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Noise-induced transitions in gene circuits: A perturbative approach for slow noise
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We consider a generic class of gene circuits affected by nonlinear extrinsic noise. To address this nonlinearity
we introduce a general perturbative methodology based on assuming timescale separation between noise and
gene dynamics, with fluctuations exhibiting a large but finite correlation time. We apply this methodology to
the case of the toggle switch, and by considering biologically relevant log-normal fluctuations, we find that the
system exhibits noise-induced transitions. The system becomes bimodal in regions of the parameter space where
it would be deterministically monostable. We show that by including higher order corrections our methodology
allows one to obtain correct predictions for the occurrence of transitions even for not so large correlation time of
the fluctuations, thereby overcoming limitations of previous theoretical approaches. Interestingly we find that at
intermediate noise intensities the noise-induced transition in the toggle switch affects one of the genes involved,
but not the other one.
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I. INTRODUCTION

Extrinsic noise has been investigated thoroughly over the
last decades in a variety of physical and chemical systems [1].
It has emerged as an active dynamical player, which can pro-
duce so-called noise-induced transitions to bimodal dynamics
in systems otherwise deterministically monostable.

In chemical and physical systems, the search and the possi-
ble emergence of such transitions relies on the multiplicative
nature of the corresponding stochastic dynamics, which is
mathematically well characterized when the noise appears
linearly in the system’s dynamical equations, and it is Gaus-
sian and white. In this case the Stratonovich prescription to
interpret the corresponding stochastic integral leads to the
emergence of the so-called Stratonovich drift in the Langevin
and Fokker-Planck dynamics, which is responsible for dra-
matic changes in the stability properties of stationary states,
and possibly in their number [2].

In biological systems, however, none of the assumptions
on the noise being linear, Gaussian, and white is usually
fulfilled. In gene regulatory networks, for instance, the noise
is often non-Gaussian [3,4], is usually characterized by cor-
relation times that can easily exceed cell cycles times [5],
and it appears mostly in a nonlinear fashion in the dynamics
determining gene expression.
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While it can be very hard to treat exactly the corresponding
stochastic dynamics under these conditions, a geometric con-
struction based on noise filtering has been introduced [6,7]. In
essence, this approach relies on the transformation properties
of probability distributions of stochastic variables related by
a given input/output transformation. Conservation of proba-
bility allows one to express the output probability distribution
in terms of the input probability distribution, which results in
nontrivial dynamics when the relation between the stochastic
variables is nonlinear.

This approach has been rederived dynamically in [8] by
extending to nonlinear noise the so-called switching-curve
approximation introduced in [9,10]. The dynamical derivation
highlights the crucial role played by the timescales of the
system. The approximation works well when the input noise is
much slower (in the limit, infinitely slower) than the dynamics
of the system of interest. In a gene expression process, this
translates in extrinsic noise being much slower than protein
degradation and synthesis [8].

In this paper we take up this issue again, and develop a
perturbative framework that allows one to go beyond the ap-
proximation defined in [8] by extending that approach further
to large but finite correlation times of the noise. We show that
the inclusion of higher order perturbative terms can modify
dramatically the analysis of the emergence of noise-induced
transitions, by removing them when present at lower orders,
and therefore providing a qualitative and quantitative more
accurate description of the stochastic dynamics.

We apply our formalism to the case of the toggle switch
[11], and show that when log-normal noise is considered,
the system undergoes a transition in a region of the phase
space where the deterministic system would be monostable.
We also find that tuning the noise intensity may give rise to a
situation in which the marginalized probabilities of the genes
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involved show different qualitative features, with overlapping
unimodal and bimodal behaviors. We name this feature “par-
tial bimodality” and discuss its origin in the context of noise
propagation across the network.

The paper is organized as follows. In Sec. II we present
the genetic circuits considered here. In Sec. III we introduce
our perturbative approach, and develop it up to the second
perturbative order for the generic circuit introduced in Sec. II
(with the third perturbative order described for the toggle
switch in the Appendix). In Sec. IV we introduce the toggle
switch as an application of the methodology, and assess the
perturbative framework by comparing the contributions of
different orders to direct stochastic simulations. In Sec. V we
draw conclusions on the methodology introduced, and make
some final remarks.

II. GENETIC CIRCUITS

We consider a generic circuit of interacting genes. We
make the assumption that the half-life of mRNAs is much
shorter than that of the corresponding proteins, so that
mRNA dynamics can be adiabatically eliminated, and gene
expression can be described in a single step of combined tran-
scription and translation [12]. We then describe the system by
decomposing the rate equations for each synthesized protein
into a production term and a degradation term as follows:

dx
dt

= g(x, R) − Kx . (1)

Here, x is an n-dimensional vector whose components are
the xi species involved, while K is a diagonal matrix whose
diagonal elements are the degradation rates ki = 1/τxi of each
species xi, with τxi the respective half-lifes. The function
g(x, R) is a Rn × R → Rn Hill-like function of the concen-
trations of the n species x, and R is a factor that exerts control
on the dynamics of x. The factor R can be thought of as an
external control parameter (for instance a binding constant),
or any other species at high enough concentrations so that it
is unaffected by the dynamics of x (for instance an external
signaling molecule, or a transcription factor). For the sake of
simplicity, here we limit ourselves to a single factor R, but the
procedure can be further generalized to multiple factors.

III. PERTURBATIVE CALCULATION

Let us now consider fluctuations acting on R. We describe
them by adding a generic Langevin-type dynamics to Eq. (1),

dx
dt

= g(x, R) − Kx , (2)

dR

dt
= μ(R)

τ
+

√
D

τ
ν(R)ξ (t ) , (3)

with τ the timescale of the process R. In Eq. (3) the functions
μ(R) and ν(R) are kept generic for now. Their specification
allows us to reproduce different noise distributions. Also, the
noise ξ (t ) is assumed Gaussian and white, with correlator
〈ξ (t )ξ (t ′)〉 = 2δ(t − t ′).

By rescaling time as t → t/τM , with τM = 1/kM the largest
degradation time of the species involved (we assume that τxi �
τM for xi �= xM) we obtain

dx
dt

= εγ (x, R) − K̄x , (4)

dR

dt
= εμ(R) + √

εDν(R)ξ (t ) , (5)

where ε = τM/τ , γ = τg, and K̄ = K/kM with K̄ still diago-
nal and K̄ii = κii = kxi/kM = O(1). In order for the dynamics
of R to be slower than that of all the species xi, we consider
the condition τM � τ , implying that ε is a small parameter,
with ε � 1.

This naturally leads to seeking a solution of the system (4)
and (5) in terms of a perturbative expansion in orders of ε.
This perturbative approach is inspired by the one presented in
[8], with the important difference that the latter was based on
assuming the limit τ → ∞, while here we consider instead
the limit τM → 0 (i.e., ε → 0) with τ large, but fixed and
finite. This different perspective keeps the function γ = τg
in (4) fixed in the limit ε → 0, and allows us to obtain a
systematic perturbative expansion in ε. As a result, the ap-
proach presented here allows us to go beyond the lowest order
calculation of [8], accounting for the noise filtering approach
of [6,7], and to obtain all perturbative corrections analytically
at any order in ε.

Let us define the Fokker-Planck operator LFP for the R
process as

LFP(R) = ∂

∂R

[
−(μ + Dνν ′) + D

∂

∂R

(
ν2)] , (6)

where we have assumed the Stratonovich interpretation for the
multiplicative noise equation (5).

The total Fokker-Planck equation for the time-dependent
probability density Wt (x, R) is therefore

∂

∂t
Wt (x, R) = [−∇ · (εγ (x, R) − K̄x) + εLFP(R)]Wt (x, R) .

(7)

We now aim to compute the stationary solution of Eq. (7),
namely the time-independent probability density W (x, R) sat-
isfying

[∇ · (εγ (x, R) − K̄x) − εLFP(R)]W (x, R) = 0 , (8)

obtained by imposing ∂
∂t Wt (x, R) = 0 in (7). We seek a solu-

tion of the type

W (x, R) = W̄ (R)ψ (x, R), (9)

where W̄ is chosen so that LFPW̄ (R) = 0, since the dynamics
of the variable R is independent of x, y (but not viceversa). In
general it can be shown [2] that W̄ (R) can be written as

W̄ (R) = N
ν(R)

exp

(
1

D

∫ R

dR′ μ(R′)
ν2(R′)

)
, (10)

and it must be as well∫
dxW (x, R) = W̄ (R) ⇒

∫
dxψ (x, R) = 1 . (11)
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A. Zeroth order solution

We begin by assuming the following perturbative expan-
sion for W (x, R) of generic order m in powers of ε

W (x, R) =
m∑

j=0

ε j

j!
W ( j)(x, R) + O(εm+1) . (12)

By replacing this expansion in the lefthand side of (8), and by
keeping only the zeroth order terms in ε, we obtain

(∇ · x)W (0)(x, R) = 0 , (13)

which immediately leads to the zeroth order solution

W (0)(x, R) = δn(x)W̄ (R) = W̄ (R)
n∏

i=1

δ(xi ) . (14)

B. First order correction

Having evaluated W (0) we can again replace the expansion
(12) in the lefthand side of (8), and keep this time all terms up
to first order in ε. We obtain

−∇ · (γ (x, R)W (0) − K̄xW (1) ) + LFP(R)W (0) = 0 ,

which, using the property x dnδ(x)
dx = −n dn−1δ(x)

dx and noticing
that LFP(R)W (0) = 0, leads to the solution

W (1)(x, R) = −W̄ (R)
∑

i

⎛
⎝δ′(xi )

κii
γi(x, R)

∏
j �=i

δ(x j )

⎞
⎠ . (15)

Therefore, up to the first order in ε we can write

W (x, R) = W (0)(x, R) + εW (1)(x, R)

= W̄ (R)

⎡
⎣δn(x) − ε

∑
i

⎛
⎝δ′(xi )

κii
γi(x, R)

∏
j �=i

δ(x j )

⎞
⎠
⎤
⎦

� W̄ (R) δn

(
x − ε

K̄
γ (x, R)

)
, (16)

where the last equality is meant in the sense of distributions,
and is also valid up to the first order in ε:∫

dxδn

(
x − ε

1

K̄
γ (x, R)

)
h(x)

=
∫

dx

⎡
⎣δn(x) − ε

∑
i

⎛
⎝δ′(xi )

κii
γi(x, R)

∏
j �=i

δ(x j )

⎞
⎠

⎤
⎦h(x)

+ O(ε2) (17)

for any test function h(x). We notice here that this first order
result coincides with the result of the nonlinear noise filtering
approach proposed in [6] and derived dynamically in [8]. In
fact, the delta function in Eq. (16) defines the (approximate)
steady state solution, determined by the condition

z(x, R) = x − ε
1

K̄
γ (x, R) = 0. (18)

This solution coincides with the steady state solution of
Eqs. (2) and (3) in the limit τ → ∞ of infinitely slow noise

(i.e., constant R on the time scale of the dynamics of x) and
corresponds trivially to a change of variable R → x.

For instance, in the one-dimensional case, when γ (x, R) =
γ (R) [i.e., g(x, R) = g(R)] depends monotonically only on R,
one can use the one-dimensional version of Eq. (16), and after
integrating over R via

p(x) =
∫

dRW (x, R) =
∫

dRW̄ (R)δ

(
x − ε

κ
γ (x, R)

)

=
∫

dRW̄ (R)δ

(
x − ε

κ
γ (R)

)
, (19)

obtain the transformation of the probability density function

p(x) = W̄ (r(x))|dr(x)/dx|. (20)

In Eq. (20), r(x) descends from the one-dimensional ver-
sion of (18), i.e., x = ε

κ
γ (R), and therefore r(x) = R =

γ −1(κx/ε) = g−1(kx), with κ = k/kM being the only value of
the one-dimensional matrix K̄.

This solution corresponds to the nonlinear filtering ap-
proach introduced in [6,7], where the Hill-like g function acts
as transfer function of the regulator R, assumed as an infinitely
slow fluctuating variable, and produces a corresponding distri-
bution of stationary protein concentration x.

However, this perturbative approach can be extended to
describe noise with finite τ beyond the first order, providing
nontrivial corrections to the resulting dynamics as it is shown
in the next subsection, as well as to generic n-dimensional
systems by using the implicit functions theorem.

In the multidimensional case, in fact, when z(x, R) is a
continuously differentiable function Rn+1 → Rn, the implicit
functions theorem tells us that a function r(x) = R exists
which is locally invertible so that z(r−1(R), R) = 0. It follows
that the probability density for x can be determined from
W̄ (R) via a change of variable as

p(x) = W̄ (r(x))|J|. (21)

Here, |J| is the Jacobian determinant of the transformation
(R = r(x), x2 · · · xn) → (x1 · · · xn) which can be obtained,
without knowing the explicit form of r, from the function z in
Eq. (18) using the implicit function theorem in n dimensions.
Equation (21) generalizes Eq. (20) to the case of n species,
with r(x) now depending on all species x1 · · · xn and defined
only implicitly via Eq. (18).

C. Second order correction

In order to evaluate the second order correction we first
need to evaluate LFP(R)W (1)(x, R). From Eq. (15) and the
property LFP(R)W̄ (R) = 0, it follows that

− LFP(R)W (1)(x, R)

=
∑

i

δ′(xi )

κii

∏
k �=i

δ(xk )LFP(R)[γi(x, R)W̄ (R)]

=
∑

i

δ′(xi )

κii
Gi(x, R)

∏
k �=i

δ(xk ), (22)
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where Gi(x, R) = LFP(R)[γi(x, R)W̄ (R)] which, using Eq. (6),
leads to

Gi(x, R) = −(μ(R) − 3Dν(R)ν ′(R))W̄ (R)∂Rγi(x, R)

+ Dν(R)2(2W̄ ′(R)∂Rγi(x, R) + W̄ (R)∂2
Rγi(x, R).

(23)

Having evaluated W (1)(x, R) we can now repeat the same
procedure as done for the first order, i.e., replace expansion
(12) in the lefthand side of (8) and this time keep all terms up
to second order in ε. We obtain

−∇ ·
(

γ (x, R)W (1) − K̄x
W (2)

2

)
+ LFP(R)W (1)(x, R) = 0,

(24)
which, using (22), can be rewritten as

∇ ·
(

γ (x, R)W (1) − K̄x
W (2)

2

)

+
∑

i

δ′(xi )

kii
Gi(x, R)

∏
k �=i

δ(xk ) = 0. (25)

From the structure of this equation and from (16) we deduce
that the solution for W (2)(x, R) must have the following form:

W (2)(x, R) = W̄ (R)
∑
i,q

[(Aiqδ
′(xi ) + Biqδ

′′(xi ))δ(xq)

+ Ciqδ
′(xi )δ

′(xq)]
∏

k �=i,q

δ(xk ). (26)

The coefficients Aiq, Biq, Ciq can be obtained by inserting (26)
in (25) and result in

Aiq =
(

− 2

k2
ii

Ḡi(x, R) + Ãi(x, R)

)
δiq, (27a)

with
Ãi(x, R)

xi
− ∂xi Ãi(x, R) = − 2

κ2
ii

∂xi Ḡi(x, R),

Biq =
(

γi(x, R)

κii

)2

δiq, (27b)

Ciq = γi(x, R)γq(x, R)

κqqκii
(1 − δiq), (27c)

with with Ḡi = Gi/W̄ (R). Therefore, we make the following
ansatz for the stationary probability density W (x, R):

W (x, R) = W̄ (R)δn

(
x − ε

K̄
γ (x, R) − ε2

2
Q(x, R)

)
+O(ε3)

(28)
with

Q(x, R) =
(

− 2

K̄2
Ḡ(x, R) + Ã(x, R)

)
. (29)

In fact, the solution given by the ansatz (28) coincides up to
second order in ε with the solution derived with the perturba-
tive expansion (12) to the same order, i.e., including Eq. (26)
with coefficients (27).

The delta function in Eq. (28) is similar to the one in (16)
and therefore, as it was seen for the first order in (18), it

FIG. 1. The toggle switch. The expression level of gene x is
downregulated by gene y upon binding with the repressor R. We
make the assumption that when active, both genes synthesize the
proteins x and y in one single step of combined transcription and
translation.

defines the (approximate) steady state solution of Eqs. (2) and
(3). This is determined by the condition

z(x, R) = x − ε

K̄
γ (x, R) − ε2

2
Q(x, R) = 0, (30)

which in the case that ∇ 1
K̄

γ (x, R) = const, in turn implies
that ∇ 1

K̄
G(x, R) = 0, and therefore, (neglecting null contri-

butions in distributional sense) Ã(x, R) = 0 simplifies to

z(x, R) = x − ε

K̄
γ (x, R) − ε2 1

K̄2
Ḡ(x, R) = 0. (31)

Note that both Q(x, R) and Ḡ(x, R) depend linearly on
γ = τg. Therefore, when multiplied by their expansion factor

ε2 = τ 2
M

τ 2 , they disappear in the limit τ → ∞, leaving only the
first order correction in Eqs. (28), (30), or (31). This can be
verified to apply to all the higher order corrections in the same
limit. Therefore Eq. (18), obtained as a first order correction
within our approach, is actually an exact solution in such
limits, thereby corresponding to the noise filtering approach
of [6,7].

Under the assumption that z(x, R) is a continuously differ-
entiable function Rn+1 → Rn, the implicit functions theorem
can be applied again. As a result, the probability density for
x can be determined from W̄ (R) via a change of variable as
shown in Eq. (21), where the Jacobian can now be obtained
from the function z in Eqs. (30) or (31).

In the following section, we show how this approach is
applied with a concrete example.

IV. THE TOGGLE SWITCH

As an application of our methodology we consider the
toggle switch, a positive feedback loop of two genes mutually
repressing each other (Fig. 1) [11]. The dynamic equations de-
scribing each of the synthesized proteins have the form (1),
namely,

dx

dt
= g(y, R) − k1x = g1

1 + ρ1(Ry)β1
− k1x, (32)

dy

dt
= f (x) − k2y = g2

1 + ρ2xβ2
− k2y. (33)

Here, we have assumed that protein synthesis occurs in one
single stage of merged transcription and translation, which,
as discussed, is valid when the half-life of mRNA species
is much shorter than the half-life of protein species [12].
Further to standard degradation dynamics for x and y proteins,
characterized by degradation rates k1 and k2 respectively, the
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structure of the equations is based on two Hill-like functions,
which account for each of the two synthesized proteins to act
as a repressor on the other gene. Here parameters ρ1,2 are the
association constants for the binding of x (y, respectively) to
the promoter of the target gene, g1,2 are the maximal expres-
sion rates of each gene, and β1,2 are cooperativity parameters
representing homodimerization of the relevant protein.

The bifurcation diagram of this system has been analyzed
in detail in [11]. The system exhibits deterministic multistable
behavior for β1, β2 > 1, and it is otherwise monostable. To
probe the effect of noise in a situation of deterministic monos-
tability, we therefore set in the following β1 = β2 = 1. In this
way any transition to bimodal dynamics will only be due to the
effect of noise, accounting thereby for the possible emergence
of a noise-induced transition in the system.

To explore this further, we have made the assumption that
regulation of x happens upon formation of a heterodimer of y
with the external (repressive) transcription factor R. Hence,
fluctuations in R will correspond to insertion of nonlinear
extrinsic noise in the system, and will be amenable to be
studied with the methodology developed here.

A. Perturbative calculation

As for the more general case, let us add Eq. (3) to Eqs. (32)
and (33) for the toggle switch and let us assume τx = 1/k1 >

τy = 1/k2. We then redefine time as t → t/τx; we obtain

dx

dt
= εγ (y, R) − x = ε

γ1

1 + ρ1Ry
− x , (34)

dy

dt
= ε f (x) − κy = ε

γ2

1 + ρ2x
− κy , (35)

dR

dt
= εμ(R) + √

εDν(R)ξ (t ) , (36)

where ε = τx/τ , γ1,2 = g1,2τ , and κ = k2/k1 � 1. For sim-
plicity, here we assume κ = 1.

We also assume that the timescale τ of the dynamics of R
satisfies τ  τx, τy and therefore ε is a small parameter. In
this way we are assuming that the dynamics of R is slower
than that of x and y.

With LFP defined as in Eq. (6), the Fokker-Planck (7) be-
comes

∂

∂t
Wt (x, y, R) =

[
− ∂

∂x
(εγ (y, R) − x) − ∂

∂y
(ε f (x) − y)

+ εLFP(R)

]
Wt (x, y, R), (37)

whose stationary solution satisfies[
∂

∂x
(x − εγ (y, R)) + ∂

∂y
(y − ε f (x)) + εLFP(R)

]
W (x, y, R)

= 0. (38)

B. Zeroth order solution

Assuming the perturbative expansion (12), Eq. (13) be-
comes (

∂

∂x
x + ∂

∂y
y

)
W (0)(x, y, R) = 0, (39)

which immediately leads to the zeroth order solution:

W (0)(x, y, R) = δ(x)δ(y)W̄ (R). (40)

C. First order correction

We now proceed with the calculation of first order correc-
tions W (1)(x, y, R). Upon substitution of (12) in (38) and by
collecting terms up to first order in ε, we obtain

− ∂

∂x
(γ (y, R)W (0) − xW (1) ) − ∂

∂y
( f (x)W (0) − yW (1) )

+ LFP(R)W (0) = 0, (41)

which leads to the solution

W (1)(x, y, R) = −W̄ (R)
(
δ′(x)δ(y)γ (y, R) + δ′(y)δ(x) f (x)

)
(42)

as could be derived directly from Eq. (15). Following our
general procedure, we can write to the first order in ε:

W (x, y, R) = W (0) + εW (1)

= W̄ (R)[(δ(x) − εγ (y, R)δ′(x))δ(y)

− δ′(y)δ(x) f (x)]

= W̄ (R)δ(x − εγ (y, R))δ(y − ε f (x)), (43)

analogous to Eq. (16). In fact, if we let

δ̃(x, y) = (δ(x) − εγ (y, R)δ′(x))δ(y) − εδ′(y)δ(x) f (x),
(44)

then from the distributional point of view,∫∫
dxdyδ̃(x, y)h(x, y)

= h(0, 0) + ε

(
γ (y, R)

∂

∂x
h(0, 0) + f (x)

∂

∂y
h(0, 0)

)

= h(εγ (y, R), ε f (x)) + O(ε2), (45)

and since

h(εγ (y, R), ε f (x))

=
∫∫

dxdyδ(x − εγ (y, R))δ(y − ε f (x))h(x, y) (46)

for any h(x, y), the last equality in (43) follows. This result
coincides at this order with the noise filtering approach pro-
posed in [6] with p(x) stemming from W̄ (R) via the change of
variables R → x induced by the (analytically solvable in this
case) condition x − εγ (ε f (x), R) = 0.

D. Second order correction

We can now carry out the evaluation of the second order
correction by computing LFP(R)W (1). Equation (22) becomes

LFP(R)W (1)(x, y, R) = −δ′(x)δ(y)LFP(R)(γ (y, R)W̄ (R))

= −δ′(x)δ(y)G(y, R), (47)
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where

G(y, R) = LFP(R)(γ (y, R)W̄ (R))

= −(μ(R) − 3Dν(R)ν ′(R))W̄ (R)∂Rγ (y, R)

+ Dν(R)2
(
2W̄ ′(R)∂Rγ (y, R) + W̄ (R)∂2

Rγ (y, R)
)
.

(48)

Equation (24) now becomes

− ∂

∂x

(
γ (y, R)W (1) − x

2
W (2)

)
− ∂

∂y

(
f (x)W (1) − y

2
W (2)

)
+ LFP(R)W (1) = 0, (49)

which, using (47), can be rewritten as

− ∂

∂x

(
γ (y, R)W (1) − x

2
W (2)

)
− ∂

∂y

(
f (x)W (1) − y

2
W (2)

)
+ δ′(x)δ(y)G(y, R) = 0. (50)

The form of the solution W (2)(x, y, R) is analogous to (26),
namely given by

W (2)(x, y, R) = W̄ (R)(A10δ
′(x)δ(y) + A11δ

′(x)δ′(y)

+ A20δ
′′(x)δ(y) + A02δ(x)δ′′(y)). (51)

Inserting this expression in (50), one obtains the following
conditions on the coefficients Ai j

A10 = −2Ḡ(y, R) , A20 = (γ (y, R))2,

A11 = 2γ (y, R) f (x) , A02 = ( f (x))2

with Ḡ = G/W̄ , as could be derived as well directly from
Eq. (27) with the condition Ã = 0. The ansatz for the steady
state solution for the probability density W (x, y, R) that co-
incides up to the second order in ε with the perturbative
evaluation shown above is therefore

W (x, y, R) = W̄ (R)δ(x − εγ (y, R) − ε2Ḡ(y, R))

× δ(y − ε f (x)) + O(ε3). (52)

E. Log-normal Noise

The power of the approach that we propose here also relies
on the fact that we can assume different types of noise, as
long as these can be represented in terms of the Langevin
dynamics (3). By following [8], we focus on log-normal noise,
which in contrast to Gaussian noise preserves the positivity of
parameter values on which it acts. It also describes well ex-
trinsic fluctuations [5,13] and universal behaviors in bacteria
and yeast [14,15].

The stationary log-normal distribution

w̄(R) = 1

R
√

2π
exp

[
− 1

2D

(
log

R

R̄
+ D

2

)2
]

(53)

can be derived [8] by defining the stochastic process

R(t ) = R̄eη(t )e−D/2, (54)

where η(t ) is the standard Ornstein-Uhlenbeck noise,

dη

dt
= −η

τ
+

√
D

τ
ξ (t ), (55)

with ξ (t ) zero average Gaussian white noise, and R̄ = 〈R(t )〉,
since 〈eη(t )〉 = eD/2. Hence, the stochastic process (54) obeys

dR

dt
= −R

τ
log

(
R

R̄
+ D

2

)
+

√
D

τ
Rξ (t ), (56)

which corresponds to (3) with the choice μ(R) =
−R log(R/R̄ + D/2) and ν(R) = R. Equation (10) then
allows the derivation of (53).

F. Comparison with numerical simulations

The joint probability density p(x, y) for the protein distri-
butions can be obtained by marginalizing (52) with respect to
R:

p(x, y) =
∫

dRW (x, y, R). (57)

The probability density px(x) for the distribution of protein x
can then be obtained by marginalizing (57) with respect to y.
In this case it is simpler to first integrate in y after replacing
(52) in (57); we obtain

px(x) =
∫

dRW̄ (R)δ(x − εγ (ε f (x), R) − ε2Ḡ(ε f (x), R))

=
∫

dRW̄ (R)δ(z(x, R)), (58)

and further integration with respect to R amounts to a change
of variable R = r(x) where the function r(x) is defined im-
plicitly by the equation

z(x, R) = x − εγ (ε f (x), R) − ε2Ḡ(ε f (x), R) = 0. (59)

We notice that in this particular case we can also easily de-
velop the third order correction. This is obtained following the
same procedure used for the second order (see Appendix for
details) leading to the following modified expression for the
steady state solution for the probability density W (x, y, R):

W (x, y, R) = W̄ (R)δ(x − εγ (y, R) − ε2Ḡ(y, R)+
− ε3Ḡ3(x, y, R))δ(y − ε f (x)) + O(ε4). (60)

Here, we have used (see Appendix):

Ḡ3(x, y, R) = ḠM (y, R) + Ḡ2(y, R)

2x
, (61)

and therefore, by integrating over y we obtain

px(x) =
∫

dRW̄ (R)δ(z(x, R)) (62)

with

z(x, R) = x − εγ (ε f (x), R) − ε2Ḡ(ε f (x), R)+
− ε3Ḡ3(x, ε f (x), R), (63)

which replaces (59).
According to the implicit functions theorem, from the con-

dition z(x, R) = 0, it follows that a function r(x) = R exists
such that

px(x) = W̄ (r(x))

∣∣∣∣dr

dx

∣∣∣∣, (64)
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where dr/dx can be computed by applying the implicit func-
tions theorem either to (59) for the calculation up to the second
order, or to (63) for the third order. Hence,

dr

dx
= − ∂xz(x, R)

∂Rz(x, R)
, (65)

which allows us to explicitly evaluate px(x) for the toggle
switch.

Finally, in order to derive

py(y) =
∫

dx
∫

dRW (x, y, R), (66)

it suffices to notice that at steady state we have exactly y =
ε f (x), and therefore, py(y) in this case can be derived directly
from px(x) via a change of variable as

py(y) = 1

ε
px

(
f −1

(y

ε

))∣∣∣∣df −1

dy

∣∣∣∣
= px( f −1(y/ε))

ε| f ′(x = f −1(y/ε)| . (67)

Equations (64) and (67) so constructed can then be com-
pared at any given perturbative order with direct stochastic
simulations, in order to highlight the predictive power of the
theoretical approach developed here.

We perform direct stochastic simulations of fluctuations in
R by using the standard approach to generate an Ornstein-
Uhlenbeck process, converting it via Eq. (54) into log-normal
noise and then by performing ordinary integration of Eqs. (32)
and (33). The probability densities are obtained by averaging
a single trajectory over long times. Parameters are set so as to
reproduce biologically relevant conditions. In all simulations
and in the analytical solution, we fix the maximal gene ex-
pression rates at the values g1 = g2 = g0 = 10−2s−1, which
is representative of typical gene expression in bacteria [16],
and the degradation rates k1 = k2 = 10−4s−1, which are rep-
resentative of proteins’ half-life in the range of two hours. We
also fix the dissociation constants of transcription factors to
DNA ρ1 = 10nM−1 and ρ2 = 1nM−1, and R̄ = 0.87nM [8].

We then focus on two different values of ε in order to
explore the contribution of different perturbative orders. Since
we assume k = 10−4 s−1, choosing τ = 107 s corresponds to
assume ε = 0.001, while the choice τ = 105 s will reflect a
larger value of ε, namely ε = 0.1. It is this second regime,
when the timescale separation between dynamics of x and
of the R fluctuations is less pronounced, that we predict that
higher order terms in the perturbative expansion will become
relevant.

In Fig. 2 we show the comparison between perturbative
expansion and stochastic simulations for ε = 0.001. The the-
oretical analysis predicts bimodality for the concentration x,
and this is confirmed excellently by the numerical result. In
this case the first order solution via Eq. (43), second order
solution via Eq. (59), and third order solution via Eq. (63)
practically coincide.

In Fig. 3 (top panel) we show a particular case where
using the first order solution in Eq. (43) leads erroneously to
conclude that bimodality emerges, while including second and

FIG. 2. Probability distributions px (x) (top panel) and py(y) (bot-
tom panel) as given by numerical simulation (black line) compared
to theoretical solution (64) for px and (67) for py, respectively,
at the first order (red line), second order via Eq. (59) (blue line),
and third order via Eq. (63) (blue continuous line). These solutions
are indistinguishable. Same colors and line styles are used in both
panels. Here α = 10, R̄ = 0.87nM, g0 = 0.01, τ = 107, ε = 0.001,
D = 0.012.

third order correction gives a quantitatively and qualitatively
correct description of the properties of the density function,
correctly predicting a unimodal distribution for both x and y
protein concentrations.

G. Noise-induced transitions: Partial bimodality

The analysis and simulations shown in Fig. 2 highlight
the emergence of a particular phenomenon, which we name
“partial bimodality,” whereby bimodal behavior emerges for
the protein concentration x, but not for y. This is clearly
unexpected in standard toggle switches affected by intrinsic
noise only, as in this case the bimodality would instead simul-
taneously affect both genes involved.

In order to obtain further insight into these dynamics and
clarify the nature of the noise-induced transition identified
here, we perform simulations and solve the corresponding first
order dynamics for three different values of noise intensities.

In Fig. 4 we show simulations and analytical predictions
for the toggle switch in a regime where at low noise in-
tensity (D = 0.01) the dynamics are unimodal. In this case
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FIG. 3. Probability distributions px (x)(top panel) and py(y) (bot-
tom panel) as given by numerical simulation (black line) compared
to theoretical solution (64) for px and (67) for py, respectively, at
the first order (red lines), second order via Eq. (59) (blue dashed
lines), and third order via Eq. (63) (blue continuous lines). Same
colors and line styles are used in both panels. Including the third
order correctly shows only one mode for px (x) (blue continuous line,
top panel). Here α = 10, R̄ = 0.87nM, g0 = 0.01, τ = 105, ε = 0.1,
D = 0.012.

we observe that increasing the noise intensity up to D = 10,

bimodal behavior emerges for both genes. However, interest-
ingly, we also observe that for intermediate values of noise,
D � 0.1, a regime exists where bimodality emerges only for
one gene and not the other.

For this case we show two exemplary trajectories for vari-
ables x and y in the upper panel of Fig. 5. While the variable
x makes complete transitions between a high value around
the second mode (x = 32.5) and low values close to the first
mode (x = 0.24), the variable y remains more consistently
around y = 0.2, as testified by the higher peak of its distri-
bution at the origin as compared to that of px (see inset in the
middle of Fig. 4). In correspondence of transitions of the x
variable to the low state, excursions to slightly larger values
of y are permitted, but their amplitude is not large enough to
exit the basin of attraction of the low y state. In the bottom
panel of Fig. 5 instead, the case where bimodality occurs for
both species is shown. These trajectories correspond to the
bimodal distributions in the bottom panel of Fig. 4 with modes

FIG. 4. Noise-induced transitions and partial bimodality in the
toggle switch. The distributions px (x) and py(y) as given by numer-
ical simulations (black lines) compared to analytical solutions (43)
(red line and blue line for py(y) and px (x), respectively). Here α =
10, R̄ = 0.8nM, g0 = 0.01, τ = 107, ε = 0.001, from top to bottom
D = 0.01, 0.1, 10.

in x, y = 0 and in x = 100, y = 99. Since px has a higher peak
in x = 100 and py has a higher peak in y = 0, these species
spend most of their time around these values with sporadic
transitions to values around x = 0 and y = 99, respectively.
The amplitude of the fluctuations of the y variable in this case
allows the variable y to exit the basin of attraction of its high
state.

We attribute the different noise amplitudes experienced by
the variables x and y to a noise propagation effect, whereby
the fluctuations of the external parameter R are perceived
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FIG. 5. Exemplary trajectories for the variable x (blue line) and
y (red line) for parameters α = 10, R̄ = 0.8nM, g0 = 0.01, τ = 107,
ε = 0.001, and D = 0.1 (upper panel, corresponding to distributions
with partial bimodality in middle panel in Fig. 4) and D = 10 (lower
panel, corresponding to bimodal distributions in bottom panel in
Fig. 4).

differently by the two genes. In fact, the variance of the
distribution of x is consistently larger of the variance of the
distribution of y, for all input noises on R (parametrized by
D), as shown in Table I.

While x is under the direct influence of fluctuations of R,
gene y feels those fluctuations, propagated through the repres-
sive action from x, at a lower level. This means that while gene
x can be above threshold for transitions to bimodal behavior,
gene y may still remain below the threshold, and therefore
may still exhibit unimodal behavior. This mechanism is in
agreement with the result of some extensive studies performed

TABLE I. Variances of x and y distributions corresponding to the
probability distributions shown in Fig. 4. Parameter values are set as
in Fig. 4.

D 0.01 0.1 10

σx 56.62 325.31 590.67
σy 0.88 58.57 191.17

in [17], which demonstrated that positive feedback loops limit
the range of fluctuations of the target gene.

V. CONCLUSIONS

In this paper we have introduced an efficient methodology
to deal with nonlinear extrinsic noise when the correlation
time of the fluctuations is large. The derivation proposed here
is based on a timescale expansion of the master equation and
reproduces to the first order of the phenomenological ap-
proach based on the nonlinear noise filtering introduced in
[6]. Importantly, our perturbative approach allows one to go
beyond the dynamical derivation presented in [8] and obtain
correct predictions even in a regime when the timescales
characterizing fluctuations and gene dynamics are compara-
ble, with the lowest perturbative orders failing to capture the
qualitative dynamical features of the system.

We also find that the toggle switch is capable of a partial
bimodality, in that while one of the two participating genes
shows full bimodal behavior, the other gene still preserves
unimodality. This feature is intermediate in terms of noise
intensities to the two extreme cases of no bimodality for any
of the two genes, to full bimodality for both of them. As a
followup to this observation, it will be interesting to analyze
the effect of simultaneous intrinsic and extrinsic noise on
the system. We expect that the interplay between intrinsic
and extrinsic noise would provoke even richer dynamics, in
which the balance between noise intensities will be crucial in
determining the structure of the phase space.

The mechanism for noise-induced transitions described
here and the methodology introduced are promising and wor-
thy of further analysis and experimental validation. They will
further our understanding of the fundamental and active role
played by noise in biological systems.

All details of the mathematical models developed and
the data deriving from their simulation are available in the
article.
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APPENDIX: EVALUATION OF THIRD ORDER
PERTURBATIVE CORRECTION FOR THE TOGGLE

SWITCH

We can evaluate the third order correction in the per-
turbative expansion just by carrying on the procedure
introduced in the main text to include the third order. We
start with W (x, R) = W (0) + εW (1) + ε2W (2)/2 + ε3W (3)/6
and this leads to

− ∂

∂x

(
γ (y, R)W (2) − xW (3)

3

)

− ∂

∂y

(
f (x)W (2) − yW (3)

3

)
+ LFP(R)W (2) = 0, (A1)
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where we know W (2)(x, y, R) from previous calculations.
Therefore, we can evaluate LFP(R)W (2) and we obtain

LFP(R)W (2)(x, y, R)

= G2(y, R)δ′′(x)δ(y)

+ 2 f (x)G(y, R)δ′(x)δ′(y) − 2GM (y, R)δ′(x)δ(y), (A2)

with

G2(y, R) = LFP(γ 2(y, R)W̄ (R))

= 2(3Dν(R)ν ′(R) − μ(R))W̄ (R)γ (y, R)∂Rγ (y, R)

+ Dν(R)2
[
4W̄ ′(R)γ (y, R)∂Rγ (y, R)

+ 2W̄ (R)
(
γ (y, R)∂2

Rγ (y, R) + (∂Rγ (y, R))2
)]

,

(A3)

where it can be shown that

GM (y, R) = LFP(R)(G(y, R))

= α(R)G(y, R) + σ (R)∂RG(y, R) + γ (R)∂2
RG(y, R),

(A4)

with

α(R) = −(μ′(R) − Dν ′(R)2 − Dν(R)ν ′′(R)), (A5)

σ (R) = −(μ(R) − 3Dν(R)ν ′(R)), (A6)

γ (R) = Dν2(R). (A7)

From Eq. (A1) we can therefore expect W3(x, R) of the form

W3(x, y, R) = W̄ (R)(A10δ
′(x)δ(y) + A11δ

′(x)δ′(y)

+ A12δ
′(x)δ′′(y) + A20δ

′′(x)δ(y) + A21δ
′′(x)δ′(y)+

+ A30δ
′′′(x)δ(y) + A03δ(x)δ′′′(y)). (A8)

Replacing Eq. (A8) in (A1) and solving for Ai j leads to

A10 = −6ḠM (y, R) − (3/x)Ḡ2(y, R), (A9)

A11 = 6Ḡ(y, R) f (x), (A10)

A12 = 3γ (y, R) f 2(x), (A11)

A20 = 6Ḡ(y, R)γ (y, R), (A12)

A21 = − 3γ 2(y, R) f (x), (A13)

A30 = −γ 3(y, R), (A14)

A03 = − f 3(x). (A15)
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