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The network density matrix formalism allows for describing the dynamics of information on top of complex
structures and it has been successfully used to analyze, e.g., a system’s robustness, perturbations, coarse-graining
multilayer networks, characterization of emergent network states, and performing multiscale analysis. However,
this framework is usually limited to diffusion dynamics on undirected networks. Here, to overcome some
limitations, we propose an approach to derive density matrices based on dynamical systems and information
theory, which allows for encapsulating a much wider range of linear and nonlinear dynamics and richer classes
of structure, such as directed and signed ones. We use our framework to study the response to local stochastic
perturbations of synthetic and empirical networks, including neural systems consisting of excitatory and in-
hibitory links and gene-regulatory interactions. Our findings demonstrate that topological complexity does not
necessarily lead to functional diversity, i.e., the complex and heterogeneous response to stimuli or perturbations.
Instead, functional diversity is a genuine emergent property which cannot be deduced from the knowledge of
topological features such as heterogeneity, modularity, the presence of asymmetries, and dynamical properties
of a system.
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I. INTRODUCTION

Originally, density matrices were introduced to represent
quantum systems in terms of probabilities of physical states
and their quantum correlations [1]. Since then, different at-
tempts have been made to extend density matrices to classical
complex systems [2–6] to capture the properties of intercon-
nected nodes and their correlations in a unifying framework.
The density matrix capturing the statistical physics of com-
plex information dynamics has found applications in, e.g.,
centrality and robustness analysis [7,8], identification of func-
tional modules [9], classification of networks [5,10–12] (for a
recent review, see Ref. [13]), network phase transitions [14],
and renormalization group theory [15].

One reason for the broad applicability of this framework
is that it is not limited to structural analysis, i.e., it is not
determined by the mere adjacency matrix but instead it gives
insight into the nontrivial coupling between the structure and
dynamical processes [16–24], and allows one to study the
statistics of perturbation propagation at different scales (short
to long range). More technically, to derive the density matrix,
one solves a linear equation governed by a control operator
Ĥ that describes the dynamics of a field on top of the net-
work, leading to a time-evolution matrix Ĝτ = e−τ Ĥ whose
elements encode the flow of the field between the nodes,
with τ a fixed parameter encoding the propagation scale. The
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density matrix is obtained by normalizing the propagator by
its trace, providing an ensemble that describes the statistics
of the information dynamics on top of the system at the
given propagation scale. However, for non-Hermitian control
operators Ĥ �= Ĥ†, where Ĥ† is the complex conjugate of Ĥ,
the probabilistic interpretation of the ensemble is difficult to
reach, due to the presence of complex numbers in the spec-
trum. This limitation rules out a range of interesting systems
with nonsymmetric structure and dynamics such as reaction
diffusion and synchronization. Furthermore, the framework
assumes that the propagation starts from one of the nodes and
assigns equal probabilities of being perturbed to each of them.
While many complex systems exhibit heterogeneity beyond
such assumptions, e.g., in the connectome, the propagation
of signals is more likely to start from sensory areas and less
likely from the ones that process the sensory information [25].
Here we provide a different formulation of density matrices,
from the point of view of information theory, that completely
resolves the aforementioned issues and greatly expands the
range of applicability of the framework to nonlinear dynam-
ics, including neural networks, gene-regulatory interactions,
and epidemics, even on top of directed and signed networks.

As an application, we focus on the functional diversity of
biological systems and its fragility under structural damage.
Functional diversity determines the range of possible dynamic
responses of the system to the environment or its parts and, as
previously shown [6], can be quantified by using the von Neu-
mann entropy of the density matrix. For this reason, we couple
a range of synthetic and empirical networks with dynamical
processes including neural and gene-regulatory systems, cal-
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culate how perturbations of the steady state propagate into
the system in each case, and calculate the diversity of such
propagation patterns in terms of the von Neumann entropy.
Interestingly, our finding clearly shows that functional diver-
sity is an emergent property, which cannot be deduced from
the knowledge of structural properties or dynamical rules of
a system. The fact that at some propagation scales and for
some dynamical configurations a random network provides
the highest functional diversity challenges the widely ac-
cepted assumption that a more complex topology guarantees a
wider repertoire of responses to internal and external stimuli.

II. NETWORK DENSITY MATRICES

The coupling between networks and dynamical processes
gives rise to the complex information dynamics observed in
a multitude of biological systems. To model it and quantify
its complexity, a field can be assumed on top of the network
whose dynamics is governed by a linear differential equa-
tion with a control operator Ĥ whose eigenvalues are denoted
by λ� (� = 1, 2, . . . , N). The solution of such an equation is
governed by a time-evolution operator Ĝτ = e−τ Ĥ, where τ

is the temporal parameter encoding the signal propagation
scale. Eigendecomposition of the time-evolution operator Ĝτ

gives a set of stream operators {σ̂�(τ )}, i.e., identified by the
outer product of the left and right eigenvectors of Ĝτ , guid-
ing the flow of information, weighted by their contribution
to the flow e−τλ� , which is the �th eigenvalue of Ĝτ . Using
this information, it is possible to find a statistical description
of the system through a procedure similar to quantum sta-
tistical mechanics (see the Appendixes). The summation of
the contributions defines the partition function of the system
Zτ = ∑N

�=1 e−τλ� and the density matrix follows ρ̂τ = Ĝτ /Zτ .
Despite the success in analyzing a range of complex systems,
this approach is limited for two reasons. First, the eigenvalues
of a valid network density matrix ρ�(τ ) = e−τλ�/Zτ are ex-
pected to be positive to encode the probabilities of activation
of streams, requiring the control operator Ĥ to be Hermitian,
ruling out a broad range of dynamical processes and limiting
the analysis to diffusion dynamics on top of undirected and
unsigned networks. Second, and related to the first point,
the spectrum of Ĥ must guarantee that metrics such as von
Neumann entropy and the partition function derived from the
density matrix are real and positive. As we show here, using
mathematical treatments under specific conditions, the latter
condition is satisfied for a wider variety of control operators
(see the Appendixes). However, the first limitation presents a
serious challenge, as a statistical ensemble having imaginary
or negative probabilities is, in this case, difficult to interpret
from a physical perspective.

III. GENERALIZED NETWORK DENSITY MATRICES

In the same spirit as the original density matrix formu-
lation, we view the propagation of perturbations through a
complex network as a model of information flow. However,
here we use signal processing to understand how the system’s
units communicate with each other. Accordingly, we build a
density matrix that not only allows for considering linear dy-
namics with Hermitian and non-Hermitian control operators,

but extends the applicability to nonlinear dynamics, far from
the steady state. To this aim, we indicate the initial state of the
field by |ψ〉, with 〈i|ψ〉 indicating its value on top of node i
being a complex number. The initial state can represent any
arbitrary distribution, e.g., steady state ∂τ |ψ〉 = 0, the zero
state |ψ〉 = 0, etc. We assume a local perturbation of size 	i

on top of an arbitrary node i, shifting the initial state by 	i|i〉.
Here the initial state would be updated to |ψ (i)

0 〉 = |ψ〉 +
	i|i〉, where the perturbation vector is given by|	ψ

(i)
0 〉 =

|ψ (i)
0 〉 − |ψ〉 = 	i|i〉. Note that the perturbation can occur on

top of multiple nodes simultaneously. For instance, assuming
a set of nodes ζ = {i, j, k} on top of them, we can have
the perturbations with sizes {	i,	 j,	k} and the initial state
would be updated to |ψ (ζ )

0 〉 = |ψ〉 + 	i|i〉 + 	 j | j〉 + 	k|k〉.
However, we focus on perturbations on top of single nodes
for simplicity. Depending on the specific dynamical rules
of the system, the initial vector will evolve to |ψ (i)

τ 〉, with
the parameter τ indicating the temporal propagation scale of
the signal and the upper index (i) denoting that the location of
the perturbation is on top of node i. Note that this derivation is
valid for any type of dynamical evolution. The perturbation
propagation vector is |	ψ (i)

τ 〉 = |ψ (i)
τ 〉 − |ψ〉 and the prop-

agation of perturbations from node i to node j is given by
〈 j|	ψ (i)

τ 〉, at the propagation scale τ . The vector |	ψ (i)
τ 〉 can

be seen as the system’s response to a perturbation at the site i.
As mentioned above, propagation of perturbations from

one node to another acts as a proxy for their information
exchange, suggesting an interpretation based on classical sig-
nal processing [26]: The signal amplitude from node i to the
node j is 〈 j|	ψ (i)

τ 〉 and the signal energy on top of node
j reads 〈 j|	ψ (i)

τ 〉〈	ψ (i)
τ | j〉 = ||〈 j|	ψ (i)

τ 〉||2. Propagation of
perturbations from node i (or alternatively a set of nodes)
can also be encoded in local propagators given by the outer
product of propagation vector and its complex conjugate

Û(i)
τ = ∣∣	ψ (i)

τ

〉〈
	ψ (i)

τ

∣∣, (1)

where the jth diagonal element 〈 j|Û(i)
τ | j〉 gives the signal

energy on top of node j, received from node i at τ . Also,
the jk off-diagonal element 〈 j|Û(i)

τ |k〉 encodes the covariance
between nodes j and k in receiving signal amplitudes from
i. Note that this notion of energy, borrowed from communi-
cation science and engineering, is compatible with physical
energy in specific systems, e.g., the energy of electromagnetic
waves traveling between the nodes of a specific telecommu-
nication network is related to the second power of absolute
value of wave amplitude, and totally different in others, e.g.,
traveling electrochemical signals in the human brain.

Often it is hard to precisely predict the location of
perturbations. Therefore, we assume a distribution pi (i =
1, 2, , . . . , N) describing the probability of having a pertur-
bation at each node. Consequently, the system’s perturbation
propagation matrix can be encoded by a statistical propagator

Ûτ =
∑

i

piÛ(i)
τ , (2)

where the jth diagonal element 〈 j|Ûτ | j〉 = ∑
i pi〈 j|Û(i)

τ | j〉
gives the expected signal energy on top of node j and the
jk off-diagonal element gives 〈 j|Ûτ |k〉 = ∑

i pi〈 j|Û(i)
τ |k〉, the

expected covariance between nodes j and k. From the sta-
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FIG. 1. Density matrix as a superposition of perturbed states.
A simple network of five nodes is considered here. A hypotheti-
cal discrete type of dynamics has been assumed for perturbation
propagation, where a red circle means that the node is affected by
the perturbation and a red link indicates that the link has carried
the perturbation between two nodes. Each network depicted shows
the system’s response to a perturbation starting from a certain lo-
cation and covering a specific propagation scale τ . Fixing τ , the
density matrix encodes the average system’s response to stochastic
perturbations, i.e., perturbations in different localities with certain
probabilities.

tistical propagator, it is straightforward to obtain the density
matrix. Here the trace of the statistical propagator plays the
role of the partition function giving the total expected signal
energy in the system Zτ = Tr(Ûτ ) = ∑

i, j pi〈 j|Û(i)
τ | j〉 and can

be used to normalize the statistical propagator, fixing the ex-
pected signal energy in the system to be one unit. Therefore,
the density matrix gives the statistics of the system, e.g.,
expected covariance between nodes, signal distribution, and
average response diversity, for one unit of signal energy (see
Fig. 1)

ρ̂τ = Ûτ

Zτ

. (3)

In contrast with the statistical propagator, the diagonal
elements of the density matrix admit a probabilistic interpre-
tation. For instance, the ith diagonal element 〈i|ρ̂τ |i〉 is the
probability of finding one unit of signal energy on top of
node i. It is important to note that with our approach, based
on the summation of the outer product of vectors with them-
selves, this formulation of density matrix is always positive
semidefinite, regardless of the dynamics and the features of
the underlying network. Furthermore, the weighted summa-
tion of local propagators gives high explanatory power to
the density matrix, describing the statistics of the systems’
response to stochastic perturbations happening at different
sites. The diversity of the response to perturbations (see
Fig. 2), which, similarly to previous works [6,9,11], can
be quantified in terms of the von Neumann entropy Sτ =
−Tr(ρ̂τ log ρ̂τ ) (the logarithms are in the natural basis (e)),
tends to be high when the perturbed states are distinct and di-
verse and the surprise, i.e., number of bits required to describe

the system’s response to perturbations quantified by the von
Neumann entropy, in observing a response to perturbation is
high (see Figs. 1 and 2).

Note that in our formulation, the field is not required to be
positive and real and it can have negative or imaginary val-
ues. However, remarkably, this approach is in agreement with
the original formulation if the control operator is Hermitian
Ĥ = Ĥ† (see the Appendixes). We report control operators
for (i) a number of linear dynamical processes, including
diffusion, discrete and continuous random walks, graph walks,
and consensus dynamics (see Table I), and (ii) a number
of dynamics linearized close to steady state, including bio-
chemical, birth-death, regulatory, epidemics, synchronization,
mutualistic, neuronal, and voter models (see Table II).

In the absence of further information, we assume that the
probability of node perturbation is uniform pi = 1/N and the
dynamical equation is continuous and linear (or linearized)
∂τ |ψτ 〉 = −Ĥ|ψτ 〉. This leads to a specific case solution of
the formalism with the statistical propagator of the form Ûτ =
Ĝτ Ĝ†

τ = e−τ Ĥe−τ Ĥ†
.

Similarly, the discrete types of dynamics |ψτ+1〉 = Ĥ|ψτ 〉
give the discrete time-evolution operator Ĝτ = Ĥτ , with τ

taking only non-negative integers and the control operator Ĥ
being a transition matrix. Here, with the assumption of uni-
formity, the statistical propagator reads Ûτ = Ĝτ Ĝ†

τ = Ĥτ Ĥτ†

(for more details, see the Appendixes).
Note that in this paper we follow the same assumption

of uniformity, given the lack of empirical data on the dis-
tribution of environmental perturbations. However, a more
detailed analysis of systems’ macroscopic properties given
complementary data is required.

IV. SYNTHETIC NETWORK ANALYSIS

Here we first study three different dynamics that could not
be considered within the previous perspective, including dis-
crete random walks (RWs), susceptible-infectious-susceptible
(SIS) epidemic spreading, and the large-scale neuronal dy-
namics of brain regions (see Tables I and II). The set of
parameters we choose for the neuronal dynamics is {B =
3,C = 1, R = 2.5} with an initial state drawn from a Gaus-
sian distribution with xmean = 0 and xstd = 1/N . Similarly,
the SIS parameters are given by {B = 1, R = 1

10 } to keep it
below the critical threshold of spreading, and the initial state
is also drawn from a Gaussian distribution with xmean = 1

10
and xstd = 1/N . The dynamics is run on top of three different
types of static networks with N = 150, including an Erdős-
Rényi (ER) network with connectivity probability of 0.05, a
stochastic block model (SBM) with five modules where the
intracommunity probability of connection is 0.015 and the
intercommunity probability is 0.4, and a Barabási-Albert (BA)
network with m = 6. The choice of parameters keeps the av-
erage degree 〈k〉 ≈ 7.8 for all network types and realizations,
to make them more comparable; other average degrees can be
used as well. Note that for neural dynamics, in accordance
with other studies [28], we randomly assign positive and
negative weights to the edges of the network drawn from a
Gaussian distribution with Amean = 0 and Astd = 10/N , which
allows for having both excitatory and inhibitory interactions
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FIG. 2. Signal propagation on static networks: coupling structure and dynamics. We show the density matrices for different synthetic
systems, with structures given by the Erdős-Rényi, Barabási-Albert, and stochastic block models and different dynamics: neural, SIS epidemics,
and discrete random walk. The diagonal elements encode the signal energy on top of the nodes and the off-diagonal elements are the node-node
covariance that can take positive or negative values depending on the dynamics and whether the structure is signed. Note that the diagonal
elements are typically much larger than off-diagonal ones. Therefore, for clarity, the maximum value of the color spectrum of each heatmap
corresponds to 10% of the maximum value of the density matrix.

between the nodes and making the underlying network non-
symmetric (directed). Similarly, we analyze other choices of
mean value (Amean = 0, 0.01, 0.1) later, in the analysis of
functional diversity. To find the linear response to perturbation
in neural dynamics, we assume a random initial condition
taken from Gaussian distributions with a mean value of 0
and a standard deviation of 1/N and calculate its steady state
for each network. Similarly, for SIS epidemics, we assume
a random initial condition taken from Gaussian distributions
with a mean value of 0.1 and a standard deviation of 1/N and
calculate its steady state for each network. For both cases,
we calculate the Jacobian matrix −Ĥ (see the Appendixes)
according to Table II and calculate the statistical propagator

with pi = 1/N . For random-walk dynamics, as the master
equation is linear, there is no need for linearization. Conse-
quently, we derive the density matrices for all three dynamics
on top of the three synthetic networks (see Fig. 1). Also, to
study their functional diversity, we calculate the von Neumann
entropy for ten realizations of each of these three cases and
report the average value and the variance (see Fig. 3).

V. BIOLOGICAL SYSTEMS

We consider the structure of the nervous system of the
nematode Caenorhabditis elegans [29,30] with N = 297
nodes and an average degree of 〈k〉 = 7.94. This network is

TABLE I. Diffusive processes on complex networks. Let the adjacency matrix be Â encoding the connections between every two nodes i
and j as 〈 j|Â|i〉 and the degree diagonal matrix be K̂, whose i jth element is 〈 j|K̂|i〉 = kiδi j , with ki the degree of node i. Some linear dynamics
mentioned in the text are listed along with their statistical propagators.

Type Dynamical process Control operator Ĥ Propagator Ûτ

discrete graph walks Â 1
N Âm(Âm )†

discrete random walks K̂−1Â 1
N (K̂−1Â)m[(K̂−1Â)m]†

continuous diffusion K̂ − Â 1
N e−2τ (K̂−Â)

continuous continuous RW Î − K̂−1Â 1
N e−τ (Î−K̂−1Â)e−τ (Î−K̂−1Â)†

continuous consensus (Î − K̂−1Â)† 1
N e−τ (Î−K̂−1Â)†

e−τ (Î−K̂−1Â)

044304-4



GENERALIZED NETWORK DENSITY MATRICES FOR … PHYSICAL REVIEW E 107, 044304 (2023)

TABLE II. Linear and nonlinear dynamics on networks. Dynamical equations and their corresponding control operators are listed for
biochemical, birth-death, regulatory, epidemics, synchronization, mutualistic, neuronal, and voter dynamics near the steady state, each having
a number of constants that can be set according to Refs. [21–23,27].

Dynamics Equation Jacobian

biochemical ∂τ xi = F − Bxi − R
∑N

j=1 Ai jxix j −Bδik − R[δik
∑N

j=1 Ai jx∗
j + (1 − δik )Ai jx∗

i ]

birth-death ∂τ xi = −Bxb
i + R

∑N
j=1 Ai jxa

j −Bbx∗b−1
i δik + RaAikx∗a−1

k

regulatory ∂τ xi = −Bxa
i + R

∑N
j=1 Ai j

xh
j

1+xh
j

−Bax∗a−1
i δik + RAik

hx∗h−1
k

(1+x∗h
k )2

epidemics (SIS) ∂τ xi = −Bxi + R
∑N

j=1 Ai j (1 − xi )x j −Bδik + R[(1 − δik )Aik (1 − x∗
i ) − δik

∑N
j=1 Ai jx∗

j ]

synchronization ∂τ xi = wi + R
∑N

j=1 Ai j sin (x j − xi ) −Rδik
∑

j( �=i) Ai j cos (x∗
j − x∗

i ) + (1 − δik )RAik cos (x∗
k − x∗

i )

mutualistic ∂τ xi = Bxi(1 − xi ) + R
∑N

j=1 Ai jxi
xb

j

1+xb
j

B(1 − 2x∗
i )δik + R[δik

∑N
j=1 Ai j

x∗b
j

1+x∗b
j

+ (1 − δik )Aikxi
bx∗b−1

k
(1+x∗b

k )2 ]

neuronal ∂τ xi = −Bxi + C tanh xi + R
∑N

j=1 Ai j tanh x j [−B + C sech2(x∗
i )]δik + RAik sech2(x∗

k )

noisy voter ∂τ xi = A − Bxi + C
ki

∑N
j=1 Ai jx j δik (−B + C

ki
Aik ) + (1 − δik ) C

ki
Aik

FIG. 3. Response diversity to perturbations. We compare the functional diversity of different systems, with structures given by the ER
model, the BA model, and the stochastic block model and different dynamics: continuous diffusion, discrete random walk, SIS epidemics, and
neural. For neural dynamics, we assigned random negative and positive weights to links, drawn from a Gaussian distribution of mean values of
0, 0.01, and 0.1 and a standard deviation of 1/N . Generally, the SBM has an advantage in keeping the functional diversity at larger propagation
scales τ ; however, at smaller propagation scales, the best topological feature highly depends on the dynamics. For instance, in the case of SIS
dynamics, it seems that degree heterogeneity plays an important role at small-scale propagation. Conversely, the homogeneous distribution
of links in the ER model provides a more diverse response to perturbation if neural dynamics is considered and the network is dominated by
excitatory links, i.e., most weights are positive. This figure shows that by changing the propagation scale τ or the dynamical process, each
topological feature, e.g., randomness, modularity, heterogeneity, the presence of negative links, and asymmetries, can become advantageous
or disadvantageous for keeping the information flow diverse.

044304-5



ARSHAM GHAVASIEH AND MANLIO DE DOMENICO PHYSICAL REVIEW E 107, 044304 (2023)

weighted, with weights indicating the number of connections
between neurons, and directed, meaning that some of the con-
nections can be from one neuron to another in an asymmetric
way. To understand the effect of different topological features
of the neural system on its functional diversity, we compare it
with a number of null models. The ER null model contains the
same total weight, but each link with unit weight is connecting
a pair of randomly chosen nodes. This null model destroys
almost all complex features, most notably the heterogeneity
of degree distribution. Another null model of interest is the
configuration model (CM), where the degree (strength) dis-
tribution is kept, but the connections are randomized. It is
straightforward to obtain the adjacency of the CM from the
adjacency of the original network A as kik j/2m, where ki is
the strength of node i and m is the total strength of links.
Finally, to study the effect of directed connections on the
functional diversity, we generate the symmetric model, whose
adjacency is simply (A + A†)/2, keeping the total strength
and degree heterogeneity, while symmetrizing the asymmetric
connections.

Since, in contrast with macroscopic networks of brain ar-
eas, there is no local self-excitation in microscopic neural
networks like the C. elegans connectome, we remove the self-
excitation term (C = 0) in the equation governing neuronal
dynamics (see Table II), similarly to Ref. [28]. Also, we fix
one of the parameters B = 1 that encodes the self-inhibition
of neurons and study the dynamics for different values of
the interaction parameter R = 0.1, 1, 2. For each network, we
give a random initial condition taken from Gaussian distri-
butions with a mean value of 0.01 and a standard deviation
of 1/N and calculate its steady state for each network. From
here it is straightforward to calculate the Jacobian, which is
the negative of the control operator operators Ĥ, required to
calculate the functional diversity in terms of the von Neu-
mann entropy Sτ . In addition to the functional diversity, we
calculate the fragility of functional diversity, which is the
average change in the von Neumann entropy due to node
removals. For instance, assume node i is removed from the
network and the von Neumann entropy after removal of node
i changes by δS(i)

τ . It is worth noting that δS(i)
τ has been previ-

ously used as a multiscale centrality measure to devise attack
strategies, highly effective in dismantling structures and in-
formation dynamics, outperforming state-of-the-art methods
[7,8]. The average fragility of functional diversity is given

by |φτ | = 1
N

∑N
i=1 |δS(i)

τ |. We run 20 realizations of the above
procedure and report the average and variance of Sτ and
|φτ | in Fig. 4. Furthermore, the studies suggest that around
26% of links are inhibitory in the C. elegance network [31].
Fortunately, the framework is capable with a signed network
including negative and positive links, as shown in previous
sections. Therefore, we randomly select 26% of the overall
weights in the original and null model networks and multiply
them by −1 to turn them inhibitory and make an ensemble
of 20 realizations for each network. The average and variance
of the functional diversity and its fragility can be found in
Fig. 4.

Similarly, we analyze a network of malaria parasite genes
(HRV1) [32] with N = 307 nodes and an average degree of
〈k〉 ≈ 18.3. Since the network is undirected, the null model

networks against which we compare are limited to the ER
network and CM, generated as for C. elegans. We run a gene-
regulatory dynamics on top of these network (see Table II)
with initial conditions drawn from a Gaussian distribution
of mean 0.2 and standard deviation of 1/N and a range of
parameters (see Fig. 5) adopted from other studies [21,33].

VI. DISCUSSION

The original formulation of the network density matrix
[5,6,13] has been successful in describing the dynamics of
information on top of complex structures, enabling advanced
structural and functional robustness [7,8] and reducibility
[4,34] analysis, (dis)similarity assessment [5,10,11], and char-
acterization of criticality in networks [14] with potential
for machine learning methods. However, here we provide a
detailed discussion of the shortcomings of this framework,
mainly its limitation in the study of dynamics other than
diffusion and structures with asymmetries. To take another
step towards a better understanding of how complex systems
operate in terms of density matrices, we use information the-
ory and signal processing to extend the method’s applicability
to a much wider range of dynamics and classes of structure,
including directed and signed ones.

This framework considers stochastic perturbations at dif-
ferent locations in the system, propagating according to linear,
linearized, or nonlinear dynamical laws, constrained by struc-
tural links and paths. The propagation of perturbations from
each node i acts as a proxy for information flow from that
node to others and can be encoded in a local propagator ma-
trix, where diagonal elements give the signal energy and the
off-diagonal elements are covariant between pairs of nodes in
receiving signal amplitudes from i. Considering the stochastic
nature of complex systems, we consider that propagations
start from different localities indeterminately, with given
probabilities. Finally, we obtain the density matrix as a nor-
malized superposition of propagation patterns, each weighted
for their occurrence probability. Such a density matrix can
have tremendous power in describing the statistics of the sys-
tems’ response to stochastic perturbations, in terms of signal
energy distribution, node-node correlation, and heterogeneity
of response to stimuli. An interesting by-product it that our
framework is compatible with the standard quantum density
matrix approach, thus providing an opportunity to explore the
bridge between complexity science and quantum statistical
physics (see the Appendixes), presenting the possibility for fu-
ture cross pollination. A schematic illustration of the network
density matrix idea is presented in Fig. 2 and, for instance,
density matrices of three classes of synthetic networks, in-
cluding random, modular, and heterogeneous coupled with
random walks, SIS epidemics, and neural dynamics in the
presence of excitatory and inhibitory connections are shown
in Fig. 1.

To show how the framework can be used for practical
purposes, across distinct systems, we study the functional
diversity, i.e., complexity and heterogeneity of the response
to internal and external stimuli or perturbations, a prominent
feature of complex systems. For instance, in a biological
network like the human connectome, the extraordinary range
of physiological response enables the system to generate and

044304-6



GENERALIZED NETWORK DENSITY MATRICES FOR … PHYSICAL REVIEW E 107, 044304 (2023)

FIG. 4. Functional diversity of the C. elegans neuronal network. On the top, networks representing the structure of the C. elegans nervous
system (original), with its corresponding ER, configuration, and symmetric (for details, see the text) null models, are represented. (a) Functional
diversity S and the fragility of functional diversity |φ| at different propagation scales τ for all four networks for R = 0.1, 1, 2. (b) Same as
in (a) but after turning 26% of overall weights negative (inhibitory). The lines and shading show mean values and variances, respectively,
over 20 realizations. Interestingly, in the absence of inhibitory connections, the ER model shows the highest and lowest functional diversities
depending on the choice of the interaction coefficient R. Also, in this regime, the symmetric null model has a functional diversity comparable
to the original networks, only if the interaction coefficient R is not small. Instead, for small interaction coefficients, the CM generates the
information dynamics most similar to the original network, at all propagation scales. In the presence of inhibitory connections, we observe
a totally different behavior for the original network and its null models. Also, the fragility of functional diversity, an important indicator of
how a system can stay operative in a risky environment, has global maxima at different propagation scales for different networks with distinct
dynamical coefficients, which is higher for the original network compared to the others in almost all cases considered.

distribute information and coordinate its activity at different
scales [35]. Functional diversity can be measured in bits by
means of the von Neumann entropy of the statistical ensemble
[13], as it directly measures the average information, i.e.,
logarithmic probability, in observing patterns of activity in
response to perturbations. Therefore, as a direct application
of this framework, we analyze the functional diversity of
the mentioned synthetic networks coupled with a range of
dynamics, including continuous diffusion, discrete random
walks, SIS epidemics, and neural dynamics in the absence and
presence of inhibitory connections. Interestingly, according to
our results, it is not trivial to tell in advance which class of net-

work has the highest functional diversity (see Fig. 3). While in
most cases the modular structure provides the best solution for
long-range signal propagation, at small or middle propagation
scales, randomness, modularity, and heterogeneity compete,
closely. The result clearly shows that the diversity of the
response to perturbation cannot be determined by topological
features or the dynamical rules, but their coupling. In other
words, by changing the propagation scale τ or dynamical
processes, one observes that different topological features,
e.g., randomness, modularity, heterogeneity, the presence of
negative links, and asymmetries, become relevant or irrelevant
for maintaining the functional diversity.

044304-7



ARSHAM GHAVASIEH AND MANLIO DE DOMENICO PHYSICAL REVIEW E 107, 044304 (2023)

FIG. 5. Functional diversity of the HRV1 gene regulatory network. On the top, networks representing the structure of the HRV1 (original)
network, with its corresponding ER and configuration null models (for details, see the text), are represented. (a) Functional diversity S and the
fragility of functional diversity |φ| at different propagation scales τ for all three networks for R = 0.1, 1, 2 and fixed values h = 1, a = 1, and
B = 1 in the dynamical equation (see Table II). (b) Same as in (a) but for different fixed values h = 1

3 , a = 1
2 , and B = 1. The lines and shading

show mean values and variances, respectively, over 20 realizations; the variance is negligible. While for the parameters in (b) the CM provides
a good model, it fails with other parameters in (a), where it behaves more like the ER model and the two behave radically different from the
original network. Also shown in (a) is interesting behavior for the fragility of functional diversity: In contrast to the null models, there are two
peaks for the original network and the decay of fragility happens slowly.

Similarly, we analyze the propagation of stochastic pertur-
bations in empirical biological networks including the nervous
system of C. elegans and the gene regulatory network HRV1.
In addition to the functional diversity, we study the fragility
of functional diversity under structural damage, i.e., random
node removals. In both cases, we compare the empirical net-
works with weak and strong null models, capturing distinct
topological features. We show that the success of each null
model in estimating the system statistics strongly depends
on the parameters of the dynamical equation and the prop-
agation scale τ (see Fig. 4). For instance, in the absence of
inhibitory connections in C. elegans, a random null model (the

ER model) shows the highest and lowest functional diversity,
depending on the choice of the interaction coefficient R in
the neural dynamics equation. Moreover, the symmetric null
model, which is identical to the original C. elegans network
but with a symmetrized adjacency matrix, provides a good
model for the original networks, only if the interaction coef-
ficient R is large. Instead, for small interaction coefficients,
the von Neumann entropy of the configuration model, the
null model that only preserves the degree heterogeneity and
randomizes all other features, behaves more similarly to the
original network, at all propagation scales. In the presence of
26% inhibitory connections, as estimated for the C. elegans
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connectome [31], the behavior of null models and the original
network completely changes. Also, the fragility of functional
diversity, an important indicator of how the system can stay
operative in an unsafe environment, has global maxima at
different propagation scales for different networks with dif-
ferent dynamical coefficients. The analysis of the HRV1 gene
regulatory network confirms the previous results (see Fig. 5).
While for certain parameters the CM provides a better estima-
tion than the random null model, it fails in other scenarios
where the two behave radically different. However, in this
case, similar to the synthetic network analysis provided before
(see Fig. 3), it seems that the modular organization of the
structure of the original network keeps the functional diversity
high at large propagation scales.

Our analysis of synthetic and empirical biophysical net-
works clearly shows that deducing the functional diversity
directly from the mere topological features or dynamical
rules on their own is impossible. Instead, the network den-
sity matrix formalism, now extended to include a broad and
rich range of dynamics and structural categories, provides a
versatile approach to tackle problems dealing with the com-
plex interplay between the structure and dynamics, shedding
light on how complex systems operate and suggesting that
structural information alone is not sufficient to characterize
empirical systems.

APPENDIX A: REVIEW OF THE ORIGINAL
FORMULATION OF NETWORK DENSITY MATRICES

In this Appendix we briefly review the fundamentals of the
original framework [6]. We encode the nodes as orthogonal
canonical vectors |i〉 (i = 1, 2, . . . , N), with 〈i| j〉 = δi j the
delta function, equal to 0 for i �= j and 1 only if i = j. A
field |φτ 〉 is assumed to be on top of the network with a
concentration of 〈i|φτ 〉 on top of the ith node at time τ . The
evolution of the field is assumed to be governed by

∂τ |φτ 〉 = −Ĥ|φτ 〉, (A1)

with Ĥ the control operator. Solving Eq. (A1), we find the
time-evolution operator of the dynamics

Ĝτ = e−τ Ĥ, (A2)

whose i jth element encodes the flow of field from node i
to node j, also written as 〈 j|Ĝτ |i〉. From the time-evolution
operator, it is straightforward to derive the density matrix

ρ̂τ = Ĝτ

Tr(Ĝτ )
, (A3)

and the normalization factor Zτ = Tr(Ĝτ ) is the partition func-
tion of the system encoding the dynamical trapping, i.e., the
amount of field that is still on top of the initiator node. It is
worth remarking that this operator is formally equivalent to
the network density matrix introduced in Ref. [5] in a special
case where Ĥ is the combinatorial Laplacian matrix. The von
Neumann entropy of the density matrix is given by

Sτ = −Tr(ρ̂τ log ρ̂τ ). (A4)

Finally, a diagonalizable time-evolution operator can be
eigendecomposed as Ĝτ = ∑N

�=1 α�(τ )σ̂ (�), where α�(τ ) is

the �th eigenvalue of the time-evolution operator and σ̂ (�)

is the outer product of its �th right and left eigenvectors
of Ĥ. Similarly, the eigenvalues of the density matrix are
given by ρ�(τ ) = α�(τ )/Zτ . Each operator σ̂ (�) obtained from
eigendecomposition of the time-evolution operator act like a
stream, guiding the flow, and is multiplied by its contribution
α�(τ ). In Ref. [6] the authors start from Eq. (A1) to introduce
the stream operators defined as σ̂ (�) ∈ RN×N which guide the
propagation of perturbations of the field on the top of the
network. Since each stream operator � has activation proba-
bility ρ�(τ ) ∈ R, they work as a statistical ensemble whose
superposition shapes the density matrix

ρ̂τ =
N∑

�=1

ρ�(τ )σ̂ (�). (A5)

APPENDIX B: STATISTICAL ENSEMBLE MICROSTATES

Here we provide an alternative way to interpret the proba-
bilities, in terms of microstates. As explained in Appendix A,
a diagonalizable time-evolution operator (A2) is the solution
of Eq. (A1), describing the evolution of the field

|φτ 〉 = Ĝτ |φ0〉 =
N∑

�=1

α�(τ )σ̂ (�)|φ0〉. (B1)

Note that σ̂ (�)|φ(0)〉 = |v�〉〈v�|φ(0)〉, where |v�〉 is an eigen-
state of Ĥ and the second factor 〈v�|φ(0)〉 is the projection
of the initial field |φ0〉 along the the �th eigenstate of Ĥ.
This fact leads to the following result: The field configuration
at time τ is the evolution of the superposition of its initial
configurations projected along the Ĥ eigenstates.

In quantum physics, the microscopic variables of the sys-
tem are the amplitudes of the basis function. For instance, if
the basis is chosen to be the eigenstates of position, then the
microscopic variables are the values of the wave function in
each point in space. Here we can use a similar argument to
identify the microscopic variables in the statistical field theory
as the projections of |φτ 〉 onto a basis. If we choose {|v�〉} for
this purpose, then the microscopic variables are given by

〈v�|φτ 〉 = 〈v�|
N∑

�′=1

α�(τ )|v�′ 〉〈v�′ |φ0〉

=
N∑

�′=1

α�(τ )〈v�|v�′ 〉〈v�′ |φ0〉

= α�(τ )〈v�|φ0〉. (B2)

It follows that the microstates, in our framework, are the N
amplitudes obtained by projecting the initial field configura-
tion onto the Ĥ eigenstates and evolved until time t by the
corresponding time-evolution operator.

The number of such microstates can be effectively quan-
tified, at time τ , as

∑N
�=1 α�(τ ), which in fact corresponds

to the partition function Zτ introduced and described in
Refs. [5,6,13,36]. Therefore, the probability of each mi-
crostate is given by

ρ�(t ) = α�(τ )∑
�′ α�′ (τ )

. (B3)
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Interestingly, this result presents the possibility of identifying
σ̂ (�) with a microstate and of defining the state of the system
in terms of the superposition of all microstates when it is not
possible to know the current microstate before performing a
measure. In practice, our best choice to describe the system is
to estimate the expected state as the weighted average

ρ̂(τ ) =
N∑

�=1

ρ�(τ )σ̂ (�). (B4)

This last operator, which encodes the expected state of the
system obtained from the ensemble of microstates, is formally
equivalent to the density matrix used in quantum physics as
well as to the network density matrix introduced in [5] and
later understood in terms of statistical field theory in [6].

APPENDIX C: CASE OF THE HERMITIAN
CONTROL OPERATOR

For Hermitian Ĥ, the eigenvalues of the time-evolution
operator are real and non-negative. An example can be the
diffusion dynamics on top of directed static networks. In this
case, the partition function and von Neumann entropy are real
and non-negative, being summations of non-negative values,
and the eigenvalues of the density matrix can be interpreted
as probabilities of activation of streams (see Appendix D for a
complete description), providing a valid statistical description
of the information dynamics.

APPENDIX D: CASE OF THE NON-HERMITIAN
CONTROL OPERATOR

Finding the statistics of non-Hermitian Hamiltonians is a
hot topic in quantum physics. Similarly, a number of impor-
tant linear dynamics are governed by non-Hermitian control
operators Ĥ, like diffusion on top of directed networks. It is
important to note that in these cases the eigenvalues of the
density matrix can be imaginary and therefore it would be dif-
ficult to interpret them as activation probabilities for streams.
However, here we show that the von Neumann entropy and
partition functions of such systems are real.

Assume the elements of the time-evolution operator are
all real values. Thus, the complex eigenvalues of the time-
evolution operator are known to be complex conjugate pairs.
For instance, assume the �th eigenvalue is given by α�(τ ) =
αRe

� (τ ) + iαIm
� (τ ) = r�(τ )eiθ (τ ), where αRe

� (τ ) and αIm
� (τ ) are

the real and imaginary parts of the eigenvalue, respectively,
and r�(τ ) and eiθ (τ ) provide the polar representation. Since the
complex eigenvalues are complex conjugate pairs, there must
be an eigenvalue α�′ (τ ) = αRe

� (τ ) − iαIm
� (τ ) = r�(τ )e−iθ (τ ).

It is straightforward to show that the summation of these
two eigenvalues is the summation of the real parts α�(τ ) +
α�′ (τ ) = 2αRe

� (τ ). Therefore, the partition function can be
written as

Zτ = Tr(Ĝτ ) =
∑

�

αRe
� (τ ), (D1)

which is always a real number.
The logarithm of the eigenvalues of the density matrix,

used to calculate the von Neumann entropy, can be written as

log r�eiθ�/Zτ = log r� + iθ� − log Zτ . For the complex conju-
gate eigenvalue, it is given by log r�e−iθ�/Zτ = log r� − iθ� −
log Zτ . The summation of these two multiplied by the cor-
responding eigenvalue of the time-evolution operator matrix
leads to

α�(τ ) log α�(τ ) + c.c. = 2αRe
� (τ ) log r� − 2αRe

� (τ ) log Zτ

−2αIm
� (τ )θ�(τ ),

where all the imaginary parts cancel out. Therefore, the
von Neumann entropy is real and yet, depending on the
eigenvalues, it is possible to obtain a negative value which
cannot be trivially interpreted, at the moment, in probabilistic
terms. In the following we will better understand under which
conditions non-Hermitian control operators will still lead to
non-negative entropy.

APPENDIX E: JORDAN DECOMPOSITION
FOR THE GENERAL CASE

An even more general result can be obtained by consider-
ing that the control operator Ĥ′ is a generic matrix that can be
decomposed into its Jordan normal form over the field of com-
plex numbers as Ĥ′ = P̂−1ĴP̂, where Ĵ = diag(Ĵ1, Ĵ2, . . . , Ĵk )
is a block matrix and Ĵk is the matrix whose principal diagonal
entries are equal to αk and the upper diagonal entries are
equal to 1. For the sake of simplicity, let us consider that
Ĥ′ = −τ Ĥ, leading to a Jordan block matrix Ĵ(τ ). It follows
that eĤ′ = P̂−1eĴ(τ )P̂, leading to entropy

Sτ = log Zτ − Z−1
τ Tr[eĴ(τ )Ĵ(τ )]. (E1)

Since

eĴk (τ ) = eαk (τ )

⎛
⎜⎜⎜⎜⎝

1
0!

1
1! · · · 1

(�−1)!

0 1
0! · · · ...

...
. . . 1

0!
1
1!

0 · · · · · · 1
0!

⎞
⎟⎟⎟⎟⎠

and

Ĵk (τ ) = αk (τ )

⎛
⎜⎜⎜⎜⎝

1 1
αk (τ ) · · · 0

0 1 · · · ...
...

. . . 1 1
αk (τ )

0 · · · · · · 1

⎞
⎟⎟⎟⎟⎠,

it follows that

Tr[eĴ(τ )Ĵ(τ )] =
∑

k∈blocks

Tr[eĴk (τ )Ĵk (τ )]

=
∑

k∈blocks

μkeαk (τ )αk (τ ),

where μk is the rank of the kth block. Note that if there are
N rank-1 blocks, corresponding to the case of a Hermitian
operator, then the result will coincide with the expected one
[5,6].

Let us focus at a higher level of detail as follows. The
partition function is given by

Zτ =
∑

k∈blocks

μkeαk (τ ), (E2)
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where we expect complex conjugate pairs to be eigenvalues of
the control operator. Since αk (τ ) = αRe

k (τ ) + αIm
k (τ ), we can

write

Zτ =
∑

k∈blocks,Re

μkeαk (τ ) +
∑

k∈blocks,Im

μk (eαk (τ ) + eᾱk (τ ) ),

where we have separated the contribution of real and imagi-
nary parts. In the second term, each contribution is given by
the real number

eαk (τ ) + eᾱk (τ ) = 2eαRe
k (τ ) cos αIm

k (τ ),

thus leading to a real partition function which, however, is not
yet granted to be also positive. Finally, we obtain

Zτ =
∑

k∈blocks

μkeαRe
k (τ ) cos αIm

k (τ ),

which contains negative terms only for eigenvalues such that
π
2 + nπ � αIm

k (τ ) � 3π
2 + nπ , with n an integer number.

A similar argument can be used to show that

Tr[eĴ(τ )Ĵ(τ )] =
∑

k∈blocks

μkeαRe
k (τ )

[
αRe

k cos αIm
k (τ )

−αIm
k sin αIm

k (τ )
]
,

which is still a real number. Focusing only on the eigenvalues
with imaginary parts [αIm

k (τ ) �= 0], we obtain a non-negative
sum under the condition

αRe
k (τ )

αIm
k (τ )

� tan αIm
k (τ ), αIm

k (τ ) �= π

2
+ nπ, (E3)

whereas for αIm
k (τ ) = π

2 + nπ the resulting term is non-
negative if αRe

k (τ ) � 0.
Note that the above conditions are stricter than what it is

actually needed to ensure that the partition function and the
entropy are non-negative real numbers.

APPENDIX F: WEAK ASYMMETRY APPROXIMATION

Asymmetric connections appear in different domains [37].
Here we discuss the conditions under which they can be
neglected:

Si j = 1
2 (Hi j + Hji ), Ai j = 1

2 (Hi j − Hji ).

Let us consider the case where the asymmetric part is much
sparser than the symmetric one, allowing us to approximate
it as a perturbation δŜ of the symmetric component. Under
which condition is this approximation valid?

Let us introduce the Frobenius norm of an operator X̂ as
‖X‖ =

√∑
i j |Xi j |2; we require that ‖Ĥ‖ � ‖Ŝ‖ or, equiva-

lently, that ‖Ŝ + Â‖ ≡ ‖Ŝ‖ + ε. Note that ε is a measure of
the symmetrization error, which is expected to be ε 
 1. By
neglecting higher-order terms in ε, such a condition reduces
to

ε �
1
2

∑
i j |Ai j |2 + ∑

i j |Si j ||Ai j |√∑
i j |Si j |2


 1. (F1)

Let us use a mean-field approximation of the quantities in
the numerator and the denominator of this expression. First,

let us recall that empirical complex networks are rather sparse,
i.e., the density of their edges scales as N−γ , with N the size
of the system and γ ≈ 1 [38]. Equivalently, we can write that
the number of edges in empirical networks follows the scaling
law E ≈ c Nγ , with c > 1. It follows that 〈|Xi j |〉 � |x̄|cNγ−2,
where |x̄| is a real non-negative number. It follows that the
above condition for ε leads to

1

2

|ā|2
|s̄| + |ā| 
 1

Nγ−1c
.

Considering the experimental value γ ≈ 1 and recalling that
|ā| and |s̄| are non-negative numbers, we reach the condition

|ā| 
 −|s̄| +
√

|s̄|2 + 2
|s|
c

≈ 1

c
, (F2)

which provides a very simple and elegant condition for our
weakly asymmetric approximation.

Under the above approximation, we can now determine
the contribution to the total entropy of the symmetric and
asymmetric components of the control operator as follows.
Let us consider the two eigenvalue problems

Ŝ0�v0i = α0i�v0i, (Ŝ0 + δŜ)�vi = αi�vi,

where we have indicated with Ŝ0 the unperturbed symmetric
part of the control operator Ĥ and its perturbation as δŜ =
Â. Using the Rayleigh eigenvalue perturbation theory, we can
relate the eigenvalues of the two problems as

αi = α0i + δα0i, δα0i = �v�
0iδŜ�v0i. (F3)

From Eq. (E2) we can write the von Neumann entropy as

Sτ = log

(∑
k

μkeαk (τ )

)
−

∑
k μkαk (τ )eαk (τ )∑

k∈ μkeαk (τ )
, (F4)

where the index k runs over the blocks of the Jordan nor-
mal form. Let us also define αk (τ ) = α0k (τ ) + δα0k (τ ), with
α0k (τ ) = −τα0k and δα0k (τ ) = −τδα0k , and write Eq. (F4)
as Sτ = S0τ + δSτ , where S0τ is the entropy corresponding to
the density matrix obtained from the control operator Ĥ = Ŝ
and δSτ is a correction term corresponding to the perturbation
introduced by the asymmetry Â = δŜ. By neglecting higher-
order perturbation terms, it is possible to show that

δSτ =
[∑

k μkα0k (τ )eα0k (τ )
][∑

k′ μk′δα0k′ (τ )eα0k′ (τ )
]

(∑
k μkeα0k (τ )

)2

−
∑

k μkδα0k (τ )eα0k (τ )[α0k (τ ) − 1]∑
k μkeα0k (τ )

, (F5)

Since S0τ � 0, let us find under which condition the von
Neumann entropy is nonphysical, i.e., when Sτ < 0, corre-
sponding to the condition δSτ < −S0τ . To this aim, let us
define the non-negative quantities

Z0τ =
∑

k

μkeα0k (τ ),

ᾱ0(τ ) =
∑

k μkα0k (τ )eα0k (τ )

Z0τ

, (F6)

which provide the partition function of the symmetric part and
the mean eigenvalue. Recalling that the perturbed value of the
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eigenvalues are defined as δα0k (τ ) = −τ �v�
0kδŜ�v0k , after some

algebra we obtain the final condition

Z0τ [log Z0τ − ᾱ0(τ )] <
∑

k

{μkeα0k (τ )δα0k (τ )

× [α0k (τ ) − 1 − ᾱ0(τ )]}. (F7)

APPENDIX G: CASE OF HERMITIAN CONTROL
OPERATORS FROM A DIFFERENT PERSPECTIVE

Not out of necessity but for convenience, assume the prob-
ability of perturbations is uniformly distributed over all N
nodes, pi = 1/N , and the value of perturbation is one for all
nodes 	i = 1. If the dynamical rule is linear or linearized with
a Hermitian control operator Ĥ = Ĥ†, the local propagator
reads

Û(i)
τ = e−τ Ĥ|i〉〈i|e−τ Ĥ (G1)

and the statistical propagator follows

Ûτ =
∑

i

1

N
e−τ Ĥ|i〉〈i|e−τ Ĥ

= 1

N
e−τ Ĥ

(∑
i

|i〉〈i|
)

e−τ Ĥ

= 1

N
e−2τ Ĥ, (G2)

leading to the density matrix ρ̂τ = e−2τ Ĥ

Tr(e−2τ Ĥ )
, which is equal

to the original definition of network density matrix after
reparametrization 2τ → τ . Continuous diffusion on top of
undirected networks is an example of application of this Ap-
pendix (see Table I).

Also, quantum mechanics can be described in terms of
density matrices, considering the nodes of the network to
represent the states of the system, by inserting the physical
Hamiltonian of the system Ĥ as the control operator Ĥ =
−ih̄Ĥ in Eq. (G2), which gives the propagator Î

N , which is
expected, because the initial state here is taken to be the
maximally mixed equilibrium state and the unitaries with the
same Hamiltonian cannot change it.

Starting from other states, where pi �= 1/N , the dynamics
recovers the expected quantum mechanical description. Also,
if the control operator is set to be Ĥ = −Ĥ, the statistical
propagator describes the thermalization and we recover the
Gibbs state e−2τĤ/Zτ for inverse temperature β = 2τ . It is
worth mentioning that the density matrix formalism presented
in this paper is not necessarily for networks and can work
even for the case where vectors |i〉 (i = 1, 2, 3, . . .) represent
an infinite continuous space. In this case, the interpretation
of the signal energy is the number of particles causing the
perturbation and the von Neumann entropy quantifies the
mixedness of states and diversity of the system’s response to
such perturbations.

APPENDIX H: CASE OF NON-HERMITIAN CONTROL
OPERATORS FROM A DIFFERENT PERSPECTIVE

The alternative perspective allows for deriving density ma-
trices for non-Hermitian control parameters that have valid

probabilistic interpretation (real positive spectrum) and von
Neumann entropy. Again, for convenience, assume the prob-
ability of perturbations is uniformly distributed over all N
nodes, pi = 1/N , and the value of perturbation is one for all
nodes 	i = 1. If the dynamical rule is linear or linearized with
a non-Hermitian control operator Ĥ �= Ĥ†, the local propaga-
tor reads

Û(i)
τ = e−τ Ĥ|i〉〈i|e−τ Ĥ†

(H1)

and the statistical propagator follows

Ûτ =
∑

i

1

N
e−τ Ĥ|i〉〈i|e−τ Ĥ†

= 1

N
e−τ Ĥ

(∑
i

|i〉〈i|
)

e−τ Ĥ†

= 1

N
e−τ Ĥe−τ Ĥ†

. (H2)

Continuous approximations of RWs, maximum entropy RWs,
classes of consensus dynamics on top of undirected and di-
rected networks, and also continuous diffusion on top of
directed networks are examples of application of this Ap-
pendix (see Table I).

APPENDIX I: DISCRETE DYNAMICS

The alternative perspective allows for deriving density ma-
trices for discrete types of dynamics as well as the continuous
ones. If the transition matrix governing the discrete dynamics
is given by Ĥ, the perturbation propagation vector from node
i after m discrete steps follows∣∣	φ(i)

m

〉 = Ĥm|i〉, (I1)

assuming the field is in void state |φ〉 = 0 initially and 	i = 1.
Assuming uniformity pi = 1/N , we can calculate the statisti-
cal propagator as

Ûm = 1

N
Ĥm(Ĥm)†, (I2)

leading to a well-defined density matrix ρ̂m = Ûm

Tr(Ûm )
, which

has not been explored in the original formulation. A gener-
alization for temporal networks is straightforward, having a
different transition matrix Ĥ(γ ) for each snapshot of the net-
work indicated by index γ . Discrete graph walks and random
walks on directed and undirected networks are examples of
application of Appendix (see Table I).

APPENDIX J: NONLINEAR DYNAMICS

The alternative perspective allows for derivation of valid
density matrices for nonlinear dynamics as well as linear ones.
For simplicity, we indicate the amount of field on top of node
i at temporal scale τ as xi = xi(τ ) = 〈i|φτ 〉. Let us consider a
generic dynamical system, defined on the top of a network G
of size N , defined by the equation

ẋ(t ) = F[x(t ), t] + �[x(t ), t], (J1)

where x(t ) ∈ RN denotes the system state, F denotes
(non)linear deterministic functions, possibly different for each
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component of the state, which also accounts for the structural
coupling between systems’ units, and � denotes stochastic
functions.

One can use Eq. (1) to calculate the statistical propaga-
tor from Eq. (2) for any arbitrary initial condition xi(0) and
any arbitrary perturbation probabilities pi. Depending on the
problem, it is often preferred to find the statistical propaga-
tor where the initial state is the void state x(0) = 0 or the
steady state ∂τ x(0) = 0. Here we provide a list of determin-
istic nonlinear equations governing biochemical, birth-death,
regulatory, epidemic, synchronization, mutualistic, neuronal,
and voter dynamics (see Table II).

To simplify the derivation of the corresponding density
matrices, in the following we show how to linearize them
near the steady state of the underlying dynamical process. For
simplicity, let us focus our derivation on autonomous systems
with no stochastic component. Let us assume that, under some
constraints, the system of equations admits a solution x� cor-
responding to a stable or a metastable state, i.e., F[x�] = 0
for a sufficient amount of time or at t → ∞ and where we
are limited to autonomous systems. Around such a state, we
can study the leading-order expansion around the perturbation
defined by δx(t ) = x(t ) − x�, leading to the dynamical system

δẋ(t ) � ĴF δx(t ), (J2)

where ĴF denotes the Jacobian matrix of functions F in x�.
In the following we can consider that overall Jacobian matrix
as the control operator −Ĥ = ĴF . This way, we can analyt-
ically derive the control operators and density matrices for
biochemical, birth-death, regulatory, epidemic, synchroniza-
tion, mutualistic, neuronal, and voter dynamics near the steady
state (see Table II).

APPENDIX K: SUBADDITIVITY OF THE VON NEUMANN
ENTROPY FROM A DIFFERENT PERSPECTIVE

Since density matrices in the different formalism are de-
fined in a way to always satisfy the mathematical criteria, i.e.,
being positive semidefinite, Hermitian with trace one, they are
naturally subadditive, according to the original definition in
quantum mechanics. In other words, if two networks have
density matrices ρ̂A and ρ̂B and their total density matrix
is indicated by ρ̂AB, which reduces to ρ̂AB = ρ̂A ⊗ ρ̂B if the
two systems have no correlations, it is guaranteed that the
summation of their entropies is not smaller than their total
entropy SA + SB � SAB.

Recently, a new definition of subadditivity has been intro-
duced for networks [5]. This criterion is useful to compare
the entropy of two networks of the same size, with adjacency
matrices ÂA and ÂB, with their aggregate network having the
adjacency matrix ÂAB = ÂA + ÂB. Here we first review the
derivation for the original formulation and show under what
conditions it is satisfied. Then we generalize to the alternative
formalism.

Note that for the control operator Ĥ, the density matrix in
the previous framework reads ρ̂ = e−τ Ĥ/Zτ . Assume that the
control operators of two networks of the same size read ĤA

and ĤB, respectively. Also assume that their combined control
operator is given by ĤAB = ĤA + ĤB. The relative entropy
between the combined system and the first network is given by
D(ρ̂AB|ρ̂A) = −SAB + τTr(ĤAρ̂AB) + log ZA and the relative
entropy between the combined system and the second network
is given by D(ρ̂AB|ρ̂A) = −SAB + τTr(ĤBρ̂AB) + log ZB. Note
that relative entropy is non-negative and for any pair of valid
density matrices X̂ and Ŷ it is given that D(X̂ |Ŷ ) � 0. Also,
when Ĥ and ρ̂ are positive semidefinite, it can be shown that
Tr(Ĥρ̂) � 0, following the Cholesky factorization. Finally,
we assume that log ZAB � 0, a condition that is bound to be
satisfied in cases like diffusion dynamics where Ĥ has at least
one 0 in the spectrum. Therefore, a summation of all such
non-negative terms must be non-negative:

D(ρ̂AB|ρ̂A) + D(ρ̂AB|ρ̂B) + τTr(ĤAρ̂A)

+ τTr(ĤBρ̂B) + log ZAB � 0. (K1)

From here, given that S = τTr(Ĥρ̂) + log Z , it can be shown
that SA + SB � SAB.

It is important to note that aggregate subadditivity is proved
only if all the above criteria are valid and the control operator
for the aggregate network reads ĤAB = ĤA + ĤB. For in-
stance, in the case of the combinatorial Laplacian Ĥ = D̂ − Â,
where the degree of each node in the aggregate network is
equal to the summation of its degree in each of the two
networks, the diagonal matrix corresponding to the aggregate
reads D̂AB = D̂A + D̂B and of course the adjacency matrix cor-
responding to the aggregate matrix follows ÂAB = ÂA + ÂB.
Therefore, the condition for the proof presented above is
satisfied: ĤAB = ĤA + ĤB. However, for other types of dy-
namics such as random walks Ĥ = Î − ÂD̂−1, the condition
is not satisfied and therefore the aggregate subadditivity is not
guaranteed.

Similarly, in the case of the alternative perspective pre-
sented in the paper, we can use the above formula to check
if a dynamical process satisfies the aggregate subadditivity.
For this reason, we use continuous dynamics with statistical
propagator given by Ûτ = e−τ Ĥe−τ Ĥ†

. Here we use Baker-
Campbell-Hausdorff formula

e−τ Ĥ′ = e−τ Ĥe−τ Ĥ†
Ĥ′ = Ĥ + Ĥ† − τ

2
[Ĥ, Ĥ†]

+ τ 2

12
[Ĥ, [Ĥ, Ĥ†]] − τ 2

12
[Ĥ†, [Ĥ, Ĥ†]] + · · · (K2)

to simplify the appearance of the statistical propagator and
better integrate with the above derivations. Here, similarly to
the original framework, if the logarithm of the combined par-
tition function is non-negative log ZAB = Tr(e−τ Ĥ′

AB ) � 0, the
operators Ĥ′

A and Ĥ′
B are positive semidefinite, and the opera-

tor Ĥ′ corresponding to the aggregate reads Ĥ′
AB = Ĥ′

A + Ĥ′
B,

the aggregate subadditivity is satisfied. A straightforward ex-
ample is diffusion governed by the combinatorial Laplacian
Ĥ = D̂ − Â. In this case, since the control operator is Her-
mitian [Ĥ, Ĥ†] = 0, the operator Ĥ′ can be written simply as
Ĥ′ = 2Ĥ and the aggregate subadditivity is satisfied, through
Eq. (K1).
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