]. While we
leave to future work the quantitative analysis of the different
emerging statistical laws using this model, we can anticipate
that a gamma-based model can generally better reproduce
the statistical properties of empirical data, including the zero-
value statistics already quite well captured by sampling alone.
This is not surprising given the larger number of degrees of
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freedom with respect to the sampling model analyzed here.
Therefore, we should expect a better fit of the U-shaped oc-
currence distributions and a more precise estimate of the core
size.

Statistical laws have also been observed and studied us-
ing complex systems approaches at the basic level of DNA
sequences [60–62]. The possibility of a link between general
statistical properties at the nucleotide level and the emerging
laws for expression patterns here described is captivating, but
still to be explored.

Finally, this work adds single-cell transcriptomics to the
list of complex component systems displaying statistical laws
that are seemingly universal. However, the specificity of tran-
scriptomic data can provide useful indications and constraints
to the research of general models and principles behind these
laws. Many of the models proposed for the emergence of
Zipf’s law in component systems are based on a stochastic
growth process. Some examples are classic models based on
the Yule-Simon process, on the Chinese restaurant process,
on Polya urns, or on the preferential attachment principle
[10,33,63]. Basically, these generative mechanisms assume a
reuse or duplication of existing components proportional to
their current frequencies, and a parallel innovation process
that adds new components from a vocabulary. These simple
ingredients (with some general prescriptions) are sufficient
to reproduce Zipf’s law and the average sublinear scaling of
Heaps’s law. The recently proposed sample-space-reducing
process can be also be ascribed to this class of stochastic
growth models [38,64]. The description can be appropriate
for texts that are generated by the writing process through
the progressive addition of words, or for the evolutionary
processes that shaped genome composition by duplicating,
removing or discovering/transferring new genes. However, the
composition of a cell transcriptome is not naturally described
by this type of processes, since single transcripts are not
progressively added in the cell.

Few alternative compelling mechanisms have been pro-
posed that do not rely on a growth process and could thus
apply to the case of transcriptomic data. A possibility is that
components have specific networks of dependencies and that
these functional relations determine their co-occurence in a
realization [8,28,65]. In the transcriptomics case, this would
translate in an underlying unobserved network of gene-gene
dependencies for example due to correlated functions. Models

based on this network assumption can generate Zipf’s and
Heaps’s laws [28]. Even more generally, power-law distribu-
tions can naturally arise if the observed variables (i.e., the
expression levels) are affected by fluctuating latent variables
that govern the hidden structure behind the data [66,67].
Gene expression is controlled by several latent factors that
defines the state of the cell and are not directly observed in
transcriptomic datasets. These latent factors can be highly
variable and thus can naturally generate Zipf’s law under cer-
tain quite general conditions. One simple example of a hidden
variable is the physiological state of the cell, for example
described by the growth rate, which is known to strongly
influence the gene expression program and the behavior of
different genetic circuits [68,69]. Analogously, the cell-cycle
stage, the cell type, or the slowly varying concentration of key
enzymes can in principle represent latent variables that have a
specific variability in our system and affect gene expression.

The code and the Jupyter notebooks needed to reproduce
the analyses and the figures described in this study can be
found in a GitHub repository [70]. The datasets analyzed
during the current study are available from independent previ-
ously published studies

(i) in the Mouse Cell Atlas repository [19]. Data are also
available on Gene Expression Omnibus (GEO) through the
accession number GSE108097;

(ii) in the Tabula Muris repository [21];
(iii) in the Genotype Tissue Expression (GTEx) project

[23] repository;
(iv) Smart-Seq3 data have been deposited by their authors

under ArrayExpress E-MTAB-8735 at the European Bioinfor-
matics Institute.
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