
PHYSICAL REVIEW E 107, 044302 (2023)

Combined effects of spike-timing-dependent plasticity and homeostatic structural
plasticity on coherence resonance

Marius E. Yamakou 1,2,* and Christian Kuehn 3,4,†

1Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany
2Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstr. 22, 04103 Leipzig, Germany

3Faculty of Mathematics, Technical University of Munich, Boltzmannstrasse 3, 85748 Garching bei München, Germany
4Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria

(Received 14 November 2022; revised 10 February 2023; accepted 23 March 2023; published 13 April 2023)

Efficient processing and transfer of information in neurons have been linked to noise-induced resonance
phenomena such as coherence resonance (CR), and adaptive rules in neural networks have been mostly linked
to two prevalent mechanisms: spike-timing-dependent plasticity (STDP) and homeostatic structural plasticity
(HSP). Thus this paper investigates CR in small-world and random adaptive networks of Hodgkin-Huxley
neurons driven by STDP and HSP. Our numerical study indicates that the degree of CR strongly depends, and in
different ways, on the adjusting rate parameter P, which controls STDP, on the characteristic rewiring frequency
parameter F , which controls HSP, and on the parameters of the network topology. In particular, we found
two robust behaviors. (i) Decreasing P (which enhances the weakening effect of STDP on synaptic weights)
and decreasing F (which slows down the swapping rate of synapses between neurons) always leads to higher
degrees of CR in small-world and random networks, provided that the synaptic time delay parameter τc has
some appropriate values. (ii) Increasing the synaptic time delay τc induces multiple CR (MCR)—the occurrence
of multiple peaks in the degree of coherence as τc changes—in small-world and random networks, with MCR
becoming more pronounced at smaller values of P and F . Our results imply that STDP and HSP can jointly
play an essential role in enhancing the time precision of firing necessary for optimal information processing
and transfer in neural systems and could thus have applications in designing networks of noisy artificial neural
circuits engineered to use CR to optimize information processing and transfer.

DOI: 10.1103/PhysRevE.107.044302

I. INTRODUCTION

Noise is an inherent part of many complex systems and has
been observed to induce a wide variety of phenomena [1–5].
In the case of neural systems, noise-induced resonance phe-
nomena, such as stochastic resonance [3,6–8], self-induced
stochastic resonance (SISR) [9–12], inverse stochastic reso-
nance [12–15], and coherence resonance (CR) [16–19], have
been shown to play important functional roles in information
processing, including amongst others the detection of weak
input signals in neural networks [20] and the local optimal
information transfer between the input and output spike in
neurons [14].

Due to the importance of these noise-induced resonance
phenomena in neural information processing and transfer, the
research on their dynamics in single neurons and neural net-
works with different levels of complexity has been extensively
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investigated over the past decades. The literature on the topic
is abundant, including the effects of different types of noise
[10,21,22], network size and topology [23–28], various spatial
distributions on resonance [29], electrical synaptic couplings
[17,30], inhibitory or excitatory chemical synaptic couplings
[30], hybrid of electrical and chemical synaptic couplings
[31], time delay in the synaptic couplings [25,32], and time-
varying strength of synaptic couplings [33]. The interplay
between different noise-induced resonance phenomena has
also been investigated—e.g., the interplay between CR and
SISR in multiplex neural networks [17,18] and the interplay
between SR and ISR [34] in a basic neural circuit. The control
of stochastic resonance in experiments [35,36] and the res-
onance induced by chaos has also been extensively studied
[37–40].

However, to this day, insufficient attention has been de-
voted to the behavior of these noise-induced resonance
phenomena in adaptive neural networks. The effects of
the inherently adaptive nature of neural networks on these
noise-induced phenomena and hence on neural information
processing and transfer are important and cannot be over-
looked, especially when a deep understanding of neural
dynamics is required. Adaptation in neural networks precisely
refers to the ability to change the strength of the synaptic cou-
plings over time and/or the architecture of the neural network
topology via some specific rules. Adaptive rules in neural
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networks have been mostly linked to two important mecha-
nisms: (i) spike-timing-dependent plasticity (STDP) and (ii)
structural plasticity (SP).

STDP describes how the synaptic weights get modified
by repeated pairings of pre- and postsynaptic membrane
potentials with the sign and the degree of the modifica-
tion dependent on the relative timing of the neurons firing.
Depending on the precise timing of the pre- and postsy-
naptic action potentials, the synaptic weights can exhibit
either long-term potentiation (LTP)—persistent strengthen-
ing of synapses—or long-term depression (LTD)—persistent
weakening of synapses [41–43].

On the other hand, SP describes the mechanisms that
rewire connectivity between neurons over time by alter-
ing (creating, pruning, or swapping) synaptic connections
between neurons, thereby changing the architecture of the
network or the brain as a whole. The initial evidence for
SP came from histological studies of spine density follow-
ing new sensory experience or training [44]. Today, there is
good evidence that the microconnectome, which describes
the connectome at the level of individual synapses, rewires
[45,46]. Moreover, experiments suggest that the rewiring of
cortical circuits contributes to the reorganization of neural
firing during developmental experience-dependent plasticity
in the visual cortex [47] and the rewiring involves changing ei-
ther the number of synapses or the location of those synapses
[48].

The question of brain networks adhering to specific archi-
tectures, including small-world and random networks, despite
their time-varying dynamics was recently considered [49,50].
Homeostasis is the ability of a system to maintain a relatively
stable state that persists despite changes in the system’s evo-
lution. It is argued that SP must be accompanied by some
homeostatic mechanisms that prevent neural networks from
losing the architectures required for optimal information pro-
cessing and transfer [51]. It has been shown that small-world
and random networks can benefit from homeostasis via an in-
crease in the efficiency of information processing [52]. Thus,
in the present study, we focus on small-world and random
networks driven by homeostatic structural plasticity (HSP),
i.e., time-varying small-world and random networks that ad-
here to their respective topology over time.

Combining STDP and other forms of homeostatic plas-
ticity rules, such as synaptic scaling [53], has provided
knowledge on how to keep neural network dynamics in a
stable and biologically plausible regime [54] and to support
nontrivial computations underlying many optimization tasks
[55]. Motivated by these studies, we focus, in the present
paper, on one noise-induced resonance phenomenon, namely,
CR in adaptive neural networks driven by both STDP and
HSP.

CR occurs when the regularity of noise-induced oscilla-
tions of an excitable system without a periodic input signal
is a nonmonotonic function of the noise amplitude or another
system parameter [16,26]. Important cases of CR occur when
the system remains sufficiently close to a Hopf bifurcation
[16,18] or a saddle-node bifurcation of limit cycles [56]. As
we pointed out earlier, most of the previous literature on CR
reports that the behavior of this noise-induced phenomenon
is in nonadaptive neural networks. The studies investigating

CR in adaptive neural networks have considered only STDP.
For example, in [57], it is found that CR depends significantly
on the features of STDP and connectivity in Newman-Watts
small-world neural networks. It is also demonstrated that the
network structure plays a constructive role in the degree of
CR: the degree of CR reaches a peak when the number of
random shortcuts is intermediate. Moreover, as the adjusting
rate parameter of the STDP increases, the average coupling
strength of the network is weakened. Consequently, the de-
gree of CR largely deteriorates. The same study also shows
that more connections are needed to optimize the temporal
coherence-related random shortcuts with a larger adjusting
rate of the STDP.

In [58], it is found that in a Newman-Watts small-world
neural network, multiple CR induced by the time delay of the
STDP can be either enhanced or suppressed as the adjusting
rate of STDP changes, depending on the number of added
random shortcuts in the network. In [59], it is found that in a
scale-free neural network with autaptic time delay, as the ad-
justing rate parameter of STDP increases, multiple coherence
resonance enhances and becomes strongest at an intermediate
value of this adjusting rate parameter, indicating that there is
optimal STDP that can most strongly enhance the multiple CR
induced by time delay.

Here we consider CR in time-varying neural networks
driven by STDP and HSP. Thus the overarching scientific
question of this work is to determine whether and, if so, how
STDP and HSP can jointly affect the degree of CR in small-
world and random neural networks. To address this main
question, we investigate the following questions in small-
world and random networks. (i) How do the adjusting rate
of the STDP rule and the characteristic rewiring frequency
of the HSP rule jointly affect the degree of CR? (ii) How
do the synaptic time delay, the rewiring frequency of the
HSP rule, and the adjusting rate of the STDP rule jointly
affect the degree of CR? (iii) How do the average degree
of network connectivity, the rewiring frequency of the HSP
rule, and the adjusting rate of the STDP rule jointly affect the
degree of CR? (iv) How do the rewiring probability of the
Watts-Strogatz small-world network, the rewiring frequency
of the HSP rule, and the adjusting rate of the STDP rule jointly
affect the degree of CR? We address these questions using
extensive numerical simulations.

The numerical results indicate that the degree of CR de-
pends in one general way on parameters controlling STDP
and HSP and, in various ways, on the interval in which
network topology parameters lie. For example, it is found
that decreasing the STDP and HSP parameters (P and F ,
respectively) always leads to higher degrees of CR in small-
world and random networks, provided that the synaptic time
delay parameter τc is fixed to some suitable values. More-
over, increasing the synaptic time delay τc induces multiple
CR (MCR) in small-world and random networks, with MCR
becoming more pronounced as the STDP and HSP parameters
decrease. On the other hand, the degree of CR is found to vary
nonmonotonically when the network parameters, including
the rewiring probability, average degree, and synaptic time
delay, vary.

The rest of the paper is organized as follows In Sec. II, we
describe the mathematical neural network model, the STDP
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learning rule, and the strategy of HSP that would allow the
time-varying small-world and random networks to adhere to
their respective architecture. In Sec. III, we describe the com-
putational methods used. In Sec. IV, we present and discuss
numerical results. We summarize and conclude in Sec. V.

II. MODEL DESCRIPTION

A. Neural network model

Unlike the mathematically simpler but biophysically less
relevant neuron models (e.g., the FitzHugh-Nagumo model
[60]), the more complicated Hodgkin-Huxley (HH) [61] neu-
ron model can provide experimentally testable hypotheses that
are mature enough to guide experiments in vivo and vitro.
Thus, as a paradigmatic model with well-known biophysical
relevance, we study the effects of STDP and HSP in a network
of HH neurons, whose membrane potential is governed by

Cm
dVi

dt
= − gmax

Na
m3

i hi(Vi − VNa ) − gmax
K

n4
i (Vi − VK )

− gmax
L

(Vi − VL ) + Isyn
i (t ),

(1)

where the variable Vi, i = 1, . . . , N, represents the membrane
potential (measured in mV) of neuron i and t is the time
(measured in ms). The capacitance of the membrane of each
neuron is represented by Cm = 1 μF/cm3. The conductances
gmax

Na
= 120 mS/cm2, gmax

K
= 36 mS/cm2, and gmax

L
= 0.3

mS/cm2 respectively denote the maximal sodium, potassium,
and leakage conductance when all ion channels are open. The
potentials VNa = 50.0 mV, VK = −77.0 mV, and VL = −54.4
mV are the reversal potentials for sodium, potassium, and leak
channels, respectively.

m3
i hi and n4

i in Eq. (1) are respectively the mean portions
of the open sodium and potassium ion channels within a
membrane patch, while xi = {mi, hi, ni} represent auxiliary
dimensionless [0,1]-valued dynamical variables representing
the sodium activation, sodium inactivation, and potassium ac-
tivation, respectively. The dynamics of these gating variables
(xi = mi, hi, ni ), depending on the voltage-dependent opening
and closing rate functions αxi (Vi ) and βxi (Vi), are given by

dxi

dt
= αxi (Vi )(1 − xi ) − βxi (Vi )xi + ξxi (t ), (2)

where the rate functions are given by

αmi (Vi ) = (Vi + 40)/10

1 − exp [−(Vi + 40)/10]
,

βmi (Vi ) = 4 exp [−(Vi + 65)/18],

αhi (Vi ) = 0.07 exp [−(Vi + 65)/20],

βhi (Vi ) = 1

1 + exp [−(Vi + 35)/10]
, (3)

αni (Vi ) = (Vi + 55)/100

1 − exp [−(Vi + 55)/10]
,

βni (Vi ) = 0.125 exp [−(Vi + 65)/80].

ξxi (t ) (xi = {mi, hi, ni}) in Eq. (2) represent ion channel
noises in the HH neurons. We will use the subunit noise as the

ion channel noises [62,63], where ξxi (t ) (xi = {mi, hi, ni}) are
given by independent zero mean Gaussian white noise sources
whose autocorrelation functions are given as

〈ξmi (t )ξmi (t
′)〉 = 2αmi (Vi )βmi (Vi)

ρNaAi[αmi (Vi) + βmi (Vi )]
δ(t − t ′),

〈ξhi (t )ξhi (t
′)〉 = 2αhi (Vi )βhi (Vi)

ρNaAi[αhi (Vi) + βhi (Vi )]
δ(t − t ′), (4)

〈ξni (t )ξni (t
′)〉 = 2αni (Vi )βni (Vi )

ρK Ai[αni (Vi) + βni (Vi )]
δ(t − t ′),

where ρNa and ρK are the sodium and potassium channel
densities, respectively, and Ai is the membrane patch area
(measured in μm2) of the ith neuron. It is worth noting that
the membrane patch area in a neuron refers to the area of
the cell membrane that is being studied or measured. It is not
necessarily the same as the total surface area of the neuron or
the soma (cell body). Neuroscientists often use patch-clamp
electrophysiology to study the electrical properties of neurons.
This technique involves attaching a small glass pipette to the
surface of a neuron and creating a patch of the membrane
that is then used to measure the neuron’s electrical activity.
The patch size can vary depending on the experimental setup
and researchers can choose to study membrane patches from
different parts of the neuron, including the soma, dendrites,
and axon. So, the membrane patch area refers specifically to
the area of the cell membrane that is being studied and it may
or may not be the same as the total surface area of the neuron
or soma. For simplicity, we assume that all the neurons in the
network have the same membrane patch area, i.e., we choose
A1 = A2 = · · · = AN = A.

B. Synapses and STDP rule

The term Isyn
i (t ) in Eq. (1) models the inhibitory and uni-

directional chemical synapses between the neurons and also
controls the STDP learning rule between these connected
neurons. The synaptic current Isyn

i (t ) of the ith neuron at time
t is given by

Isyn
i (t ) = −

N∑
j=1( �=i)

�i j (t )gi j (t )s j (t )[Vi(t ) − Vsyn], (5)

where the synaptic connectivity matrix L[= {�i j (t )}] has
�i j (t ) = 1 if the neuron j is presynaptic to the neuron i;
otherwise, �i j (t ) = 0. The synaptic connection is modeled as
a time-varying small-world network or a time-varying ran-
dom network. The small-world and the random network are
generated using the Watts-Strogatz algorithm [64], where, for
a given average degree 〈k〉, the value of the rewiring proba-
bility β ∈ [0, 1] in the algorithm will determine whether we
generate a small-world network [i.e., when β ∈ (0, 1)] or a
completely random network (i.e., when β = 1). This study
does not consider regular networks (i.e., when β = 0). The
control parameters of the network topology are the average
degree 〈k〉 and the rewiring probability β.

The fraction of open synaptic ion channels at time t of
the jth neuron is represented by s j (t ) in Eq. (5) and its time
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evolution is governed by [57]

ds j

dt
= 2(1 − s j )

1 + exp
[−Vj (t−τc )

Vshp

] − s j, (6)

where Vj (t − τc) is the action potential of the presynaptic
neuron j at earlier time t − τc; τc (in the unit of ms) is delayed
time which will be used as a control parameter of the chem-
ical synapses. Vshp = 5.0 mV determines the threshold of the
membrane potential above which the postsynaptic neuron i is
affected by the presynaptic neuron j.

The weight of the synaptic connection from the presynaptic
jth neuron to the postsynaptic ith neuron is represented by
gi j (t ) in Eq. (5). According to the STDP mechanism, with
increasing time t , the synaptic strength gi j for each synapse
is updated with a nearest-spike pair-based STDP rule [43].
The synaptic coupling strength gi j (t ) update via the synaptic
modification function M, which depends on the current value
of the synaptic weight gi j (t ) and which is defined as follows
[59]:

gi j (t + 	t ) = gi j (t ) + 	gi j,

	gi j = gi j (t )M(	t ), (7)

M(	t ) =
⎧⎨
⎩

P exp (−|	t |/τp) if 	t > 0,

−D exp (−|	t |/τd ) if 	t < 0,

0 if 	t = 0,

where 	t = ti − t j ; ti (or t j) represents the spiking time of
the ith ( jth) neuron. The amount of synaptic modification is
controlled by the adjusting potentiation and depression rate
parameters of the STDP rule, represented by P and D, respec-
tively. The potentiation and depression temporal windows of
the synaptic modification are controlled by τp and τd , respec-
tively.

Experimental studies have demonstrated that the temporal
window for synaptic weakening is approximately the same as
that for synaptic strengthening [65–67]. Synaptic potentiation
is consistently induced when the postsynaptic spike generates
within a time window of 20 ms after the presynaptic spike and
depression is caused conversely. Furthermore, STDP is usu-
ally viewed as depression dominated. Thus, in this study, we
set the temporal window parameters at τp = τd = 20 ms [67]
and D/P = 1.05 and we choose P as the control parameter of
the STDP rule.

C. Time-varying networks and HSP rule

Here, we consider the network to have a small-world
structure [68–71], constructed by the Watts-Strogatz network
algorithm [64], whose Laplacian matrix is a zero row sum
matrix with average degree 〈k〉 and rewiring probability β ∈
(0, 1). To study the effects of HSP, i.e., the effects of time
dependence of the network topology such that it adheres to
a small-world topology as time advances, we implement the
following strategy for the time evolution of synapses (edges):
at each integration time step dt , if there is an edge between
two distant neighbors, it is rewired to a nearest neighbor of one
of the neurons (nodes) with probability (1 − β )F dt . If the
edge is between two nearest neighbors, then with probability
βF dt , it is replaced by a connection to a randomly chosen
distant node. In the case of a random network (i.e., when

β = 1 in Watts-Strogatz network algorithm), we implement
the following strategy for the time evolution of edges: at each
integration time step dt , if there is an edge between node i and
j, it will be rewired such that node i ( j) connects to any an-
other node excluding j (i) with probability (1 − 〈k〉

N−1 )F dt . We
notice that, with these strategies, the network topology (small-
world or random) is always preserved as time advances.

In the current work, the control parameter of HSP will
be the characteristic rewiring frequency parameter F , which
reflects the time-varying nature of the edges after each (inte-
gration) time step dt . Larger values of F reflect more rapid
switching of the synapses. It is important to note that, in real
neural networks, the synapses may change at different rates
depending on factors such as the developmental stage of the
network and/or environmental stimuli. Thus, in the current
work, it is reasonable to investigate a large range of rewiring
frequencies, F ∈ [0.0, 1.0] Hz. However, the rewiring fre-
quencies are typically expected to be small in real neural
networks [72]. Thus the numerical simulations of our HH
neural network with small values of F are probably the most
relevant indicators of the behavior of CR in real neural net-
works.

It is important to understand how STDP affects HSP and
vice versa. From the STDP and HSP rules described above,
it is clear that the STDP rule, which is controlled by P
in our study, does not affect the HSP rule, which is con-
trolled by the rewiring probabilities (1 − β )F dt , βF dt , and
(1 − 〈k〉

N−1 )F dt . However, HSP can affect STDP (even at a
fixed value of P) because the constant swapping of neighbors
does not give the newly connected neurons enough time to
stabilize their synaptic weight to a saturated value via LTD
(since, in our case, we have D/P = 1.05 > 1 or LTP if we had
D/P < 1). This is why HSP can affect the coupling strength
between connected neurons and thus affect synchronization,
which can, in turn, affect coherence resonance, as we shall
further explain.

III. COMPUTATIONAL METHOD

The flow of control in the simulations is presented at the
end of the paper. The two outermost loops in the pseudocode
are on the parameters P and F , resulting in Fig. 2. Each of the
other parameters replaces the parameter in the outermost loop
(i.e., P) to get results presented in the rest of the figures.

To measure the degree of regularity of the spiking activity
induced by the mechanism of CR in the networks, we use
the inverse coefficient of variation—an important statistical
measure based on the time intervals between spikes [16,73]
and which is related to the timing precision of information
processing in neural systems [74].

For N = 100 neurons, we numerically integrate Eqs. (1)–
(6) with the STDP learning rule of Eq. (7) and the HSP
strategies described above using the Euler-Maruyama algo-
rithm [75] with the time step dt = 0.005 ms for a total
integration time of T = 2.5 × 103 ms. The results shown in
the next section were averaged over 20 independent real-
izations for each set of parameter values and random initial
conditions to warrant reliable statistical accuracy with respect
to the small-world and random network generations and nu-
merical simulations. For each realization, we choose random
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FIG. 1. Spatiotemporal activity of the membrane potential variable V (in mV) in (a)–(c) small-world network with β = 0.25 and (d) random
network with β = 1. (a) A = 400 μm2: incoherent activity with 
 = 7.56. (b) A = 4.0 μm2: coherent activity with 
 = 54.10 and period of
oscillation τ = 15.95 ms. (c) A = 0.15 μm2: incoherent activity with 
 = 2.12. (d) A = 4.0 μm2: coherent activity with 
 = 54.56 and
period of oscillation τ = 15.95 ms. Other parameters: P = 0.1 × 10−5, F = 1.0 × 10−3 Hz, τc = 13.0 ms, and 〈k〉 = 5.

initial points [Vi(0), xi(0)] for the ith (i = 1, . . . , N) neuron
with uniform probability in the range of Vi(0) ∈ (−75, 40),
xi(0) ∈ (0, 1), and xi(0) = {mi(0), hi(0), ni(0)}. As with all
the quantities calculated, we have carefully excluded the
transient behavior from simulations. After a sufficiently
long transient time of T0 = 2.0 × 103 ms, we start record-
ing the neuron spiking times t�

i (� ∈ N counts the spiking
times).

To prevent unbounded growth, negative conductances (i.e.,
negative coupling strength), and elimination of synapses

(i.e., gi j = 0), we set a range with the lower and up-
per bounds: gi j ∈ [gmin, gmax] = [0.0001, 0.35], where gmax =
0.35 mS/cm2 is in the range of the maximum synaptic con-
ductances [0.3,0.5] mS/cm2 usually measured in the standard
Hodgkin-Huxley neuron [76,77] and the lower bound gmin =
0.0001 is set to ensure not to miss any effects that occur
outside of classical parameter ranges. Moreover, the initial
weight of all excitable synapses is normally distributed in
the interval [gmin, gmax], with mean g0 = 0.185 and standard
deviation σ0 = 0.02.

FIG. 2. Inverse coefficient of variation 
 in the rewiring frequency F and adjusting rate P parameter space for (a1) small-world network
with β = 0.25, 〈k〉 = 5, and τc = 13.0 ms, and (b1) random network with β = 1, 〈k〉 = 5, and τc = 13.0 ms. The corresponding variations of
the average coupling strength G in the networks in (a1) and (b1) are shown in (a2) and (b2), respectively. The corresponding variation in the
degree of phase synchronization R in the networks in (a1) and (b1) are shown in (a3) and (b3), respectively.
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For N = 100 coupled neurons, the reciprocal of the nor-
malized standard deviation of the mean interspike intervals,
denoted here by 
, measures the average variability of spike
trains of the network [78] (i.e., a measure of the regularity
of the noise-induced spiking activity), and is computed as
[73,79]


 = 〈τ 〉√
〈τ 2〉 − 〈τ 〉2

, (8)

where 〈τ 〉 = N−1 ∑N
i=1〈τi〉 and 〈τ 2〉 = N−1 ∑N

i=1〈τ 2
i 〉, with

〈τi〉 and 〈τ 2
i 〉 representing the mean and mean squared in-

terspike interval (over time), τi = t�+1
i − t�

i > 0, of neuron i.
We determine the spike occurrence times t�

i from the instant
t when the membrane potential variable Vi(t ) crosses the
threshold Vth = 0.0 mV. A larger (lower) value of 
 indicates
a higher (lower) degree of CR, i.e., a higher (lower) average
temporal coherence of the spiking neurons. At this point, we
emphasize the fact that 
 is just a measure of the regularity
of the noise-induced spiking activity and not a measure of the
efficiency of the control method, which compares the relative
time scale of the neuronal dynamics and the networks’ up-
dates to the total number of time steps in the integration. The
occurrence of coherent noise-induced spiking activity, i.e.,
CR, crucially depends on whether the system’s parameters are
fixed sufficiently near but before a bifurcation threshold. How
coherent or incoherent (as measured by 
) the noise-induced
spiking activity is depends on how close the parameters are
to the bifurcation threshold. Varying one or some of these
parameters (e.g., τc, F ) will vary the system’s proximity from
the bifurcation thresholds and, consequently, cause a variation
in the degree of coherence indicated by the variation in 
.

Furthermore, we notice that the network size considered
in this work (N = 100) is significantly smaller than those of
the real neural networks in the brain—the order of 80 billion
neurons. Thus the results presented in this work are a test of
principle. For the moment, we will only focus on whether and,
if so, how STDP and HSP can jointly affect the degree of CR.
Future research projects could investigate large-network-size
effects on the degree of CR in the presence of both STDP and
HSP.

In Figs. 1(a)–1(c), we show examples of the neural activity
in a small-world (β = 0.25) neural network consisting of N =
100 neurons, while also illustrating the phenomenon of CR
with respect to the channel noise intensity, which is controlled
by the membrane patch area A. We notice from Eq. (4) that
membrane patch area A appears in the denominator. Thus
the intensity of channel noise is inversely proportional to the
membrane patch area A—the larger (smaller) A is, the weaker
(stronger) the channel noise intensity. With smaller A, ions
scramble for the few available channels. In comparison, with
larger A, their movements become more deterministic as a
sufficiently large number of opened channels is now available.

In Fig. 1(a), we apply a weak channel noise intensity by
fixing the membrane patch area at a large number, A = 400
μm2. The neural activity indicates incoherent spiking (with a
low inverse coefficient of variation of 
 = 7.56), with some
neurons even incapable of spiking. In Fig. 1(b), we increase
the membrane patch area to A = 4.0 μm2 and the neural

activity achieves resonance during which the spiking becomes
very coherent (with a high 
 = 54.10) with a period (average
interspike interval) of τ = 15.95 ms. In Fig. 1(c), when we ap-
ply a strong channel noise by fixing A = 0.15 μm2, the neural
activity becomes very incoherent (with a very low 
 = 2.12).
In Fig. 1(d), we show an example of the neural activity in
the random (β = 1) neural network at peak coherence (with a
high 
 = 54.56) and a period (average interspike interval) of
τ = 15.95 ms.

As we pointed out earlier, CR occurs when the regularity of
noise-induced oscillations is a nonmonotonic function of the
noise amplitude (in our case A) or another system parameter.
So, throughout the rest of this paper, we fix the membrane
patch area at its resonant value, i.e., A = 4.0 μm2, and study
CR with respect to the STDP, HSP, and the network parame-
ters (P, F τc, 〈k〉, β).

Furthermore, before presenting and discussing the results,
it is important to point out already that the spiking frequency
at resonance in the networks in Fig. 1 is given by 1/τ ≈ 63
Hz, which can be lost when the system parameters change and
push the system into a stronger excitable regime leading to
incoherent oscillations like in Figs. 1(a) and 1(c). Therefore,
unlike what one would most probably expect, the observed be-
haviors of the degree of CR do not emerge due to the interplay
between the rewiring frequency and the spiking frequency
at resonance (which may even be lost for certain parameter
values). Hence we provide theoretical explanations for our
results from the perspective of phase synchronization.

IV. NUMERICAL RESULTS AND DISCUSSION

We recall that we aim to study the combined effect of
the HSP strategy (controlled by the characteristic rewiring
frequency parameter F ) and (i) the STDP rule (controlled by
the adjusting rate parameter P), (ii) the time delay of chemical
synapses τc, (iii) the average degree of the networks 〈k〉, and
(iv) the rewiring probability of the network β, on the degree
of coherence of spiking in small-world and random networks.
We summarize in Table I our results on the variations in the
degree of CR.

A. Combined effects of F and P

In Figs. 2(a1)–2(a3), we respectively depict in the F − P
plane the contour plots of 
 measuring the degree of CR, the
average coupling strength of the network G, and the degree of
phase synchronization R for a time-varying small-world net-
work with time delay τc = 13.0 ms, average degree 〈k〉 = 5,
and rewiring probability β = 0.25. To see how the average
coupling strength G ∈ [0.0001, 0.35] and the degree of phase
synchronization R ∈ [0, 1] of the network changes with F and
P, we will average the synaptic weights and the Kuramoto
order parameter over the entire population and time:

G =
〈

1

N2

N∑
i=1

N∑
j=1

gi j (t )

〉
t

, R =
〈∣∣∣∣ 1

N

N∑
j=1

exp [iφ j (t )]

∣∣∣∣
〉

t

,

(9)

where | · | represents the absolute value and 〈 · 〉t the average
over time in the interval t ∈ [T0, T ]. In the argument of the
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TABLE I. Summary of the combined effect of STDP, HSP, and network parameters on the degree of CR. The inclined arrows ↗ and ↘
represent an increase and a decrease in the value of a parameter in the interval indicated, respectively. The vertical arrow ↓ represents a rapid
decrease in the degree of CR, in contrast to gradual increase ↗ or decrease ↘ in the degree of CR. For example, the row with P↘ or ↗;〈k〉↘
[2,30]; F↘ or ↗ [0,1]; 
↘ means that increasing or decreasing P, decreasing 〈k〉 in [2,30], and decreasing or increasing F in [0,1] will lead
to a decrease in 
.

Topology STDP parameter Network parameters HSP parameter Degree of CR

Small-world P↘ or ↗ τc = 13.0 ms, 〈k〉 = 5, β = 0.25 F↗ [0,1] 
↘
P↗ τc = 13.0 ms, 〈k〉 = 5, β = 0.25 F↘ or ↗ [0,1] 
↘
P↘ τc = 13.0 ms, 〈k〉 = 5, β = 0.25 F↘ or ↗ [0,1] 
↗
P↗ τc↘ or ↗ {13, 26, 42, 58, 76} F↘ or ↗ [0,1] 
↘
P↘ τc↘ {13, 26, 42, 58, 76} F↘ [0,1] 
↗

P↘ or ↗ τc↘ or ↗ [0, 100] − {13, 26, 42, 58, 76} F↘ or ↗ [0,1] 
↘
P↘ or ↗ 〈k〉↘ [2,30] F↘ or ↗ [0,1] 
↘

P↘ 〈k〉↗ [2,30] F↘ or ↗ [0,1] 
↗
P is low β↘ or ↗ [0.05,1) F↘ or ↗ [0, 10−3] 
↗
P is low β↘ or ↗ [0.05,1) F↘ or ↗ (10−3, 1] 
↘

P is medium β↘ [0.05,1) F↘ [0,1] 
↘
P is large β↘ or ↗ [0.05,1) F↘ or ↗ [0, 10−1] 
↘
P is large β↘ or ↗ [0.5,0.95) F↘ or ↗ [10−1, 1] 
↗

Random P↘ or ↗ τc = 13.0 ms, 〈k〉 = 5 F↗ [0,1] 
↓
P↗ τc = 13.0 ms, 〈k〉 = 5 F↘ or ↗ [0,1] 
↘ or ↓
P↘ τc = 13.0 ms, 〈k〉 = 5 F↘ [0,1] 
↗
P↗ τc↘ or ↗ {13, 26, 42, 58, 76} F↘ or ↗ [0,1] 
↘ or ↓
P↘ τc↘ {13, 26, 42, 58, 76} F↘ [0,1] 
↗

P↘ or ↗ τc↘ or ↗ [0, 100] − {13, 26, 42, 58, 76} F↘ or ↗ [0,1] 
↘ or ↓
P↘ 〈k〉↘ [2,30] F↘ or ↗ [0, 10−3] 
↘

P is low or medium 〈k〉↗ [2,30] F↘ or ↗ [0, 10−3] 
↗
P is low or medium 〈k〉↘ [2,23] F↘ or ↗ (10−3, 1] 
↓
P is low or medium 〈k〉↗ (23,30] F↘ or ↗ [10−3, 1] 
↗

P is large 〈k〉↘ [2,30] F↘ or ↗ [0,1] 
↘
P is large 〈k〉↗ [2,30] F↘ or ↗ [0,1] 
↗

exponential function, i = √−1 and the quantity φ j (t ) =
2π� + 2π (t − t�

j
)/(t�+1

j
− t�

j
) with t ∈ [t�

j
, t�+1

j
) approxi-

mates the phase of the jth neuron and linearly increases over
2π from one spike to the next. The degree of phase synchro-
nization increases as R ∈ [0, 1] increases.

As we pointed out earlier, when the effect of depression
dominates that of potentiation (i.e., when D is larger than
P), the decrement of synaptic strength is stronger than its
increment. Hence the smaller the value of P, the larger the
network’s average coupling strength G.

In Fig. 2(a1), the contour of 
 is plotted against F and P
for a small-world network. The result indicates that, for static
(i.e., when the rewiring frequency is F = 0 Hz) and slowly
varying small-world networks (i.e., when F ∈ [0, 0.5 × 10−3]
Hz), 
 increases (indicating a higher degree of coherence) as
P decreases. For smaller values of P(< 1.0 × 10−5), as the
rewiring frequency increases (i.e., when F > 0.5 × 10−3 Hz),

 decreases (indicating lower degree of coherence).

In Fig. 2(a2), the contour of G is plotted against F and P
for the small-world network of Fig. 2(a1). First, because P is
smaller than D (i.e., D/P = 1.05), the depression dominates
the synaptic modifications as the average coupling strength
G ∈ [0.11, 0.18] is always less than the network’s mean initial
synaptic strength g0 = 0.185. We observe that, at each value
of F , G always increases as P decreases. And for each value of
P, as F increases in [0,1], G shows a nonmonotonic behavior
with a maximum value occurring at F ≈ 10−1 Hz.

In Fig. 2(a3), the contour of R is plotted against F and P
for the small-world network of Fig. 2(a1) and whose average
coupling strength is depicted in Fig. 2(a2). We observe that
the degree of phase synchronization R increases with decreas-
ing P—an immediate consequence of the average coupling
strength G increasing with decreasing P. We observe that, at
each value of F , R increases as P decreases. And for each
value of P, as F increases in [0,1], R also shows a nonmono-
tonic behavior with a maximum value occurring at F ≈ 10−1

Hz, just as with G in Fig. 2(a2). It is worth noting that the high-
est degree of phase synchronization achieved is never full, i.e.,
the largest value of the order parameter is R ≈ 0.16 �= 1. This
is because LTD dominates (as a result of setting D/P = 1.05)
in the network, with the average synaptic weight between the
neurons weakening below gmax/2. Nevertheless, the network’s
synchronization degree is strong enough to affect the degree
of CR.

In Figs. 2(b1)–2(b3), we present the contours of 
, G, and
R for the random network, respectively. First, we notice that,
similar to a small-world network, smaller P (and consequently
larger G and R) and smaller F (< 1.5 × 10−4 Hz), the ran-
dom network produces a larger 
 (i.e., higher coherence).
The differences in the behavior of coherence in both types
of networks are as follows. (i) In the random network, inde-
pendent of the value of P (and, consequently, independent of
the value of G), higher rewiring frequencies (F > 10−3 Hz)
permanently deteriorate the degree of coherence, as indicated
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by the very low value of 
 ≈ 0.10. On the other hand, in
the small-world network, we can still have a high degree
of coherence with 
 � 30, depending on the value of P <

2.5 × 10−5. (ii) In the random network, a significantly slower
switch of synaptic connections, i.e., when F < 1.5 × 10−4 Hz
(compared to F < 0.5 × 10−3 Hz in the small-world network)
is optimal for the best degree of coherence occurring in the
light yellow regions of Figs. 2(a1) and 2(b1).

Comparing Figs. 2(a1)–2(a3) with a small-world topology,
we observe that, in general, 
 increases to its highest values
as G increases (causing R to also increase), especially at
smaller values of F < 0.5 × 10−3 Hz. For a random network
in Figs. 2(b1)–2(b3), with even smaller values of F < 1.5 ×
10−4 Hz, a similar behavior is observed.

The fact that the degree of coherence becomes better at
larger G (i.e., smaller P) and smaller F in both small-world
and random networks can be intuitively explained as follows.
First, we recall that the chemical synapses are unidirectional
and so information from the presynaptic neuron j can be
transferred to the postsynaptic neuron i, but not the other way
around (as it will have been if bidirectional electrical synapses
mediated the links). Secondly, the noise in the network is
local, i.e., ξxi (t ) (i = 1, 2, . . . , N) in Eq. (2) are independent
Gaussian processes. The locality of these stochastic processes
naturally introduces some heterogeneity in the noise-induced
spiking times of the neurons in the network. Thirdly, we
also note that connected neurons stay permanently connected
(i.e., when F = 0 Hz) or remain connected for a relatively
long time (i.e., when 0 < F � 1 Hz) before switching their
connections to previously unconnected neurons.

In both cases, the better degree of synchronization (light
and dark yellow regions in Fig. 2(a3) bounded by F ∈
[0, 10−1] Hz and P < 2.5 × 10−5 and in Fig. 2(b3) bounded
by F ∈ [0, 10−1) Hz and P < 1.5 × 10−5) induced by larger
values of G (dark yellow regions in Fig. 2(a2) bounded
by, e.g., P < 1.0 × 10−5 when F ∈ [0, 10−3] and P < 5.0 ×
10−5 when F ∈ [10−2, 10−1] Hz and the light yellow in
Fig. 2(b2) bounded by F ∈ [0, 100] Hz and P < 1.6 × 10−5)
is maintained for a relatively long time (0 < F � 1 Hz) or
permanently (F = 0 Hz).

Now, this relatively stronger degree of synchronization
may occur via two scenarios. (I) The postsynaptic neurons
i with less coherent spiking times synchronizing the presy-
naptic neurons j with more coherent spiking times. This
would then lead to overall more coherent spiking times of
the entire network as indicated by the light yellow regions
in Figs. 2(a1) and 2(b1) with a higher degree of coherence

 � 50. (II) The postsynaptic neurons i with more coherent
spiking times synchronizing the presynaptic neurons j with
less coherent spiking times. In this case, we get overall less
coherent spiking times of the entire network as indicated by
the lower degree of coherence with 
 < 40 represented by all
the nonyellow colors in Fig. 2(a1) (i.e., when F > 0.5 × 10−3

Hz) and Fig. 2(b1) (i.e., when F > 1.5 × 10−4 Hz).
In Figs. 2(a1) and 2(b1), we observe a deterioration of

the degree of coherence [especially in the random network in
Figs. 2(b1)] for small P < 2.5 × 10−5 and higher frequencies
(F > 10−3 Hz), even though, for this same range of values
of P and F , the average coupling strength G is relatively
strong [see Figs. 2(a2) and 2(b2)], leading to the relatively

high degree of synchronization [see Figs. 2(a3) and (b3)]
observed when the networks were static or slowly varying.
This observation can be explained by the occurrence of syn-
chronization via scenario (II) described above, in addition to
the fact that this degree of synchronization is unstable due to
rapidly switching links between the neurons.

In Figs. 2(a3) and 2(b3), we can observe some fluctuations,
i.e., several small light yellow regions in the dark yellow
region. To explain this observation, it is worth noting that
the numerical difference between the values of R in the light
yellow and dark yellow areas is minimal. Secondly, because
the synaptic weights exhibit long-term depression (i.e., weak-
ening of synaptic strength as P decreases), it becomes harder
for now weakly coupled neurons to (phase) synchronize their
noise-induced spiking activity. Hence the average over the
number of realizations of the simulations sometimes leads to
minimally different values of the order parameter R as P and
F change.

In the remaining subsections of this paper, we study the
effects of HSP and STDP on CR by looking at the behavior
of 
 with respect to F at three different values of P when
the network control parameters, including the time delay of
the connections τc, the average degree 〈k〉, and the rewiring
probability β of the networks, are independently varied. The
three values of P selected are such that we have (i) a large
average synaptic strength G, i.e., P = 0.1 × 10−5, leading to a
relatively high degree of synchronization, (ii) an intermediate
average synaptic strength G, i.e., P = 3.0 × 10−5, leading to
an intermediate degree of synchronization, and (iii) a small
average synaptic strength G, i.e., P = 12.5 × 10−5, leading to
a low degree of synchronization.

B. Combined effect of F, τc, and P

In Figs. 3(a1)–3(a3), we show the contour plots of 


against F and the time delay τc in a small-world network at
three values of P. In Fig. 3(a1), it is seen that the smallest
value of P = 0.1 × 10−5 (i.e., when the weakening effect of
STDP on the synaptic weights is the least pronounced) and
a small value of F < 10−3 Hz (i.e., when the links switch
slowly or remain static), the spiking coherence of the network
is optimized only at some values of the time delay, i.e., at
τc = {13, 26, 42, 58, 76}.

In Fig. 3(a2), we increase the weakening effect of STDP
on the synaptic weights by increasing the value of the adjust-
ing rate to P = 3.0 × 10−5. It is shown that, as τc increases,

 also intermittently increases and decreases, indicating the
presence of MCR. However, the intermittent peak values of

 have smaller [compared to Fig. 3(a1)] amplitudes. Further-
more, at the intermittent values of τc where 
 peaks, F has a
less significant [compared to Fig. 3(a1)] effect on 
.

In Figs. 3(b1)–3(b3), we show the contour plots of 


against F and τc in the random network at the three values
of P. For F < 10−3 Hz, the results are qualitatively the same
as in the small-world network in Figs. 3(a1)–3(a3). However,
irrespective of the value of τc, when F � 10−3 Hz, there is
a sudden drop in the degree of CR (
 < 5), leading to the
complete muting of MCR.

In Figs. 3(a3) and 3(b3), we further increase the weakening
effect of the STDP rule on the synaptic weights by increasing
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FIG. 3. Inverse coefficient of variation 
 in the rewiring frequency F and time delay τc parameter space in (a1)–(a3) a small-world network
with β = 0.25 and 〈k〉 = 5 at the indicated values of P and (b1)–(b3) a random network with β = 1 and 〈k〉 = 5 at the indicated values of the
P.

the value of the adjusting rate to P = 12.5 × 10−5 in the
small-world and random network, respectively. Irrespective of
F and τc, we observe that, in both types of networks, the de-
gree of coherence is degraded significantly to very low levels,
alongside the disappearance of MCR. It has been shown in
[18] that decreasing the coupling strength in a time-delayed
FHN neural network increases the excitability of the network,
making it more difficult and even impossible to achieve CR.
In this viewpoint, the deterioration of coherence alongside the
disappearance of MCR with increasing P can be explained
by the fact that larger values of P (leading to a weakening of
the time-delayed synaptic weight) induce a stronger degree of
excitability, making it difficult to achieve a reasonably high
degree of CR.

Next, we provide a theoretical explanation for the ob-
servation where the spiking time behavior of the neurons
intermittently becomes ordered and less ordered, exhibiting
MCR as τc increases. First, we recall that, if a deterministic
delayed differential equation (DDE) ẋ = f (x(t ), x(t − τc)),
where τc is the time delay, possesses a solution x(t ) with
period τ , then x(t ) also solves ẋ = f (x(t ), x(t − τc − nτ )),
for all positive integers n ∈ N. Our stochastic system of
HH delayed differential equations could satisfy this property
if it behaves like a deterministic delayed differential equa-
tion (DDE). This would be possible if our stochastic delayed
HH equations could admit (quasi-) periodic solutions, i.e.,
(quasi-) deterministic spiking times. We know that (quasi-)
deterministic spiking times can be achieved via CR, a phe-
nomenon during which the interspike intervals in a time series
are (almost) the same, leading to a period of neural activity
τ (i.e., the averaged interspike interval of the time series)
which should be (approximately) equal or at least of the order
of the distance between the periodic horizontal CR bands in
Fig. 3. The distance between the first four periodic horizon-
tal CR bands in Fig. 3 is approximately 15.75 ms, while in
Fig. 1(b) the period of neural activity τ at peak coherence is
τ = 15.95 ms—they are pretty close; hence the phenomenon
of MCR.

Furthermore, we recall that the degree of CR always en-
hances (degrades) when we get closer (farther away) to the
bifurcation thresholds [16,80–82]. The time delay in the non-
linear form of chemical synapses given in Eq. (6) has been
shown to modulate the excitability of neural networks [18,73].
Therefore, the observation where the peak values of 
 occur-
ring at values τc = 13, 26, 42, 58, and 76 ms (corresponding
to the horizontal bands of peak coherence in Fig. 3) decrease
as τc increases can be explained as follows: as the value of τc

increases, the network gets farther away from the bifurcation
thresholds [i.e., its degree of excitability is enhanced as τc

increases—confirmed by the simulations (not shown) where
stronger noise intensities are required to induce spikes from
the excitable regime when the time delay becomes larger],
leading to a decrease in the degree of coherence provoked
by the rarity of spikes. In this case, our stochastic delayed
HH equations no longer behave like a deterministic DDE with
the periodic property of the solutions stated above. Hence the
gradual and, eventually, the complete appearance of MCR as
τc increases.

C. Combined effect of F, 〈k〉, and P

In Figs. 4(a1)–4(a3), we show the contour plots of 


against F and the average degree 〈k〉 in a small-world net-
work (β = 0.25) at the same three previous values of P,
with the time delay at τc = 13.0 ms, i.e., a value of τc,
from Fig. 3, at which we have the highest degree of CR.
In each of these figures, we observe that, irrespective of the
value of F , larger values of 〈k〉 induce a higher degree of
CR. This behavior can be explained by the fact that, with
higher values of 〈k〉, the network becomes denser, leading to
more interaction between the neurons in the network. This
can, in turn, facilitate synchronization in the network where
less coherent neurons (with low 
 values) synchronize more
coherent neurons (with high 
 values). This has an over-
all effect of increasing the average 
 of the network, thus
enhancing CR.

044302-9



MARIUS E. YAMAKOU AND CHRISTIAN KUEHN PHYSICAL REVIEW E 107, 044302 (2023)

FIG. 4. Inverse coefficient of variation 
 in the rewiring frequency F and average degree 〈k〉 parameter space in (a1)–(a3) a small-world
network with β = 0.25 and τc = 13.0 ms at the indicated values of P and (b1)–(b3) a random network with β = 1 and τc = 13.0 ms at the
indicated values of P.

On the other hand, as the network becomes less dense (i.e.,
with smaller values of 〈k〉), all the neurons in the network
can no longer so easily synchronize (in particular, of course,
those which are not connected); hence the averaged 
 of the
network is calculated with low 
 values (of less coherent
neurons which cannot easily synchronize due to sparsity of
the network) and high 
 values (of more coherent neurons).
This has the overall effect of shifting the averaged 
 to lower
values, thus deteriorating CR. Moreover, in Figs. 4(a1)–4(a3),
we observe that smaller values of P increase the degree of CR.
This is explained by the fact that smaller P strengthens the
synaptic weights between neurons [see Figs. 2(a2) and 2(b2)]
and hence improves their synchronization [see Figs. 2(a3) and
2(b3)], which leads to a better degree of CR.

In Figs. 4(b1)–4(b3), we show the contour plots of 


against F and the average degree 〈k〉 in the random network
(β = 1) at the same three previous values of P, with the
time delay at τc = 13.0 ms. First, we observe that, in these
figures, increasing 〈k〉 increases the degree of CR for the same
reasons we gave for the case of the small-world network.
However, in contrast to the small-world network where only
〈k〉 significantly affects the degree of CR, both 〈k〉 and F
significantly affect the degree of CR in the random network.
In particular, we observe that, in Figs. 4(b1) and 4(b2), for
F ∈ [0, 10−3] Hz we have a higher degree of CR as 〈k〉 in-
creases. However, when F > 10−3 Hz, the high degree of CR
deteriorates significantly—comparing Figs. 4(b1)–4(b3), we
see that increasing the value of P (i.e., weakening the synaptic
weights and hence poorer synchronization) leads to a lower
degree of CR.

D. Combined effect of F, β, and P

All the results presented for the small-world network in
Figs. 1–4 are obtained with a rewiring probability of β =
0.25. In this subsection, for the sake of completeness, we ex-
plore the variation in the degree of CR when the small-world
networks are generated with different values of the rewiring
probability.

In Figs. 5(a1)–5(a3), we show the contour plots of 


against F and the rewiring probability β ∈ [0.05, 1] (which
increases with the number of random shortcuts in the small-
world network) at the same three previous values of P, a time
delay of τc = 13.0 ms, and a relatively low average degree of
〈k〉 = 5.

In Fig. 5(a1), with a very low value of P (which strengthens
the synaptic weights of the networks), both the small-world
(β ∈ [0.2, 1)) and random (β = 1) networks have a very high
degree of CR if the rate at which the networks rewire is
relatively low, i.e., F ∈ [0, 10−3] Hz. We also see that, if the
number of random shortcuts in the small-world network is low
(i.e., β < 0.2), then all the values of F do not significantly
affect the high degree of CR. But this high degree of CR
deteriorates significantly for β > 0.2 and for F > 10−3 Hz.

In Fig. 5(a2), with an intermediate value of P, the behavior
of CR in the random network (i.e., when β = 1) remains
qualitatively the same when compared to Fig. 5(a1), except
that the degree of CR has decreased because of the weakening
of the synaptic weights induced by the larger value of P. How-
ever, in the small-world networks, i.e., when β ∈ [0.05, 1), the
behavior of CR has changed qualitatively and quantitatively.
In particular, we observe that, for β ≈ 0.05, higher rewiring
frequencies F > 10−3 Hz are required to enhance the degree
of CR. This behavior contrasts with that in Fig. 5(a1), where
higher F gradually deteriorates the degree of CR.

In Fig. 5(a3), we have a relatively large value of P. For the
random network (i.e., β = 1), all rewiring frequencies deterio-
rate the degree of CR, in contrast to Figs. 5(a1) and 5(a2) with
low and intermediate values of P, where the random network
will exhibit a high degree of CR at small values of F (< 10−3)
and a low degree of CR at higher values of F (> 10−3). For the
small-world networks (i.e., β ∈ [0.05, 1)), all the values of β

and the F deteriorate the degree of CR, except for relatively
higher values β ∈ [0.55, 0.85) and F (> 10−1), where the in-
termediate degree of CR is maintained from the two previous
cases with low and intermediate values of P.

In Figs. 5(b1)–5(b3), we show the contour plots of 


against F and the rewiring probability β ∈ [0.05, 1] (which
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FIG. 5. Inverse coefficient of variation 
 in the rewiring frequency F and rewiring probability β parameter space in (a1)–(a3) small-
world (0.05 � β < 1) and random (β = 1) networks with τc = 13.0 ms and 〈k〉 = 5 at the indicated values of P and (b1)–(b3) small-world
(0.05 � β < 1) and random (β = 1) networks with τc = 13.0 ms and 〈k〉 = 10 at the indicated values of P.

increases with the number of random shortcuts in the small-
world network) at the same three previous values of P, a time
delay of τc = 13.0 ms, and a higher [compared to Figs. 5(a1)–
5(a3)] average degree of 〈k〉 = 10. First, when we compare
Figs. 5(b1)–5(b3), we see that, again, larger values of P dete-
riorate the degree of CR. Secondly, for the random networks
(i.e., when β = 1), a combination of slowly varying con-
nections (i.e., when F < 10−3 Hz) with low or intermediate
values of P enhances the degree of CR. However, at higher
values of P, even these small rewiring frequencies (F < 10−3

Hz) cannot enhance the low degree of CR. For the small-world
networks, i.e., when β ∈ [0.05, 1), the relatively higher value
of the average degree 〈k〉 = 10 promotes more interaction in
the denser network, which favors synchronization in addition
to the stronger synaptic weights induced by the low and inter-
mediate values of P in Figs. 5(b1) and 5(b2).

In Fig. 5(b3), the relatively larger value of P has deterio-
rated the degree of CR. However, higher rewiring frequencies
(F > 10−2 Hz) induce a more enhanced degree of CR in
contrast to Fig. 5(b1), where the highest degree of CR is
achieved with relatively lower rewiring frequencies. Thus
Fig. 5 indicates that by increasing the number of random
shortcuts (which increases with β ∈ [0.05, 1) in a small-
world network), lower rewiring frequencies (F < 10−1 Hz)
outperform the higher ones (F > 10−1 Hz) when the STDP
parameter is small, i.e., P = 0.1 × 10−5. But when P becomes
larger (e.g., P = 12.5 × 10−5), higher rewiring frequencies
(F > 10−1 Hz) outperform the lower ones (F < 10−1 Hz) as
β ∈ [0.05, 1) increases.

V. SUMMARY AND CONCLUSIONS

In summary, we have numerically investigated the phe-
nomenon of CR in adaptive small-world and random neural
networks driven by STDP and HSP. It is found that the
degree of CR strongly depends on the adjusting rate param-
eter P, which controls STDP, and the characteristic rewiring
frequency parameter F , which controls HSP. Decreasing P

(which increases the strengthening effect of STDP on the
synaptic weights) and decreasing F (which slows down the
swapping rate of synapses between neurons) leads to a higher
degree of CR in both the small-world (depending on the
value of rewiring probability β) and random networks. It is
found that the synaptic time delays τc can induce multiple
CR (MCR) in both small-world and random networks, with
MCR becoming more pronounced at smaller values of both
P and F . Within the P − F parameter regime in which MCR
occurs, increasing the time delay reduces the peak values of
the inverse coefficient of variation and, thus, the degree of
CR. It is also found that irrespective of the rewiring frequency
F , the degree of CR increases when the average degree 〈k〉 in
small-world networks increases. However, for a given average
degree and rewiring frequency, higher values of the adjusting
rate parameter P turn to deteriorate the degree of CR.

On the other hand, for random networks, the increase in
the degree of CR with the increase in the average degree 〈k〉
depends on the rewiring frequency. With higher rewiring fre-
quencies (F > 10−3 Hz), a larger average degree is required
to enhance the degree of CR in the random network. Further-
more, it is also found that, while large values of F (>10−1 Hz)
can either deteriorate (when P is small) or enhance (when P
are relatively large) the degree of CR in small-world networks
(with β ∈ [0.05, 1)), in random networks (when β = 1) they
can only deteriorate the degree of CR, regardless of the value
of P.

It is worth noting that the results presented in this paper
may be sensitive to the choice of rewiring strategies used
to maintain the small-worldness and the complete random-
ness of the time-varying small-world and random networks,
respectively. At this point, nevertheless, our results have the
implication that inherent background noise, the prevalent
spike-timing-dependent plasticity, and homeostatic structural
plasticity can jointly play a significant constructive role in en-
hancing the time precision of firing, when the right amount of
time delays, average degree, and randomness are introduced
in the neural systems.
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There is strong experimental evidence that acetylcholine,
monoamines, and other signaling molecules can control STDP
[83]. Also, the control of synapses in the brain has become
more accessible via drugs that affect neurotransmitters [84].
Thus our results could guide the control of synapses and
STDP for optimal neural information processing via CR in
electrophysiological experiments. Neuromorphic engineering
is an active and rapidly developing field where engineers
designed bioinspired artificial neural circuits to process in-
formation differently to perform specific computational tasks
[85,86]. Thus our results could find applications in the design

of ad hoc artificial neural circuits engineered to use CR to
optimize signal processing.
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