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Relation between the degree and betweenness centrality distribution in complex networks
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The centrality measures, like betweenness b and degree k in complex networks remain fundamental quantities
helping to classify them. It is realized from Barthelemy’s paper [Eur. Phys. J. B 38, 163 (2004)] that the maximal
b − k exponent for the scale-free (SF) networks is ηmax = 2, belonging to SF trees, based on which one concludes
δ � γ+1

2 , where γ and δ are the scaling exponents for the distribution functions of the degree and the betweenness
centralities, respectively. This conjecture was violated for some special models and systems. Here we present
a systematic study on this problem for visibility graphs of correlated time series, and show evidence that this
conjecture fails in some correlation strengths. We consider the visibility graph of three models: two-dimensional
Bak-Tang-Weisenfeld (BTW) sandpile model, one-dimensional (1D) fractional Brownian motion (FBM), and
1D Levy walks, the two latter cases are controlled by the Hurst exponent H and the step index α, respectively. In
particular, for the BTW model and FBM with H � 0.5, η is greater than 2, and also δ <

γ+1
2 for the BTW

model, while the Barthelemy’s conjecture remains valid for the Levy process. We assert that the failure of
the Barthelemy’s conjecture is due to large fluctuations in the scaling b − k relation resulting in the violation
of hyperscaling relation η = γ−1

δ−1 and emergent anomalous behavior for the BTW model and FBM. Universal
distribution function of generalized degree is found for these models which have the same scaling behavior as
the Barabasi-Albert network.

DOI: 10.1103/PhysRevE.107.044303

I. INTRODUCTION

Among many general measures for the centrality in the
complex networks which have been devised to quantify the
role and the importance of nodes, and also to identify how
much effect the nodes have on the network properties, the
betweenness, and the degree centralities are at the center
of much attention. Consider a network in which the agents
(which are the nodes in the network) choose the shortest paths
for the interaction to optimize efficiency. Then a central role
is granted to a node that is visited with a high frequency in the
possible interactions, which is expressed via the betweenness
centrality, defined for a node i as

bi =
∑

i �=m �=n

σm,n(i)/σm,n, (1)

where σm,n [σm,n(i)] is the total number of shortest paths from
node m to node n (through i). This is something different
from the degree centrality which deals with how interactive
the agents are based on the number of their local connections,
and is defined as

ki =
∑

j

Ai j, (2)

where the adjacency matrix Ai j is 1 when the nodes i and j
are connected and zero otherwise. Other centralities, like the
eigenvector, the closeness, and the subgraph centralities are
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defined by focusing on the other properties of the networks;
see Ref. [1] for details. The clustering coefficient of node i is
defined by

ci = 2

⎛
⎝ ∑

i �=m �=n

AimAinAmn

⎞
⎠

/
[ki(ki − 1)]. (3)

The degree and the betweenness centralities apply to a broad
range of systems like the social networks, biology, scien-
tific cooperation, and transport. A huge number of numerical
[2–4] and analytical [5–7] studies have concentrated on these
centralities for various complex systems, like the scale-free
(SF) networks which is much more interesting in the sense
of power-law behavior with scaling exponents allowing one
to classify the models into universality classes. The leading
examples of power-law distributions are associated with the
degree and betweenness of nodes, i.e., (up to some cutoff
values)

p(k) ∝ k−γ and p(b) ∝ b−δ, (4)

where γ (usually in the interval [2,3]) and δ are called the
degree and the betweenness exponents, respectively. These
exponents (which are not generally independent) serve as
leading measures for classifying the SF networks [1]. As a
well-known fact for SF networks, when the conditional prob-
ability distribution p(b|k) is a peaked narrow function of both
k and b, then

b ∝ kη, (5)
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with a hyperscaling relation [8]

η = γ − 1

δ − 1
, (6)

a relation that is violated when the fluctuations are high so that
p(b|k) is not a narrow function. These large fluctuations (and
the violation of the above relation) results in many interesting
aspects in complex networks. An example is a nonmonotonic
relation between b and k, e.g., a node with a high degree
centrality is not necessarily an important node in the sense
of betweenness [9–13], which itself leads to failure of the
mean field (MF) arguments. This phenomena leads also to
the fractal networks, or fractality observed in the synthetic
and real-world SF networks [11]. Therefore it always has
been worth investigating the theoretical relation between b
and k, and also between other observables, and depends on
the structure of SF networks. It was conjectured by Goh et al.
[3] that the amount of δ is robust and can be used to classify
SF networks, based on which two universality classes were
proposed δ = 2.2(1) (for the protein-interaction networks, the
metabolic networks for eukaryotes and bacteria, and the co-
authorship network), and δ = 2.0 [for the Internet, the World
Wide Web (WWW), and the metabolic networks for Archaea]
[3,14]. The hyperscaling relation between γ and δ is important
to reduce the number of independent critical exponents which
is critical in identifying the determination of the universal-
ity classes. Barthelemy argued that the Goh’s conjecture is
questionable since δ varies continuously as a function of γ in
many networks. Indeed, Barthelemy concluded that the only
restrictions that the exponents have are [7,15]

(CI) : ηmax = ηSFT = 2, (CII) : δ � γ + 1

2
, (7)

where SFT stands for scale-free trees. The first equation (CI)
states that η is maximal for SFTs and the inequality (CII) is
based on Eq. (6) for ηmax (the equality holds for SFTs).

Equation (CI) serves as an important difference between
SF networks and SFTs. Large b − k fluctuations [and con-
sequently a violation of Eq. (6)] is a source of anomalous
behavior explored above, and also the MF arguments that has
led to the Barthelemy’s conjecture Eq. (7). This conjecture
was violated for some special models and systems. Especially
Eq. (CI), which naturally results in Eq. (CII). There are
some reports that show this is the case for realistic situa-
tions. In Ref. [16] an η larger than 2 was reported for VGs
reconstructed from earthquake magnitude time series of three
regions, Italy (2.92), Southern California (2.59), and Mexico
(2.89).

In this paper we present a systematic study on this problem
for visibility graphs and show evidence that this conjecture
breaks down in some domain of correlations. We think that
it helps much to figure out the scenarios explaining these
observations. We show that Barthemely’s conjecture Eq. (7)
is highly restricted for SF visibility graphs (VGs). We assert
and numerically demonstrate that it is due to the large b − k
fluctuations.

The paper is organized as follows: In the next section we
describe the VG method. In Sec. II we present some argu-
ments about the consequences of the Barthelemy’s conjecture.
Section III B is devoted to correlated time series that are

FIG. 1. f (η, k, xb) in terms of η for xb = 0.9 and k = 10
(left) and k = 100 (right). The allowed values for η is given by
f (η, k, xb) � 0, highlighted by red bar on the horizontal axis. The
azure rectangle area shows the forbidden η values with η > 2
according to Eq. (7).

investigated in this work. The numerical results are presented
in Sec. IV. We close the paper by a conclusion.

II. ARGUMENTS ON BARTHELEMY’S RELATION

There is no rigorous proof for (CI) in Eq. (7), and the
arguments that lead to it are based on an argument presented
in Ref. [7] in which it is first argued that for trees η = 2. Then,
since all shortest paths should pass a typical node in trees, it is
asserted that the maximal betweenness centrality is for trees.
While the argument is correct, the conclusion seems not to be
general enough, since the fact that betweenness centrality for
trees is higher than other networks, the exponent η is related to
the slope of the b − k graphs not the local values. In this paper
we show that for the VGs the equation (CI) is also violated for
some correlated time series.

The Eq. (7) results in another important identity for large
b and k values. The details of the calculations is presented
in Appendix A. Most importantly, the Eq. (7) implies that
[Eq. (A6) and (A7)]

f (η, k, xb) � 0, (8)

where

f (η, k, xb) ≡ xbη
2 − [k + 1 − (k − 1)xb]η + 2k(1 − xb).

(9)

In this equation xk ≡ p(k+1)
p(k) , xb ≡ p(bk+1 )

p(bk ) . This function has
been shown in Fig. 1 for two different k values. The failure
of Eq. (7) results to the failure of the above identities. The
interval of η that is compatible with Berthelemy’s conjecture
is {

η > η(+)
∗

η < η(−)
∗ ,

combined with η � 2, (10)

where η
(±)
∗ are given by [Eq. (A8)]

η±
∗ = (2xb)−1[B ±

√
B2 + 8kxb(1 − xb)],

B = k + 1 − (k − 1)xb. (11)

In the limit k → ∞, the condition (CI) is retrieved. The upper
branch η

(+)
∗ grows linearly with k for large enough k values,

while the lower branch saturates to η
(−)
∗ → 2. Therefore, for

k → ∞, the solution η < 2 is the exact solution as expected.
To see this more directly, notice that

f (η, k, xb)|k→∞ → k(1 − xb)(2 − η), (12)
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so that f (η, k, xb) � 0 (noting that 0 < xb < 1) gives η � 2.
As another example, consider the case η is about 2, i.e., η =
2−, where Eq. (A6) for finite and large k values imply that [to
O(k−2)]

1

xb
� η − 1 < 1. (13)

Therefore, the prediction of the Barthelemy’s conjecture in
this case (η close to two) is

xb �
1

η − 1
. (14)

Therefore, for the η values close to two, one finds that
xb � 1

η−1 [to O(k−2)].

III. VISIBILITY GRAPH OF CORRELATED TIME SERIES

Visibility graph (VG) method is a tool to convert a given
time series to a network, and plays an essential role in un-
derstanding the properties of nonlinear dynamical systems.
A high degree centrality of a node in VGs reflects a good
visibility of that node showing that it is a hub, while a high
betweenness centrality of a given node i shows that this node
not only is a hub but has a sufficient distance from a next hub,
i.e., it is rare.

A. Visibility graph definition

We consider a time series {s(ti )}N
i=1, where s is called the

activity here, and N is a maximal time in the analysis, and
is also the size of the VG. The VG denoted by G(V, E ) is a
network in which the nodes V = {vi}N

i=1 represent the times
T = {ti}N

i=1, such that vi = ti and E ⊆ V × V is the set of
links connecting the nodes, such that the nodes vi and v j

are connected (vi, v j ) ∈ E , if and only if their corresponding
data points s(vi ) and s(v j ) are visible to each other. More
practically, to each time in the time series we attribute a node,
and the connection between two nodes is established if the
associated activities are visible to each other, i.e., the is no
node between them that is high so that two nodes do not “see”
each other. The adjacency matrix for VG is defined by

Ai j =
{∏ j−1

k=i+1 �(si j − sik ) if |ti − t j | > 1

1 if |ti − t j | = 1,
(15)

where

smn ≡ s(tn) − s(tm)

tn − tm
, (16)

and � is the step function that satisfies the visibility condition
[17].

Many statistical observables like the clustering coefficient,
mean length of the shortest paths and motif distribution as
well as assortative mixing pattern were studied in Ref. [18],
and a homological analysis can be found in Ref. [17], showing
that the natural VGs are the topological tree. Many statistical
[19] and topological [17] aspects of VGs have been studied
numerically and analytically, making it a standard powerful
tool to study various systems like earthquakes [16], eco-
nomics [20], ecology [21], neuroscience [22,23], and biology
[24]. An important step toward understanding of the scaling

FIG. 2. Visibility graphs constructed from the time series (blue
curve) of various process studied in this work. BTW model (top
panel), FBM series H = 0.2 (middle-top panel), FBM series H = 0.8
(middle panel), Levy walk α = 0.9 (middle-bottom panel), and Levy
walk α = 1.6 (bottom panel). Data points (nodes) are represented by
black dots and visibility lines (links) are shown by orange lines.

properties of VGs was taken by Lacasa, who showed that a
self-similar time series converts to a SF network, emphasizing
that the power-law degree distributions are related to fractality
[19,25]. Some time series are shown in Fig. 2 to be described
in the next section.

B. Correlated times series

Here we systematically study the VGs for three following
general processes which are representatives of leading classes
in statistical mechanics and nonlinear systems, namely, the
BTW sandpile model, one-dimensional (1D) fractional Brow-
nian motion (fBM), and 1D Levy processes.

(i) 2D BTW sandpile model. This model explains the
avalanche dynamics as the main building block of self-
organized critical systems like real sandpiles [26], earthquakes
[27], sun flares [28], forest fire [29], cumulus clouds [30],
Barkhausen effect in superconductors [31], and rainfall [32].
BTW model on a square L × L lattice is defined by a height
variable hi ∈ [1, 4], which is increased upon adding a grain
to a random site i so that hi → hi + 1. If hi > 4, a toppling
process starts according to which four grains leave i and each
neighboring site rise by one unit (toppling). For the boundary
sites one or two sand grains are lost. An avalanche is defined
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as the chain of the activity between two stable states. After a
size-dependent timescale, the system enters into a state where
the number of wasted grained are more or less equal to the
number of injected grains, called the stationary regime. We
study this model in the stationary regime, see Ref. [32] for de-
tails. The time series of interest here is the size of avalanches
s(t ), defined as the number of local topplings in an avalanche.

(ii) 1D fractional Brownian motion (fBM). This model is
a popular model for both short-range and long-range depen-
dent phenomena in various fields, including physics, biology,
hydrology, network research, financial mathematics, etc. [33].
fBM is controlled by the Hurst exponent H defined using the
relation

sH (t ) = 1

�(H + 1/2)

∫ t

0
(t − t ′)H−1/2dsB(t ′), (17)

where sB(t ) is the standard 1D Brownian motion. It has been
numerically has shown that for the VG of FBM and fractional
Gaussian noise (FGN), γ varies linearly with H as [25]

γfBM(H ) = afBM − bfBMH,

γfGN(H ) = afGN − bfGNH, (18)

respectively, where it was conjectured that the constants are
afBM = 3, bfBM = 2, afGN = 5, and bfGN = 2. This relation
was further improved in Ref. [34] by afBM = 3.35, bfBM =
2.87.

(iii) 1D Levy process. This model is a prototype of time-
correlated self-similar systems, defined by random flights for
which the step size s follows a power-law probability density
function, p(s) ∝ s−1−α ,where α is the step index tuning the
correlations. The Levy distribution has a long-range algebraic
tail corresponding to large but infrequent steps, so-called rare
events. For α < 2 the mean square deviation diverges with the
dynamic exponent α (superdiffusion), for which the dominant
behavior is dictated by the rare events over long times [35].

For an illustration of VG constructed by time series, we
plot time series (blue curves) that were used in this paper
(BTW, FBMH=0.2, FBMH=0.8, Levyα=0.9, and Levyα=1.6 from
top to bottom), along with the nodes (black dots) and links
(orange lines) in Fig. 2. For the fBM series by increasing the
Hurst exponent H , the data points gain more chance to be
visible by each other, and consequently the VGs correspond-
ing to the correlated fBMs are denser than the anticorrelated
ones. The situation is different for the Levy process, i.e., the
Levy flights associated with the small step index α values
contain many rare events having good visibility condition
which makes the associated VG dense.

IV. RESULTS

In this section we present the results of the simula-
tions. The BTW model was simulated in L × L square
lattice. To control the finite-size effects, we considered
L = 64, 128, 256, 512, 1024, and 2048. The size of the time
series for all of the models was considered to be N

103 =
1, 2, 4, 8, and 16 (for the BTW model N

103 = 32, 64 are
added). For simulating of the Levy process is determined
by two parameters: the step index α (explained above), and
skewness parameter β which (zero in this paper), the location

parameter (zero in this paper), and the scale parameter (unity
in this paper), see Eq. [8] of the Ref. [36].

An important check for the growing SF networks is con-
cerning their dynamic scaling properties, helping to identify
their universality classes. We first consider the generalized
degree qi(t ) ≡ √

tiki(t ), where ti is the birth time of the node
vi. For the Barabasi-Albert networks (m-BA network, where
m is the number of new links established upon adding a new
node, so that m = 1 generates a tree) the dynamic distribution
function of q satisfies [37]

p(q, t ) = t− 1
2 F (m)

BA

(
q t− 1

2
)
, (19)

where F (m)
BA (ξ ) is an m-dependent universal function. This

function exhibits the following asymptotic behavior [37],

F (m)
BA (ξ ) ∝

{
ξφm ; ξ � ξm

exp [−amξ ]; ξ  ξm,
(20)

where φm=1 = 2, φm>1 ≈ 2.9, am=1 ≈ 1.4, am>1 ≈ 2.5,
ξm=1 = 2, and ξm>1 ≈ 1.5.

For the models considered in this paper, although the uni-
versal functions are quite different, the same dynamic scaling
exponents are observed. More precisely, the data collapse
analysis depicted in Figs. 3 (top row) shows the same scaling
exponents ( 1

2 and 1
2 ) as Eq. (19). Importantly, the exponents

do not depend on H and α for fBM and Levy processes,
respectively, showing that these exponents are superuniversal.
The universal functions FBTW(ξ ), FfBM(ξ ), and FLevy(ξ ) are
all linearly increasing functions of ξ for small enough ξ ,
demonstrating that p(q, t ) ∝ t−1q for small t−1q values. For
the models considered in this paper, we found convincing
evidence that the universal function, behaves asymptotically
like (apart from some jumps, i.e., the discontinuities)

Fx(ξ ) ∝
{
ξφx ; ξ � ξx

(ln ξ )−ψx ; ξ  ξx,
(21)

where x stands for BTW, fBM, and Levy, and ξx is a crossover
point. These behaviors are depicted in Fig. 3 (bottom figures).
Within our numerical errors, the exponents consistent with
φBTW = 0.9359 ± 0.0081, φfBM = 0.9653 ± 0.0054, φLevy =
0.9485 ± 0.0075, ψBTW = 7.82 ± 0.02, ψfBM = 4.88 ± 0.03,
ψLevy = 5.22 ± 0.03, ξBTW ≈ 3, and ξfBM ≈ ξLevy ≈ 2.

To assess the Barthemly’s conjecture we consider the be-
havior of k as well as b, and the relation between them. In the
Fig. 4 we show the b − k (first row), c − k (middle row), and
b − c (bottom row) scaling relations. In each row, the finite-
size scaling of results of the BTW (first column), fBM (middle
column), and Levy (third column) processes are shown. The
insets show the behavior of η in terms of the system size (N
and L for the BTW model, and N for the others). The b-k
relation in the log-log scale for the fBM is not as straight as
the other cases. For extracting the exponents, we picked the
straight part of the graph (ignored the first and the end part
of the graph) to reach a specified accuracy, i.e., R2 = 0.99.
First observe that the data in the b − k diagrams are properly
collapsed showing the following finite-size scaling for all
models

b ∝ N−βηkη, (22)
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FIG. 3. (top row) Time-dependent probability distribution function of generalized degree for visibility graphs constructed from BTW
model (left), FBM (middle), and Levy walks (right) time series. (bottom row) Changes on the behavior of generalized degree function F (ξ )
for various regimes (small ξ in left and large ξ in right) given by Eq. (21).

introducing a new exponent β. Our numerical estimation of
these exponents are βBTW = 0.50 ± 0.03, and βfBM and βLevy

depend on H and α, respectively. Moreover, for the BTW
model, limL→∞ ηBTW = 2.50 ± 0.02 for fixed maximum N ,
and limN→∞ ηBTW = 2.50 ± 0.01 for fixed maximum L. This
serves as the first evidence of the failure of the Bathelemy’s
conjecture (CI) [7], i.e., ηBTW > ηmax. The clustering coef-
ficient relation with the degree determines the hierarchical
structure of a complex network. In addition to the Eq. (5), we
have

c ∝ k−μ and b ∝ c−ν, (23)

resulting in

η = μν. (24)

For the details of the associated fittings, see Fig. 4 for
BTW (left), fBM (middle), and Levy (right). We observed
that μBTW = 0.956 ± 0.002 and νBTW = 2.77 ± 0.01 ≈ ηBTW

μBTW

for BTW, μFBM = μFBM(H ), νFBM = νFBM(H ) for FBM and
μLevy = μLevy(α), νLevy = νLevy(α), see Fig. 6 for details.

We also analyzed the probability distribution function
(PDF) of k and b. The results are shown in the Fig. 5, the top
row of which shows the PDF of degree for BTW (left), FBM
(middle), and Levy walks (right) time series. We observed
that the relation Eq. (4) indicating SF property is valid for all
the models, with the exponent γBTW = 2.60 ± 0.01, γFBM =

γFBM(H ) (decreasing function of H) and γLevy = γLevy(α) (in-
creasing function of α). In the bottom row, the betweenness
distribution functions is plotted for these models (with the
same arrangement as the top row), revealing δBTW = 1.71 ±
0.02, δFBM = δFBM(H ) and δLevy = δLevy(α) (increasing func-
tions of H and α), see Fig. 6 for γ and δ in terms of α and
H .

Figure 6 summarizes the numerical estimations of the
critical exponents, calculated in the thermodynamics limit
N, L → ∞. The exponents run with H and α, in such a
way that γ is a decreasing (an increasing) function of H
(α) for fBM (Levy process) VGs. Our analysis shows that
the best fitting to the numerical data in the limit N → ∞
is γFBM(H ) = (3.17 ± 0.03) − (2.42 ± 0.06)H for the fBM,
which is in agreement with the previously observed relations
[25,34]. The linear fitting of γ in terms of α reveals also
that γLevy(α) = (1.69 ± 0.04) + (0.55 ± 0.05) α for the Levy
process (0.9 � α � 1.6), which is something new. The mono-
tonic increase of γ in terms of α is understood given the fact
that α controls the rare events in the Levy process, and rare
events influence the visibility pattern of the nodes in VG.
More precisely, α diminishes the abundance of rare events,
which itself enhances the visibility conditions of the nodes, so
that the degree of nodes with small k values increase, while it
decreases for the nodes with large degrees (hubs), giving rise
to an increase in γ , which is shown to be linear. Generally, one
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FIG. 4. (top row) Ensemble-averaged betweenness centrality versus the degree in log-log scale for VGs constructed from BTW model
(left), FBM (middle), and Levy walks (right) time series. The top insets indicate size dependency of the exponent η (network size N and lattice
size L for BTW model and N for the FBM series and Levy walk), while the bottom insets are showing the data collapse of the main plots.
Correlation analysis of clustering coefficient versus degree (middle row) and betweenness centrality versus clustering coefficient (bottom row)
of VG constructed from time series of BTW sandpile model (left column), FBM series (middle column), and Levy walk (right column) for
different system size in log-log scale. The inset plots illustrate size dependency of the scaling exponent (left insets) and data collapse analysis
(right insets).

expects that the betweenness increases by decreasing H since
for small H values the VGs are more sparse. The exponent
δ decreases with decreasing H , showing that this increase is
smaller for the nodes with smaller betweenness than that for
the nodes with larger betweenness. The same argument holds
for α. In Fig. 6(c) the horizontal dashed-line shows the limit
given by the Ref. [7], i.e., ηmax = 2 for SFTs. From this figure,
we see that for fBM in the anticorrelated regime 0 < H � 0.5,

the conjecture of Eq. (7) (CI) is violated, i.e., η > ηmax just
like the BTW model, while for the Levy process, η is always
smaller than 2 for all α values in [0.9,1.6] in agreement with
the conjecture.

We assert that the reason behind this considerable deviation
from the Barthelemy’s conjecture is the existence of large
fluctuations in the scaling b − k relation as first observed
and pointed out in Refs. [9–11]. This phenomena leads to
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FIG. 5. Probability distribution function of degree (top row) and betweenness centrality (bottom row) of VG constructed from time series
of various models studied in the work, BTW sandpile model (left column), FBM series (middle column), and Levy walk (right column) for
different system size. The scaling behavior of these quantities reveals that the VGs are SF. The inset plots show size dependency of the scaling
exponent (left insets) and data collapse analysis (right insets).

some peculiar consequences, like the violation of the hyper-
scaling relation Eq. (6), and also the fact that the highest
degrees are typically not the most central ones in the sense
of betweenness [9]. It is also responsible for the fractality
observed in the synthetic and real-world SF networks [11]. For
nonfractal networks, the degree and the betweenness central-
ities are strongly correlated, while in the fractal SF networks
the betweenness centrality of low degree nodes in has the
chance to be comparable to that of the hubs [11]. Such a large
fluctuation is reflected in the conditional probability p(b|k).
Figure 7 shows p(b|k = 10) in terms of b for the three cases.
Interestingly, we see that this function decays in a power-law
(heavy-tail) form for two cases BTW and fBM, while for the
Levy process the situation is completely different: it decays
exponentially with a finite width avoiding large fluctuations.
The exponents for both power-law and exponential decays
depend on the correlation parameter (H for fBM and α for
Levy). Therefore, one concludes that the width of p(b|k) is
finite for the Levy process, the characteristic of the nonfractal
SF network, while for the BTW and fBM it is diverging,
leading to large fluctuations (a characteristic of fractal SF
networks). The violation of the hyperscaling relation Eq. (6)
for the BTW model and fBM (all H values) is shown in the
upper graph in the Fig. 8, while the hyperscaling relation
remains almost valid for the Levy process for all α values.

For fBM, while the hyperscaling relation is violated for all H
values, the Barthemly’s conjecture [(CI), see Fig. 8] fails only
for 0 < H � 0.5. Although Fig. 7 shows the fluctuations for
the smaller values of H is higher (which favors the anomalous
behavior), this issue needs more analysis which is beyond the
scope of the present paper.

Before closing this section, it is worth adding notes on
clustering coefficient, being a decreasing function of k in
the real-world networks [38,39]. This decrease is a power
law for nontree SF networks like the deactivation model
(μ = 1 [40]) and other generalized phenomenological models
[41–43], while for the SF networks generated by preferen-
tially attachments c and k are uncorrelated. For the Internet
network, the exponents were found to be γ = 2.2 ± 0.1 and
δ = 2.1 ± 0.2, and also η ≈ 1 and μ ≈ 0.75 ± 0.03 [8], while
for the actor network, language network, and WWW μ varies
with γ . The Molloy and Reed (MR) algorithm and generalized
BA (GBA) predicted that η ≈ 1 and c does not depend on
k [44,45], while for the fitness model η ≈ 1.4 and c and b
decay with k [46]. In Fig. 6(d) we show μ in terms of α

and H for Levy and FBM processes respectively. For the
former it is a decreasing function of α, while for the latter
it is not monotonic, i.e., the clustering coefficient for hubs
decreases leading to larger values for μ, which has not been
observed previously. For low H values, the obtained μ is
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FIG. 6. The exponents (a) γ , (b) δ, (c) η, and (d) μ for the SF
networks corresponding to three processes: the (green) lines show
the BTW model and the error bars, the (blue) circles are for FBM,
and the (red) square symbols show the Levy results. The left vertical
axis shows the values for the FBM series, while the right-hand side
vertical axis stands for the BTW model and the Levy walk. In the
upper (lower) panel the horizontal axis α (H ) is shown for the Levy
walk (FBM series).

compatible with the values observed for the Internet network
[8].

V. BETWEENNESS-DEGREE FLUCTUATIONS FOR
THE GENERALIZED BARABASI-ALBERT MODELS

To be self-contained, it is worth inspecting the behavior of
the fluctuations, and the validity of the Barthelemy’s conjec-
ture in other SF networks, although the main concentration
of the paper is upon the VGs. The conditional distribution
function p(b|k) as a good measure for these fluctuations is
considered here for the m-Barabasi-Albert (m-BA) model as
a most popular SF network model with power-law scaling
behavior. This model is recognized as a prototypical example
of preferential attachment networks, which shares a plenty of
behavior in common with natural networks, like the lack of
an internal scale (as a necessary condition for SF networks)
[47], with (m > 1) or without (m = 1) loops. The definition
of the model is as follows: the nodes are added to the network
one by one, starting from a single node at t = 0. Once a new
node is added to the network, m new links are created to the

FIG. 7. The conditional probability distribution function p(b|k)
for various processes: BTW model (top panel), FBM series
[0.1�H � 0.8] (middle panel), and Levy walk [0.9 � α � 1.6]
(lower panel).

FIG. 8. (top panel) Hyperscaling relation analysis [Eq. (6)] for
the BTW, the FBM and the Levy walk time series. The first two
cases (the latter case) do not (do) satisfy Eq. (6). (lower panel) the
inequality δ � γ+1

2 is valid for Levy VG and FBM VG in the interval
H > 0.5, while it is invalid for the BTW VG and FBM in the interval
H � 0.5. The (green) lines show the BTW model and the error bars,
the (blue) circles are for FBM, and the (red) square symbols show
the Levy results. The left vertical axis is devoted for FBM and the
right one is for both BTW and Levy.
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×

FIG. 9. p(b|k) in terms of b for fixed k = 8 for m-BA model with
(a) m = 1, (b) m = 2, (c) m = 4, and (d) m = 8. The scale of the
vertical axis is logarithmic for all figures, but the scale is logarithmic
for the horizontal axis for panel (a) and normal for the rest.

newly generated node. The links are added probabilistically
to the nodes with highest degrees. More precisely, the prob-
ability that a link is added to a node is proportional to its
degree. In this network, the size of the network is the total
time during which the network has formed. Many statistical
properties of m-BA model has already been investigated in
the literature, like the clustering coefficient defined as loops of
order three (m > 1) [48,49], node degree correlations [50,51],
and the absence of a community structure [52] and a hierar-
chical architecture [39]. To inspect the fluctuation statistics
of m-BA model, we calculated and plotted p(b|k) in terms
of b (for fixed k = 8) in Fig. 9. We see that p(b|k) decays
exponentially with b for m > 1, while it is power law for
m = 1 for almost two decades. The latter shows that the BA
tree has large, fat tail b − k fluctuations, satisfying marginally
the Barthelemy’s predictions [Eq. (7)]. With “marginally,” we
mean that the equalities hold for BA trees, which is realized
from the exact values for the exponents γ = 3, δ = 2, and
η = 2, so that γ+1

2δ
= 1, and η = 2 (for m = 1 and m > 1

see Refs. [3,7,15,47,53,54]). Figure 10 shows γ+1
2δ

, and η in
terms of m, which are compatible with the previous results
(Table I and the references therein). The abrupt change of
the conditional distribution function from power law (m = 1)
to exponential decay (m > 1) leads directly to an abrupt

FIG. 10. (a) The validity of Eq. (7), for various amounts of m. We
see that for m = 1, the equality part of the Eq. (7) is held ( γ+1

2δ
= 1)

up to some error bar. For other m values we have γ+1
2δ

< 1. (b) The
same behavior for η is seen, and η � 2 as predicted by Barthelemy’s
conjecture.

change of exponents in this point. This is seen in the Fig. 10,
where γ+1

2δ
, and η abruptly fall from their maximum val-

ues (1 and 2, respectively) when we move from m = 1 to
m > 1 values. The exponents then grow as m increases and
asymptotically approach those for the tree BA (m = 1 case)
for m → ∞.

We also calculated f (k, η, xb) given in Eq. (9) in the
Fig. 11. We see that Eq. (8) holds for all m values, which is
consistent with the above results, and show that Eq. (7) hold
for all m values.

VI. CONCLUDING REMARKS

We considered the Barthelemy’s conjecture for the
betweenness-degree (b − k) scaling exponent for scale-free
(SF) networks, which claims that ηmax = 2, belonging to
scale-free trees (SFTs), based on which it was further conjec-
tured that δ � γ+1

2 . We analyzed the VGs for the time series of
2D BTW model, 1D fBM (controlled by the Hurst exponent
H) and 1D Levy walks (controlled by the step index α). We
numerically showed that the VGs for all of these models are
SF, with well-defined scaling exponents. A superuniversal
behavior is found for the distribution function for gener-
alized degree function p(q, t ) identical to Barabasi-Albert
network, see Eq. (19). We present evidence for violation of
Barthelemy’s conjecture. Specifically for the BTW model and
FBM with H � 0.5, η is larger than 2, and also for the BTW

TABLE I. The exponents of m-BA model, adopted from Refs. [3,7,47]. The last row concerns that validity of Eq. (7).

m = 1 m = 2 m = 3 m = 4 m = 5 Ref.

γ 3 (analytic) 3 (analytic) 3 (analytic) 3 (analytic) 2.9 ± 0.1 and analytically 3 [47]
δ 2 (analytic) 2.3 ± 0.1 (N = 104) ≈ 2.17 ≈2.17 [3,15,53]
η 2 (analytic) 1.81 ± 0.02 (N = 5 × 104) [7,15,54]
(γ + 1)/2δ 1 <1.0 <1.0
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FIG. 11. f (η, k, xb) in terms of k for m-BA model for N = 64000
and for (a) m = 1, (b) m = 2, (c) m = 4, and (d) m = 8.

model δ <
γ+1

2 , while the Barthelemy’s conjecture remains
valid for the Levy process for all α values. By analyzing
the conditional probability p(b|k) we argue that the failure
of Barthelemy’s conjecture is due to the large fluctuations
(or uncertainty) in the b − k scaling relation. This function
decays in a power-law fashion for the BTW model as well as
the FBM for all H values. This results further in a violation
of hyperscaling relation η = γ−1

δ−1 and as a result of some
emergent anomalous behavior for the BTW model and FBM
series.

In the last part of the paper we considered the m-BA model
to test the formalism that we developed in the first part of the
paper. We chose m-BA model because of its vast applications
in SF networks. We calculated p(b|k) as a function of b and
k. For m = 1 this function is a power law, while for m > 1
it decays exponentially, making BA tree very especial. Then
we calculated γ+1

2δ
and η in terms of m (Fig. 10), showing

that the Barthelemy’s conjecture works for all m values. An
abrupt change of exponents takes place when one moves from
m = 1 to m > 1 in accordance with the change of behavior
for p(b|k). Equation (8) for f (η, k, xb) was tested for various
m values, confirming that this equation (and also Barthelemy’s
conjecture) is valid for m-BA model.

APPENDIX: BARTHELEMY’S IDENTITIES

Barthelemy’s equation imply an additional strong restric-
tion to k, b, and p(b) for large enough k and b values. To see
this, we expand the Eq. (4) to the first order of 1/k and 1/b,
so that

γ = k(1 − xk ), δη = k(1 − xb), (A1)

where xk ≡ p(k+1)
p(k) , xb ≡ p(b′ )

p(b) , and b′ = bk+1. Then (CII) in
the Eq. (7) gives

2k(1 − xb) � η[k(1 − xk ) + 1]. (A2)

On the other hand, by expanding the following equation up to
the first order of 1/k and 1/b

p(k) = p(b)
db

dk
= η

b

k
p(b), (A3)

and also

p(k + 1) = p(b′)η
b′

k + 1
≈ p(b′)η

b

k

[
1 + η − 1

k

]
, (A4)

so that

xk = p(k + 1)

p(k)
= xb

[
1 + η − 1

k

]
. (A5)

Inserting this into Eq. (A2) one finds

f (η, k, xb) � 0, (A6)

where

f (η, k, xb) ≡ xbη
2 − [k + 1 − (k − 1)xb]η + 2k(1 − xb).

(A7)

This function has been shown in Fig. 1 for two different k
values. To find the analytical form of solution, we find the
roots of f (η, k, xb), which are

η±
∗ = (2xb)−1[B ±

√
B2 + 8kxb(1 − xb)],

B = k + 1 − (k − 1)xb. (A8)

Then the possible solutions are{
η > η(+)

∗
η < η(−)

∗ ,
combined with η � 2. (A9)

The upper branch (η(+)
∗ ) grows linearly with k for large

enough k values, while the lower branch saturates to η
(−)
∗ →

2. Therefore, for k → ∞, the solution η < 2 is the ex-
act solution as expected. To see this more directly, notice
that

f (η, k, xb)|k→∞ → k(1 − xb)(2 − η), (A10)

so that f (η, k, xb) � 0 (noting that 0 < xb < 1) gives η � 2.
As another example, consider the case η is about 2, i.e., η =
2−, where Eq. (A6) for finite and large k values imply that [to
O(k−2)]

1

xb
� η − 1 < 1. (A11)

Therefore, the prediction of the Barthelemy’s conjecture in
this case (η close to two) is

xb �
1

η − 1
. (A12)
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Herrmann, Phys. Rev. E 101, 032116 (2020).

[32] M. Najafi, S. Tizdast, and J. Cheraghalizadeh, Phys. Scr. 96,
112001 (2021).

[33] I. Nourdin and R. Zintout, arXiv:1311.2895.
[34] X.-H. Ni, Z.-Q. Jiang, and W.-X. Zhou, Phys. Lett. A 373, 3822

(2009).
[35] D. Applebaum, Lévy Processes and Stochastic Calculus (Cam-

bridge University Press, Cambridge, UK, 2009).
[36] K. Arias-Calluari, F. Alonso-Marroquin, and M. S. Harré, Phys.

Rev. E 98, 012103 (2018).
[37] M. K. Hassan, M. Z. Hassan, and N. I. Pavel, J. Phys. A: Math.

Theor. 44, 175101 (2011).
[38] A. Vázquez, M. Boguná, Y. Moreno, R. Pastor-Satorras, and A.

Vespignani, Phys. Rev. E 67, 046111 (2003).
[39] E. Ravasz and A.-L. Barabási, Phys. Rev. E 67, 026112 (2003).
[40] K. Klemm and V. M. Eguiluz, Phys. Rev. E 65, 036123 (2002).
[41] A.-L. Barabási, E. Ravasz, and T. Vicsek, Phys. A: Stat. Mech.

Appl. 299, 559 (2001).
[42] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. E 65, 066122 (2002).
[43] S. Jung, S. Kim, and B. Kahng, Phys. Rev. E 65, 056101

(2002).
[44] M. Newman, A.-L. Barabási, and D. J. Watts, in The Structure

and Dynamics of Networks (Princeton University Press, 2006).
[45] R. Albert and A.-L. Barabási, Phys. Rev. Lett. 85, 5234 (2000).
[46] G. Bianconi and A. L. Barabási, EPL 54, 436 (2001).
[47] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[48] M. E. Newman, SIAM Rev. 45, 167 (2003).
[49] M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).
[50] P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123

(2001).
[51] M. Boguná and R. Pastor-Satorras, Phys. Rev. E 66, 047104

(2002).
[52] S. Fortunato, Phys. Rep. 486, 75 (2010).
[53] J. Lee, Y. Lee, S. M. Oh, and B. Kahng, Chaos 31, 061108

(2021).
[54] O. Narayan and I. Saniee, Phys. Rev. E 82, 036102 (2010).

044303-11

https://doi.org/10.1073/pnas.202301299
https://doi.org/10.1103/PhysRevE.73.046108
https://doi.org/10.1103/PhysRevE.66.026101
https://doi.org/10.1103/PhysRevE.77.046105
https://doi.org/10.1140/epjb/e2004-00111-4
https://doi.org/10.1103/PhysRevE.65.066130
https://doi.org/10.1140/epjb/e2004-00131-0
https://doi.org/10.1088/1742-5468/2005/05/P05003
https://doi.org/10.1103/PhysRevE.75.056115
https://doi.org/10.1103/PhysRevE.72.046127
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1103/PhysRevLett.91.189804
https://doi.org/10.1103/PhysRevLett.91.189803
https://doi.org/10.1140/epjb/e2013-40762-2
https://doi.org/10.1103/PhysRevE.104.034116
https://doi.org/10.1016/j.physa.2011.04.020
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1007/s11071-018-4120-6
https://doi.org/10.1016/j.physa.2015.10.102
https://doi.org/10.1016/j.physa.2016.05.012
https://doi.org/10.1007/s40708-014-0003-x
https://doi.org/10.1038/s41598-021-84838-x
https://doi.org/10.1209/0295-5075/86/30001
https://doi.org/10.1103/PhysRevE.64.056104
https://doi.org/10.1029/JB094iB11p15635
https://doi.org/10.1023/A:1013301521745
https://doi.org/10.1016/j.physa.2004.05.009
https://doi.org/10.1103/PhysRevE.103.052106
https://doi.org/10.1103/PhysRevE.101.032116
https://doi.org/10.1088/1402-4896/abfb20
http://arxiv.org/abs/arXiv:1311.2895
https://doi.org/10.1016/j.physleta.2009.08.041
https://doi.org/10.1103/PhysRevE.98.012103
https://doi.org/10.1088/1751-8113/44/17/175101
https://doi.org/10.1103/PhysRevE.67.046111
https://doi.org/10.1103/PhysRevE.67.026112
https://doi.org/10.1103/PhysRevE.65.036123
https://doi.org/10.1016/S0378-4371(01)00369-7
https://doi.org/10.1103/PhysRevE.65.066122
https://doi.org/10.1103/PhysRevE.65.056101
https://doi.org/10.1103/PhysRevLett.85.5234
https://doi.org/10.1209/epl/i2001-00260-6
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1103/PhysRevE.64.016131
https://doi.org/10.1103/PhysRevE.63.066123
https://doi.org/10.1103/PhysRevE.66.047104
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1063/5.0056683
https://doi.org/10.1103/PhysRevE.82.036102

