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By interpreting a temporal network as a trajectory of a latent graph dynamical system, we introduce the
concept of dynamical instability of a temporal network and construct a measure to estimate the network
maximum Lyapunov exponent (nMLE) of a temporal network trajectory. Extending conventional algorithmic
methods from nonlinear time-series analysis to networks, we show how to quantify sensitive dependence on
initial conditions and estimate the nMLE directly from a single network trajectory. We validate our method for
a range of synthetic generative network models displaying low- and high-dimensional chaos and finally discuss
potential applications.
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I. INTRODUCTION

Temporal networks (TNs) [1–3] are graphs whose topol-
ogy changes in time. They are minimal mathematical models
that encapsulate how the interaction architecture of elements
in a complex system changes dynamically. TNs have been
successfully used in a variety of areas ranging from epidemic
spreading [4] or air transport [5] to neuroscience [6], to cite a
few, and it has been shown that important dynamical processes
running on networks (e.g., epidemics [4], synchronization,
search [7]) display qualitatively different emergent patterns
when the substrate is a TN, compared to the case of a static
network. These effects are particularly relevant when the
timescale of the dynamics running on the graph is comparable
to that of the intrinsic evolution of the network, i.e., when
there is no manifest separation of timescales. Relatively lesser
work has, however, considered the intrinsic dynamics of the
network from a principled point of view. Recently, a research
program has been proposed [8] in which TNs are to be inter-
preted as the trajectories of a latent graph dynamical system
(GDS). The GDS provides an explicit model for the time
evolution of the network. Similar to a conventional dynamical
system (whose output is a time series of scalar or vector
quantities), the output of a GDS is a time series of networks,
i.e., a TN.

The dynamics of TNs and GDS are indeed the objects of
ongoing research. For instance, in Ref. [8] some of us consid-
ered how to extend the autocorrelation function of a signal to a
graph-theoretical setting. We explored how TNs can oscillate
and how harmonic modes, as well as decaying linear temporal
correlations of various shapes, emerge. Similarly, the memory
of a temporal network has been studied from different angles,
including the concept of memory shape [9] as a multidimen-
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sional extension of memory (high-order Markov chain theory)
in conventional time series. In this work, we further pursue the
abovementioned research framework program, and consider
the problem of dynamical instability and chaos quantification
in TNs. Interpreting temporal networks as trajectories in graph
space, we aim to generalize the concept of Lyapunov expo-
nents as quantifiers of the sensitivity to initial conditions. Our
objective is to define and measure Lyapunov exponents and
sensitive dependence on initial conditions of the network as a
whole. Our approach is therefore not to quantify chaos in the
dynamics, for example, of every link, but rather to quantify
chaos for the collective dynamics of the whole network.

Since TNs in applications are frequently observed empiri-
cally, we focus our implementation and inference of network
Lyapunov exponents solely on the observation of a single
(long) TN trajectory, without the need to access the underlying
GDS (but of course, the framework is also applicable if the
GDS is explicitly accessible). Our algorithmic implementa-
tion can thus be seen as a conceptual network generalization
of the classical algorithms by Wolf and Kantz [9–12], orig-
inally proposed to quantify sensitive dependence on initial
conditions directly from empirically observed time series (see
also Ref. [13] for a similarly seminal work).

Importantly, any new method needs to be validated. In our
case, this is not trivial, since the notion of chaotic TNs is
not common in the existing literature. A second objective of
this work is thus to propose synthetic generative models of
chaotic TNs, which can be used as templates to validate the
methods we develop for the quantification of chaos in TNs.
These methods, once validated, can then be used in wider
applications and further research.

The rest of the paper is organized as follows. In Sec. II
we introduce the theoretical background to our work, and
we set the notation. We derive the network analog of the
maximum Lyapunov exponent (MLE), and we outline an al-
gorithmic implementation to estimate quantities such as the
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spectrum of local expansion rates, trajectory-averaged and
volume-averaged expansion rates, and the network maximum
Lyapunov exponent (nMLE). In Sec. III we consider the rel-
atively simple case of random network dynamics as a first
example, and show how the method works in such a scenario.
Then, in Sec. IV we introduce a generative model of (low-
dimensional) chaotic temporal networks. This model provides
us with “ground-truth” access to the nMLEs of the network
trajectories that the model generates. We show that the method
we propose to infer nMLEs from a trajectory of networks
correctly reconstructs this “true” exponent. We also assess
how the estimation of the nMLE is affected when the chaotic
network trajectory is polluted with certain amounts of noise,
and discuss at this point how to estimate negative nMLEs as
well. In Sec. V we introduce a different generative model
of (high-dimensional) chaotic TNs. We demonstrate that the
generated TNs show sensitive dependence on initial condi-
tions, and that the nMLE varies as expected as a function of a
network’s coupling parameter. In Sec. VI we finally conclude
and discuss potential applications of the method.

II. THEORY AND METHOD

A. Lyapunov exponents for graph dynamical systems

In nonlinear time series analysis, the maximum Lyapunov
exponent λMLE of a dynamical system quantifies how two
trajectories that are initially close separate over time. More
precisely, one imagines two copies of the system, which are
started from initial conditions at time t = 0 which are a dis-
tance d0 apart. One then defines

λMLE = lim
t→∞ lim

d0→0

1

t
ln

dt

d0
, (1)

where dt is the distance between the two copies of the system
at time t .

In practice, the distance d0 is often small but finite, and the
limit d0 → 0 may not be accessible. It then turns out that the
long-time limit t → ∞ is not accessible either, as the growth
of dt is bounded by the size of the attractor of the system
[14]. In such cases, the behavior of dt usually undergoes a
crossover (at a time which we label τ ) from an exponentially
expanding phase (t < τ ) to a saturated phase (t > τ ). In the
latter regime, dt fluctuates around the attractor’s size. We will
call τ the saturation time.

In the network setting, we assume there exists a (some-
times unknown) graph dynamical system that determines the
evolution of a graph over time. We focus on discrete time.
The GDS is then a map that determines how one network
evolves in the next time step. For simplicity, we assume that
the set of vertices is fixed, and that the vertices are distin-
guishable from one another and labeled. Thus, only the set of
edges between these vertices evolves in time. A trajectory of
the GDS then consists of a sequence of network snapshots.
These trajectories define the TNs generated by the system
[1,3]. Each trajectory is given by the sequence of adjacency
matrices S = (At )t�0, At = {ai j;t }; i, j = 1, 2, . . . , n, where
ai j;t = 1 if the vertices i and j are connected at time t , and zero
otherwise (this symmetric choice is for simple, undirected
networks, but the method works essentially along the same
lines for nonsimple and directed networks, perhaps except

for different normalization factors in the definition of the
distance, see below). As such, we are considering labeled,
unweighted networks of n nodes.

It is not clear a priori if the specific choice of the distance
used to quantify the deviation between two originally close
network trajectories is critical. We conjecture that as long as
this distance is based on the full adjacency matrix, not on a
projection of it, results should hold independent of the specific
metric. This is based on the fact that in dynamical systems,
the MLE is invariant under different choices of the underlying
norm ||.|| [12,14]. There exist many graph distances [15]. For
simplicity, we take an intuitive definition of such a distance
which is based on the amount of edge overlap between two
networks: given two networks with the same number of nodes
n and adjacency matrices A and B,

d (A, B) = 1

2

∑
i, j

|ai j − bi j |, (2)

where i and j take values from 1 to n.1 In our setting, networks
are simple and unweighted. In the particular case where A
and B have the same number of edges, the distance defined
in Eq. (2) is indeed a rewiring distance, i.e., it is given by the
number of unique rewirings needed to transform A into B, and
therefore d is a positive integer-valued function. One can then
further normalize d as appropriate such that it is defined in
[0,1], as we will show later. Further details can be found in
the Appendix, where we also introduce alternative distances.

B. Inference of network Lyapunov exponents

1. Local expansion rates

We are interested in quantifying sensitive dependence on
initial conditions (and, in particular, the network version of
λMLE, which we here call λnMLE) when the mechanics of the
GDS is not known, and when we only have access to a (sin-
gle) discrete-time network trajectory S = (A0, A1, A2, . . . ) of
adjacency matrices. This is analogous to the case in which one
would like to reconstruct the MLE of a conventional dynam-
ical system from a single time series. The standard approach
consists in using Wolf’s or Kantz’s algorithms [9–12]. The
central idea is here to look for recurrences in the orbit, finding
points in the time series which might be temporally separated
but which are close in phase space. One then monitors the
deviation of those points over time. Here, we extend this
approach to the case of a time series of networks, i.e., a TN.

We start by fixing an element At from S , where t is an
arbitrary point in time. This adjacency matrix will be the
initial condition for our analysis. To extend Wolf’s algorithm,
we then proceed to look in S for another element At ′ at a
different time t ′, such that d (At , At ′ ) < ε, where ε is a small
threshold chosen before the analysis begins.2 This recurrence
in phase space allows us to use a single trajectory to explore

1The prefactor is used to have a normalized distance when networks
are simple, undirected, and have the same number of links; otherwise,
a different normalization is needed.

2In practice, At ′ is selected as the closest network from At within
the ball of radius ε.
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how two close networks separate over time. We then set
d0 := d (At , At ′ ) as the initial distance. We then proceed to
measure how distance evolves over time as we separately track
the evolution of At+k and At ′+k in S , where k = 1, 2, . . . . We
write dk = ||At+k − At ′+k||. Without loss of generality, we can
always write the successive distances in terms of a sequence
of local expansion rates �1, �2, . . . ,

dk = dk−1 exp(�k ). (3)

Each of the �k can be positive (local expansion), negative
(local contraction), or zero. Equation (3) generally models
the case where two initially close trajectories (d0 < ε) de-
viate from each other over time. The �k can depend on k,
since the expansion rates can vary as the trajectories pass
through different parts of the attractor [12]. We then define
a trajectory-averaged expansion rate � as follows:

� = 1

τ

τ∑
k=1

�k = 1

τ

τ∑
k=1

ln
dk

dk−1
, (4)

where τ is the saturation time defined earlier. Since we are
considering a fixed trajectory (not an ensemble of trajecto-
ries), we thus have

� = 1

τ
ln

dτ

d0
. (5)

Provided the GDS is ergodic (i.e., that a single and long-
enough orbit adequately visits the whole graph phase space),
� converges to the network maximum Lyapunov exponent
λnMLE in the limit of large τ , independent of the choice of
the initial adjacency matrix At . However, in practice, τ will
be finite, and thus we cannot readily assume that � fully de-
scribes the long-term behavior, or that it is independent of the
initial condition At . It is thus interpreted as a local Lyapunov
exponent [16], and an average of this quantity over different
initial conditions At will be required, as discussed further
below. In our network setting, ergodicity is not necessarily
guaranteed, and thus it will be useful to keep track of the local
quantification, as we will also show below.

2. Wolf and Kantz methods of estimating maximum Lyapunov
exponents for temporal networks

The time it takes for two trajectories to reach a distance of
the order of the attractor’s size depends on how close these
two trajectories were initially. In other words, the saturation
time τ depends on d0, and therefore on the choice of the
threshold ε. The limits d0 → 0 and τ → ∞ are thus related
to one another. Conceptually, we would like the trajectories
to be as close as possible initially, so that we can monitor the
expansion rate for long times, allowing us to obtain a global
MLE as opposed to a local Lyapunov exponent. To do this, we
need to track the expansion for sufficiently long, but we also
need to avoid the regime in which the distance is limited by
the characteristic size of the attractor.

a. Generalized Wolf approach to measuring the nMLE. We
now construct the generalization of Wolf’s approach, which
will yield an estimation of the nMLE that we call λW

nMLE. The
aim is to compute 〈�〉 = 〈 1

τ
ln dτ

d0
〉, where the average is over

choices of At and At ′ . In practice one considers a set of w

initial choices of At , which we index i = 1, . . . ,w, and for

each of these choices, one additional point At ′ on the trajectory
such that d (At , At ′ ) < ε. One then obtains

λW
nMLE = 1

w

w∑
i=1

�(i), (6)

where �(i) is the trajectory-averaged expansion rate � com-
puted for the ith initial condition, obtained from Eq. (4). Note
that λW

nMLE is simply the first moment of the distribution P(�)
(ensemble distribution over different initial conditions At ).
Since ergodicity is not necessarily guaranteed, λW

nMLE might
not be independent of At , and thus we take the cautious ap-
proach of computing P(�) and only speaking of a well-defined
λW

nMLE when P(�) is unimodal.
Algorithmically, this approach has the advantage that we

do not need to fix the choice of τ , we are able to flexibly adjust
τ for each initial condition, according to the specific d0 we are
able to find in S . On the other hand, this approach is point-
wise, in the sense that for each choice of At one only considers
a single At ′ nearby. As a consequence, this method does not
necessarily capture the average expansion rate around each
initial condition At .

b. Generalized Kantz approach to measuring the nMLE. In
order to calculate such an average expansion rate (for a given
choice of At ) one would, for a fixed At , have to average over
the expansion rates for choices of At ′ in an ε ball about At .
This volume-averaging is the basis of Kantz’s generalization
[10,11] of Wolf’s algorithm [9], see Fig. 1 for an illustration.
For a given initial condition At , Kantz’s method provides a
trajectory and volume-averaged expansion rate 〈 1

τ
ln dτ

d0
〉volume.

We will write � for the volume-averaged expansion rate. For
fixed At , this could algorithmically be obtained as follows.
One chooses N different At ′ from the trajectory S , all within
distance ε from At . We label these j = 1, . . . , N . For each At ′

one then computes �( j) via Eq. (4). Then one sets

�(At ) = 1

N

N∑
j=1

�( j), (7)

where N is the number of initial conditions inside a ball
of radius ε and centered at At that we have found in the
sequence S .

In practice, the Kantz algorithm proceeds slightly differ-
ently. Instead of first computing the �( j), and then averaging
the expansion rates, the average over the At ′ is instead com-
puted at the level of distances. That is to say, one makes
N choices of At ′ as described above, and then obtains dk ( j)
for each j = 1, . . . , N and k = 0, 1, 2, . . . (k runs up to the
relevant cutoff time). One then sets

�(At ) = 1

τ
ln

N−1 ∑N
j=1 dτ ( j)

N−1
∑N

j=1 d0( j)
, (8)

where τ is a priori fixed for all j. The numerator in the
logarithm represents the volume average (over choices of At ′

in a ball about At ) of dτ , and the denominator is the volume
average of d0.

We stress that Eqs. (7) and (8) are mathematically different
and do not necessarily lead to the same results. While Eq. (7)
allows adapting the precise value τ (which depends on d0) for
each trajectory, Eq. (8) instead requires us to use a uniform
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FIG. 1. Illustration of a temporal network S = (G0, G1, G2, ...)
as a trajectory of a latent GDS and the methodology to compute its
network maximum Lyapunov exponent (Kantz version) λK

nMLE. Each
element of the trajectory is a network, i.e., a snapshot of the temporal
network. λK

nMLE is estimated directly from S (i.e., without accessing
the GDS directly) by looking at recurrences in S and quantifying
the average expansion around different network snapshots. In this
illustration, a ball of radius ε around an arbitrary G0 is fixed, and
four recurrences are found where d (G0, Gr ) < ε. The initial distance
d (G0, Gr ) is averaged over the four recurrences and the average
distance after one time step d (G1, Gr+1) is computed. λK

nMLE is com-
puted by averaging over time, volume, and different initial conditions
G0 (see the text for details).

τ across all trajectories. The latter expression looks at the
expansion in time of an initially small volume centered on
At , and is closer in spirit to capturing the underlying nonlinear
dynamics than Eqs. (7). Accordingly, Eq. (8) is the basis of
the Kantz method.

The quantity � in Eq. (8) is still a local quantity, in the
sense that it was computed for a phase space volume around a
fixed choice of At . In principle, the local volume-averaged ex-
pansion rate could vary across different regions in phase space
(if ergodicity is not assumed). To capture the global long-term
behavior we therefore additionally average over choices of At ,
and then finally obtain the global volume-averaged network
maximum Lyapunov exponent

λK
nMLE =

〈
1

τ
ln

〈dτ 〉volume

〈d0〉volume

〉
At

, (9)

where we have written 〈· · · 〉At , for the average over initial
conditions At . In practice, this is carried out by averaging over
a set of w choices of At , i.e.,

λK
nMLE = 1

w

w∑
j=1

�
(
A( j)

t

)
, (10)

where �(A( j)
t ) stands for the expression in Eq. (8) for the fixed

choice At = A( j)
t . As we did for the Wolf version, we also keep

track of the ensemble distribution P(�) and only speak of a
well-defined λK

nMLE when P(�) is sufficiently peaked around
its mean λK

nMLE.
We note that the value of the saturation time τ or the radius

of the ball ε will have to be selected after some numerical
exploration. Indeed, a better estimate of the Lyapunov expo-
nent is obtained when the cutoff time τ is large. This, in turn,
is the case when the initial distance between At and At ′ is
small, hence favoring choosing a relatively small value of ε.
However, a small value of ε complicates the task of finding
points At ′ that are at most a distance ε away from At on the
given trajectory. In practice, a trade-off is to be struck.

To summarize, from a given TN trajectory (i.e., a sequence
of network snapshots) we first measure the local expansion
rates {�k}τk=1 via Eq. (3) for a fixed choice of At and At ′ .
The set of �k obtained in this way provide information on
the fluctuations of the local expansion rate (for fixed At and
At ′), and its trajectory average �. We can then proceed along
two alternative routes. In the first approach (i) we average
� over different choices for the initial condition At [Eq. (6)]
and obtain Wolf’s approximation to the nMLE λW

nMLE. Alter-
natively, (ii) we can initially perform, for each initial condition
At , an average over At ′ . This is done by computing the local
expansion of a volume 〈dk〉volume and then averaging this over
time [Eq. (8)]. This is then repeated for different choices of
At , and one hence obtains a distribution P(�) describing the
fluctuations across different points in the network phase space.
Its mean provides Kantz’s approximation to the nMLE λK

nMLE.
In the following sections, we present a validation of this

method for random, low-dimensional, and high-dimensional
chaotic temporal networks.

III. THE WHITE-NOISE EQUIVALENT OF A TEMPORAL
NETWORK: INDEPENDENT AND IDENTICALLY

DISTRIBUTED RANDOM GRAPHS

Before addressing the case of chaotic dynamics, we briefly
discuss the case of random network trajectories, with no cor-
relations in time. One then expects no systematic expansion
or compression in time, and the resulting Lyapunov exponent
should hence vanish.3 We here seek to verify that this is indeed
the case for the procedures we have introduced to estimate
the Lyapunov exponents of TNs. Studying this is of interest,
among other reasons, because an empirically obtained time
series may appear random. It is then important to be able
to decide if the trajectory is consistent with an uncorrelated
random trajectory in network space, or with a deterministic
chaotic model.

Here we study the simple case where S is an independently
drawn sequence of Erdös-Rényi graphs with n nodes and in
which the probability that any two nodes are connected is
p. This is an analog to white noise for TNs, i.e., a situation

3By construction, d1 > d0 as we force d0 < ε, so in order to avoid
spurious expansions at k = 1, in this section, we do not take into
account d0 in the estimation of finite Lyapunov exponents, i.e., our
starting time is k = 1.
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FIG. 2. (a) Probability distribution of the distance between consecutive networks in an independent and identically distributed (i.i.d.)
sequence of |S| = 105 Erdos-Renyi graphs with n = 100 nodes and p = 0.01 (black line). The plot is in semilog, where a Gaussian shape
appears as an inverted parabola, so we can better appreciate the tails. The blue solid line is Eq. (11). (b) P(�) (black) and P(�) (red) associated
with a sequence of |S| = 5×104 i.i.d. ER networks (n = 100, p = 0.01), for τ = 1 and w = O(104) initial conditions. The mean of both
distributions (nMLE) is essentially zero for both methods, but the dispersion around the mean is larger in Wolf’s approach. The solid blue line
is the theoretical prediction, i.e., a Gaussian distribution with mean 0 and variance as in Eq. (14) with τ = 1. The inset of (b) shows how the
variance of � shrinks as τ increases (resulting in a much lower uncertainty around a zero nMLE): dots are different numerical simulations with
|S| = 104 and w = 103, for different τ ; the blue line is Eq. (14).

in which the TN displays a delta-distributed autocorrelation
function [8].

At odds with a deterministic GDS, the distances between
different points on a network trajectory are now random
variables. More precisely, since all elements of S are the
adjacency matrices of Erdös-Rényi graphs, the elements of
these matrices are Bernoulli variables, taking values zero
(with probability 1 − p) or one (with probability p). For in-
dependent adjacency matrices A and B, the possible values of
|ai j − bi j | are then zero with probability p2 + (1 − p)2 and
one with probability 2p(1 − p). Thus, we have

d (A, B) ∼ Binomial[n(n − 1)/2, 2p(1 − p)]. (11)

Equation (11) is numerically verified in Fig. 2(a).
The quantity � in Eq. (5) is given by �= 1

τ
(ln dτ− ln d0).

As we have just established, d0 and dτ are independent bino-
mial random variables following the distribution in Eq. (11).
For large networks (n � 1) this distribution can be ap-
proximated as a Gaussian, with mean μ = qn(n − 1)/2 and
variance σ 2 = q(1 − q)n(n − 1)/2, where we have written
q ≡ 2p(1 − p). Writing d0 = μ + σ z0, with z0 a standard
Gaussian random variable, we have

ln d0 ≈ ln

[
μ

(
1 + σ

μ
z0

)]
= ln μ + σ

μ
z0 − 1

2

σ 2

μ2
z2

0 + · · · ,

(12)
after an expansion in powers of σ/μ, where the latter quantity
is of order O(1/n). The same expansion can be carried out for
dτ , and we therefore find

� = 1

τ

[
σ

μ
(zτ − z0) + 1

2

σ 2

μ2

(
z2

0 − z2
τ

)] + · · · . (13)

We note that the second term in the bracket is of subleading
order in 1/n. Hence, � is to lowest order in 1/n approximately
Gaussian, with mean zero and variance

Var(�) = 2

τ 2

σ 2

μ2
= 1

τ 2

4(1 − q)

qn(n − 1)
. (14)

This theory has been numerically verified, and in Fig. 2(b)
we plot P(�) both for τ = 1 (outer panel) and Eq. (14) for
increasing values of τ (inset panel).

The case of � (Kantz version) should intuitively converge
even faster than � (Wolf version), since in this case we are
carrying out two averages instead of just one, i.e., P(�) should
have a smaller variance than P(�), for a given τ .

This is confirmed in Fig. 2(b), where we also observe
that both methods yield the same (correct) estimation of the
nMLE, which in this case is approximately zero (both esti-
mates are of the order of 10−6). Note that the main panels of
Fig. 2 are for the case τ = 1, so it is a worst-case scenario:
as τ increases Var(�) shrinks [Eq. (14)] and the uncertainty
around the null shrinks accordingly [see inset of Fig. 2(b)].

We were not able to find a closed-form solution for P(�)
as averages inside the ε ball are random variables whose
distribution explicitly depends on the specific initial condition
At ; this calculation is left as an open problem. In any case,
we conclude that an i.i.d. temporal network has a null MLE
Lyapunov exponent and the methodology (in both variants)
correctly estimates it.

IV. LOW-DIMENSIONAL CHAOTIC NETWORKS

A. Network generation: The dictionary trick

To be able to validate the method in the context of chaotic
dynamics, we ideally need to have access to chaotic network
trajectories with a ground true nMLE. This is difficult as
a general theory of chaotic GDS is not yet accessible. To
circumvent this drawback, in this section we develop a method
to construct (low-dimensional) chaotic network trajectories by
symbolizing in graph space-time series from low-dimensional
chaotic maps. The method of graph-space symbolization was
first proposed as a so-called “dictionary trick” in Ref. [8] and
consists of the following steps:
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FIG. 3. (a) Semilog plot of the distance dk as a function of iteration index k, for two initially close network trajectories sampled from S. We
can appreciate an initial exponentially expanding phase, followed by a saturation phase, although the local expansion rate strongly fluctuates.
(b) Volume-averaged distance 〈dk〉volume as a function of time k, for N = 17 initial graph conditions inside a volume centered at an initial graph
of n = 500 nodes and m = 2000 edges. Network dynamics evolve according to a logistic map as described in the text, whose true Lyapunov
exponent is ln 2 ≈ 0.693. We can see how the volume enclosing the graphs on average expands exponentially fast—with an exponent close to
ln 2, as expected—until it reaches the attractor size, which happens at the saturation time τ ≈ 10.

(1) We construct a network dictionary D. This is a set
of networks that allows us to map a real-valued scalar x ∈
[0, 1]4 into a network, such that the distance between two
scalars is preserved in graph space. The set D is therefore
ordered and equipped with a metric, such that the distance
between two real-valued scalars |x − x′| is preserved in the
graph symbols. More concretely, the dictionary of networks
D = (G1, G2, ..., GL ) such that d (Gp, Gq) ∝ |p − q| (one can
subsequently normalize d according to the length of the dic-
tionary, such that we have d ∈ [0, 1]).

(2) Once such a dictionary is built, any one-dimensional
time series can be mapped into a sequence of networks. In
particular, we can map chaotic time series with well-known
MLEs into network trajectories, from which an independent
estimate of the nMLE can be obtained.

Algorithmically, the dictionary is generated sequentially
with G1 ∼ ER(p) (an Erdös-Rényi graph with parameter p)
and then iteratively constructing Gk+1 from Gk by rewiring a
link that (i) has not been rewired in any previous iteration of
the algorithm (ii) into a place that did not have a link in any
previous iteration of the algorithm. It is easy to see that such
an algorithm ensures that D provides a partition of [0,1] of the
form [0, 1] = ∪L−1

k=0 [k/L, (k + 1)/L], where L is the number
of networks in the dictionary. The dictionary is thus metrical,
in the sense that the rewiring distance between any two ele-
ments in the dictionary is (for a sufficiently large refinement
L) arbitrarily close to the associated real-valued scalars in
the original interval. Once the dictionary is established, we
can then generate synthetic temporal network trajectories as
symbolizations of unit interval dynamics by matching points
in the subinterval [k/L, (k + 1)/L] to the symbol Gk+1. The
resulting temporal network S inherits, by construction, the
properties of the scalar time series, and, in particular, can be
used to generate chaotic TNs.

4We choose the interval [0,1] without loss of generality.

B. Results for the logistic map

As a first validation, we consider the fully chaotic logistic
map,

xt+1 = 4xt (1 − xt ), xt ∈ [0, 1], (15)

that generates chaotic trajectories with λMLE = ln 2 ≈ 0.693.
Using the dictionary trick, from a signal extracted from
Eq. (15) we generate a temporal network trajectory S of
|S| = 3000 network snapshots. In this validation, networks
have n = 500 nodes and m = 2000 edges.

For illustration, in Fig. 3(a) we plot in semilog scales the
(properly normalized) distance dk as a function of the iteration
index k, for two initially close network trajectories sampled
from S . We can see an initial exponentially expanding phase
(whose exponent is an estimation of �) followed by a satura-
tion, although the distance function shows strong fluctuations.
To cope with these, in Fig. 3(b) we plot the volume-averaged
expansion 〈dk〉volume vs k for a ball of radius ε = 0.005 cen-
tered at a specific initial graph from S . We can now clearly
see the initial exponential phase followed by a crossover to
a saturation phase. The crossover marks the saturation time
τ where the distance reaches the attractor size. Note that the
slope of the exponential expansion (i.e., the estimate of �) is
close to ln 2, the true MLE.

Figure 4 shows the estimation of the nMLE obtained
both using Wolf’s approach [Fig. 4(a)] and Kantz’s ap-
proach [Fig. 4(b)]. These are from averaging � (Wolf) and
� (Kantz) over w = 500 initial graph conditions sampled
from S . In both cases, the average quickly stabilizes for w ≈
100, and for w = 500 we obtain estimates λW

nMLE ≈ 0.681
and λK

nMLE ≈ 0.69, very close to the ground true λMLE =
ln 2 ≈ 0.693.

Such behavior is different from the one observed for i.i.d.
sequences: we make this explicit comparison in Fig. 5, finding
that purely chaotic and purely uncorrelated noise are easy to
distinguish.
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FIG. 4. (a) Approximation to λW
nMLE following Wolf’s approach (see text), computed by averaging � over w randomly sampled initial

conditions [Eq. (6)], as a function of w. We can see that the exponent converges to the ground true exponent ln 2 as w increases. Inset in (a):
Probability distribution P(�), sampled by estimating � for w = 500 different initial graph conditions sampled randomly from S. The mean of
this empirical distribution is λW

nMLE = 〈�〉At ≈ 0.681, very close to the true exponent ln 2 ≈ 0.693. (b) Same as (a), but using Kantz’s approach
(see the text), where we compute the volume and trajectory averaged expansion rate � for w initial conditions. We find λK

nMLE = 〈�〉At ≈ 0.69.
Convergence properties are similar in both cases, with slightly better results for the Kantz version, as expected.

C. Noisy chaotic networks

To explore how noise contamination can complicate the
estimation of the nMLE, we proceed to generate a temporal
network S from Eq. (15) by using the dictionary trick, where
before the network mapping, the original chaotic signal is
contaminated by a certain amount of white Gaussian noise
N (0, σ 2).5 As we did in Sec. III, we remove potential al-
gorithmic biases by discarding 〈d0〉 for the computation of
�. Results are summarized in Fig. 6. The main observation
is that noise pollution tends to reduce the extent of the ex-
ponential phase (i.e., the saturation time τ decreases). For
small amounts of noise, this phase is still observable, and the
estimated nMLE continues to be consistent with that of the
noise-free case. When the noise intensity is above a certain
threshold, noise effectively hides the chaotic signal, and the
exponential phase can no longer be identified, resulting in an
apparent vanishing nMLE. These results are consistent with
intuition and with the typical phenomenology observed in
noisy chaotic time series [9,11].

D. Results for the parametric logistic map

Here we consider the logistic map xt+1 = rxt (1 − xt ), x ∈
[0, 1]. For each value of the parameter r∞ < r < 4, where
r∞ ≈ 3.569945672 . . . is the so-called accumulation point of
the map, using the dictionary trick we generate a long se-
quence of networks Sr with the desired chaoticity properties,
and proceed to estimate the network Lyapunov exponent using
the method detailed in Sec. II. In Fig. 7(a) we plot λW

nMLE vs
λMLE of the map, for a range of values of the parameter r. The
agreement is excellent in the region of parameters where the
temporal network is chaotic.

5Note that we discard realizations of the noise that take the scalar
variable outside the unit interval.

E. A note on negative Lyapunov exponents

The classical approach to estimate the MLE from a single
trajectory displayed by Wolf and Kantz algorithms—based on
recurrences of the trajectory—is, by construction, unable to
capture negative MLEs. The reason is straightforward: once
in the periodic attractor, the trajectory sequentially visits each
element of the periodic orbit, and thus we will not find re-
currences that are close but away from the initial condition
of interest. Accordingly, our method to estimate nMLE can-
not work in that case for the same reasons, as confirmed in
Fig. 7(a). This drawback can be solved using two alternative
approaches.

First, it is well known that a periodic time series has an
autocorrelation function that peaks at the period of the time
series. Interestingly, a recent work [8] has operationalized
a way to estimate the autocorrelation function of temporal
networks, whereby temporal networks that display periodicity
are well characterized by a network version of the autocorre-
lation function. Accordingly, from a practical point of view,
before attempting to estimate the nMLE of a given temporal
network, it is sensible to apply the procedure of Ref. [8] and
exclude that the temporal network is periodic, which would
typically6 mean a negative nMLE. Once this test is done, it is
sensible to conduct the nMLE analysis presented in this paper.

Second, it is indeed possible to estimate negative nMLEs if
one has access to the latent GDS, as in this case one does not
need to undergo a Wolf-Kantz approach and one can generate
through the GDS temporal networks from close initial graph
conditions. To illustrate this, in Fig. 7(b) we plot the graph
distance of two initially close networks evolving according
to the logistic map for a value of the map’s parameter for
which the orbit is periodic (the TNs are again generated via

6Some pathological cases exist for which we can have seemingly
periodic behavior but not a negative MLE, e.g., when we have a
disconnected attractor composed of several bands and a trajectory
that periodically visits the different chaotic bands.
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FIG. 5. (a) Comparison of the volume-averaged distance 〈dk〉volume as a function of time k, for the chaotic network trajectory of Fig. 3
(black dots) and for an i.i.d. Erdos-Renyi network trajectory of the same size (purple diamonds). To make curves comparable, for the i.i.d. case
we generated a sequence of ER networks with the same number of nodes and p = 0.016, and the distance in the i.i.d. case is normalized over
the largest distance found in the i.i.d. sequence. The chaotic case shows an exponential expansion while the i.i.d. case shows a flat expansion.
(b) P(�) for both cases (we use τ = 1 for the i.i.d. case), showing that for i.i.d. the distribution P(�) is clearly peaked at zero, and for the
chaotic case the distribution is peaked close to ln 2.

the dictionary trick). One initial condition is set at one of the
orbit elements, whereas the other initial condition is a network
close in graph space (but outside the periodic attractor). As
we can see, there is an exponential shrinking of the initial
distance, and the slope gives an estimate of the nMLE, which
in this case is negative and in good agreement with the theo-
retical result.

V. HIGH-DIMENSIONAL CHAOTIC NETWORKS

We now consider the case of high-dimensional chaotic
dynamics for temporal networks. We first introduce a gen-
erative model, based on coupled map lattices (CML). These
are high-dimensional dynamical systems with discrete time
and continuous state variables, widely used to model complex
spatio-temporal dynamics [17] in disparate contexts such as

FIG. 6. Volume-averaged distance 〈dk〉volume as a function of time
k, for a network dynamics evolving according to a chaotic logis-
tic map xt+1 = 4xt (1 − xt ), polluted with extrinsic Gaussian noise
N (0, σ 2) as described in the text, for four different noise intensities
σ = 0, 10−3, 10−2, 10−1. The exponential expansion phase—which
systematically suggests the same exponent ln 2, as expected—is
gradually erased as the noise intensity increases.

turbulence [18,19], financial markets [20], biological systems
[21], or quantum field theories [22].

Globally coupled maps (GCMs) [23] are a mean-field
version of CMLs, where the diffusive coupling between the
entities in a CML is replaced with an all-to-all coupling,
mimicking the effect of a mean field. We consider a globally
coupled map of m entities of the form

xi(t + 1) = (1 − α)F [xi(t )]

+ α

m

m∑
j=1

F [x j (t )], i = 1, 2, . . . , m, (16)

where F (x) = 4x(1 − x), x ∈ [0, 1], where α ∈ [0, 1] is the
strength of the mean-field coupling. In the uncoupled case
α = 0, the system is composed of m independent fully chaotic
dynamics. Its attractor is thus high dimensional, and since
there are m Lyapunov exponents all equal to ln 2, we have
λMLE = ln 2.

At the other extreme, for complete coupling α = 1, the
system is fully synchronized [i.e., for any time t we have
xi(t ) = x j (t ) for all i, j], and the dynamics is reduced to the
one-dimensional dynamics, again with λMLE = ln 2. We add
that complete synchronization is in fact known to occur for
α > 1/2 [23].

For intermediate coupling, the system shows several dif-
ferent macroscopic phases [23]. Among these one finds
high-dimensional chaos for weak coupling α < 0.2. This is
the so-called “turbulent state.” Interestingly, for CMLs with
diffusive coupling, a scaling law has been established [24],

λMLE = log 2 − βα1/p, (17)

where p indicates the type of nonlinearity of F (x), i.e., p = 2
for the logistic map, p = 1 for tent maps, etc. Results for
GCMs are less clear. However, when the mean-field cou-
pling can be considered “thermalized” (i.e., independent of x)
[25,26], then Eq. (17) holds for β = 1. However, such ther-
malization is known to be true only for tent maps (p = 1) and
not logistic maps.
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FIG. 7. (a) Scatter plot of λW
nMLE, estimated from a temporal network Sr generated via the dictionary trick (see the text) from a logistic map

xt+1 = rxt (1 − xt ) for a range of values of r, vs the ground true λMLE. The solid line is the diagonal of perfect agreement y = x, highlighting
the good agreement found in the chaotic region. The legend states the goodness of fit metric R2 of the fit of dk to an exponential function. The
method is unable to capture negative Lyapunov exponents (observe that in those cases the R2 of the exponential fit is very bad), but these cases
can easily be identified as periodic orbits using the autocorrelation function [8], see text for details. (b) Estimate of the negative nMLE using
two initially close temporal networks generated via the dictionary trick from the logistic map at r = 3.4 (period 2 orbit), where one initial
condition belongs to the period 2 attractor and the other is outside the attractor (see the text for details).

Here we consider the range α ∈ [0, 0.2], i.e., the turbulent
state of the GCM. We interpret the collection {xi}m

i=1 as the
(weighted) edge set of a fully connected undirected network
backbone of n nodes and m = n(n − 1)/2 edges. Once the
time series of each edge {xi(t )}T

t=1 has been computed from
Eq. (16), we proceed to binarize each edge activity by using
a two-symbol generating partition as follows: values xi(t ) <

1/2 are mapped onto the symbol 0, and xi(t ) � 1/2 onto the
symbol 1 [27]. Note that the use of a generating partition en-
sures that the symbolized (binary) series preserves the chaotic
properties of the original signal [28–30]. Finally, we convert
the (binary) evolution of the edges into a time-dependent
adjacency matrix, thereby constructing a temporal network S .
For values of α in the weak-coupling regime, we expect the
temporal network to display sensitive dependence on initial
conditions.

In practice, the Wolf-Kantz methods of inferring the largest
Lyapunov exponent proposed in the paper would require a
very long sequence S for close enough recurrences to be
observable in a system with large n. However, here we have
access to the actual underlying GDS via Eq. (16). Given
that the goal of this section is to show evidence that high-
dimensional chaotic networks can be generated and their
nMLE estimated, we can use the GDS to generate the tempo-
ral network for any required initial condition. Accordingly, for
a given initial condition {xi(0)}m

i=1, we construct a perturbed
copy {x′

i (0)}m
i=1 (where |x′

i (0) − xi(0)| < ε for some small
choice of ε), generate temporal networks for both of these
initial conditions, and track the network distance between the
copies over time. We do this for 100 replicas to extract a
volume-averaged distance, and then for 50 different initial
conditions. Observe that, at odds with the model developed
in the previous section, here the number of edges in each net-
work snapshot is not fixed, and thus the network phase space is
substantially larger. Similarly, the normalization factor of the
distance function is now simply the total number of possible
edges, n(n − 1)/2.

Results for a network of n = 100 nodes are shown in Fig. 8.
In Fig. 8(a) we plot 〈dk〉volume vs time k, for three different cou-
pling constants α = 0, 0.05, 0.1 in the weak coupling regime.
In every case we find a clear exponential phase. The exponent
in the uncoupled phase α = 0 is indeed equal to ln 2, as ex-
pected, further validating the method. For increasing values of
the coupling, interestingly, the nMLE seems to decrease and,
as a byproduct, the saturation time τ increases. In Fig. 8(b)
we plot, as blue dots, the estimated λnMLE as a function of the
coupling α ∈ [0, 0.2], indeed showing a clear decrease. Such
a decrease might be induced by the fact that the m degrees of
freedom are now coupled in some nontrivial way. Blue lines
correspond to the theoretical predictions for logistic and tent
CMLs obtained from Eq. (17). For completeness, we repeated
the same analysis for network GCMs constructed from tent
maps where λMLE is explicitly known (black line): F (x) =
1 − 2|x|, with x ∈ [−1, 1] and a symbolization partition with
x < 0 mapped to the symbol 0 and x � 0 mapped to 1. Results
for this case are plotted as black squares in Fig. 8(b).

We conclude that (i) the TN thereby generated exhibits
high-dimensional chaos and its nMLE, reconstructed with the
methods we have developed, shows the expected behavior,
and (ii) this validation shows that the method works with TNs
where not only the position but also the total number of edges
itself fluctuates over time.

VI. DISCUSSION

In this work, we propose to look at temporal networks
as trajectories of a latent GDS. This interpretation naturally
leads us to explore whether these trajectories can show sensi-
tive dependence on initial conditions, a fingerprint of chaotic
behavior. We have proposed a method to quantify this, and
defined and computed the nMLE for temporal networks.
Since the latent GDS is rarely available in practice, our al-
gorithm exploits the recurrences of the temporal network in
graph space. It generalizes the classical approaches of Wolf
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FIG. 8. (a) Semilog plot of the volume-averaged distance 〈dk〉volume as a function of the time step k, for a temporal network extracted
from the GCM model with coupling constant α = 0, 0.05, 0.1. We observe an exponential phase, with different exponents for each value of
the coupling constant. The solid lines are the best exponential fits. (b) Estimate of the network maximum Lyapunov exponent λnMLE vs the
coupling constant α for temporal networks generated from a GCM of logistic maps (blue circles) and tent maps (black squares). For each α,
a total of 50 initial conditions were considered, and a ball of 100 points for each initial condition was used. Error bars are standard deviations
from the average over 50 different temporal network realizations. Blue lines report the theoretical predictions for logistic and tent CMLs
[Eq. (17)], whereas the black line reports the theoretical prediction for GCM with a thermalized mean field, applicable for tent GCMs only.

and Kantz to networks. We have validated the method by
generating different synthetic GDS with known ground-truth
nMLE. Python implementations of all algorithms and bench-
marks can be accessed from the Github repository [31].

Conceptually speaking, quantifying chaos in the trajectory
of structured objects (in our case, mathematical graphs) is
somewhat close in spirit to quantifying the dynamical stability
of (lattice) spin systems. Thus, our approach shares some
similarities with the damage-spreading [32] and self-overlap
methods [33] in statistical physics, and their applications to
cellular automata [34] and random Boolean systems [35]. At
the same time, in nonlinear dynamics it is well known that the
MLE is a measure of the (lack of) long-term predictability of a
dynamical system. For instance, 1/λMLE is sometimes referred
to as the Lyapunov time, i.e., the short time window where
some predictability is possible. Our extension of the MLE
to the network realm thus opens the possibility of assessing
the predictability limit of a temporal network, something of
interest for network forecasting [36].

We now briefly discuss some open problems and avenues
for further research. First, observe that we have focused on
exponential expansion on nearby conditions, i.e., sensitive
dependence, since one of the goals of the paper is to con-
ceptually postulate the existence of chaotic networks and to
potentially operationalize a way to measure this determinis-
tic fingerprint in observed TNs, without needing to having
access to the underlying GDS. However, our approach can
be straightforwardly extended to nonexponential divergence,
e.g., algebraic or otherwise, simply by suitably modifying the
definition of expansion rates, thus yielding a way to quantify
other types of dynamical instability.

Second, the rationale of this work is to consider graphs
evolving over time as whole—yet not punctual—objects [8],
and thus consider their evolution in graph space. It is, how-
ever, true that this approach might have a limitation for (large)
real-world temporal networks, as it is often difficult to observe
recurrences in high-dimensional space. A possible solution is

to extract suitable scalar variables from the network, analyze
sensitive dependence on initial conditions in each of them, and
extract a consensus. We leave this approach for future work.

Third, note that in this paper we concentrate on the MLE,
which as mentioned before provides coarse-grained informa-
tion on the long-term behavior and predictability of network
trajectories. An interesting problem for further research is
the quantification of the full Lyapunov spectrum, beyond the
maximum one. This problem is nontrivial as in principle there
are as many as m degrees of freedom, one per link.

Fourth, observe that throughout this work we have consid-
ered labeled networks. This choice was used for convenience
and illustration, and because most real-world TNs are usually
labeled. We expect that a similar approach is also possible for
unlabeled TNs, i.e., graphs that evolve over time according
to a certain graph dynamics. In this latter case, each network
snapshot is no longer uniquely represented by a single adja-
cency matrix, in the sense that permutations of the rows and
columns of the matrix lead to an equally valid description. It
is then clear that one needs to use graph distances showing
invariance under permutation of rows and columns in the
adjacency matrices [37]. This could be, for example, distances
based on the network spectrum, or graph kernels [38].

Finally, we would like to add that the fact that the method
does not rely on knowing the GDS and instead directly
estimates the nMLE from temporal network trajectories en-
ables the investigation of these matters in empirical temporal
networks. We foresee a range of potentially interesting appli-
cations in physical, biological, economic, and social sciences,
as indeed temporal networks pervade these disciplines. This
approach is especially appealing in those systems where we do
not have access to the “equations of motion” but it is sensible
to expect some underlying deterministic dynamics, i.e., phys-
ical systems, but the approach is also extensible to systems
with social or biologically mediated interactions. To mention
some examples, one interesting avenue of research is the anal-
ysis of functional brain networks (EEG) and their evolution
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over time for different subjects and patients with a diagnosed
condition. Similarly, one can investigate whether flocks of
birds [39–41] or crowd behavior [42], adequately modeled as
temporal proximity networks, show sensitive dependence on
initial conditions, and whether one can accordingly define a
predictability window.
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APPENDIX: GRAPH DISTANCES

Consider two adjacency matrices A and B, each with binary
entries (0 or 1), describing two simple unweighted graphs with
n nodes. The so-called edit distance [15] is a matrix distance
defined as

d (A, B) =
n∑

i, j=1

|ai j − bi j |. (A1)

The object d (A, B) counts the number of entries that are dif-
ferent in A and B.

For simple undirected graphs (symmetric adjacency ma-
trices), we need to account for the fact that the number of
edges is only half the number of positive entries of the adja-
cency matrix, and therefore d (A, B)/2 measures the number
of edges that exist in one graph but not on the other. We

have d (A, B)/2 = 0 if and only if A = B. It is also easy to
see that d (A, B)/2 only takes integer values for symmetric
adjacency matrices A and B. If A �= B, then 1 � d (A, B)/2 �
n(n − 1)/2. We have d (A, B)/2 = 1 when the two graphs are
identical except for one edge, which is present in one graph
and absent in the other.

One can directly use this unnormalized distance (as we do
in Sec. III) or subsequently normalize d (A, B) using different
strategies, e.g., one can divide it over n(n − 1)/2 (as we do in
Sec. V), or just divide over the maximum possible distance if
further restrictions are imposed between A and B (as we do in
Sec. IV).

If we further impose that both graphs have the same num-
ber of edges, then the lower bound cannot be attained and
2 � d (A, B)/2 when A �= B. This lower bound is reached
when we only need a single edge rewiring to get from the first
graph to the second. One can thus define the rewiring distance

d (A, B) = 1

4

n∑
i, j=1

|ai j − bi j | (A2)

applicable for simple graphs (i.e., no self-links). This quantity
measures the total number of rewirings needed to transform
A into B when the associated graphs are simple, unweighted,
undirected (symmetric adjacency matrices), and have the
same number of nodes and edges.

The rewiring distance above is based on the concept of
nonoverlapping edges, i.e., edges that are present in one graph,
but not in the other. Thus, the edit and rewiring distances are
based on |ai j − bi j | for the different edges, and hence assign
the same importance to the presence or absence of an edge.
One can instead construct measures of distance based on the
number of links that are present in both networks. If the edge
i j is present in both graphs then ai jbi j = 1, while this product
is zero otherwise. One can prove that the following function
is a distance [43]:

d (A, B) = 1 − 1

2|E |
n∑

i, j=1

ai jbi j . (A3)

We replicated the analysis in Sec. IV for the distance defined
above and the results (resulting nMLE) are the same.
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