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Directional coupling detection through cross-distance vectors
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Inferring the coupling direction from measured time series of complex systems is challenging. We propose
a state-space-based causality measure obtained from cross-distance vectors for quantifying interaction strength.
It is a model-free noise-robust approach that requires only a few parameters. The approach is applicable to
bivariate time series and is resilient to artefacts and missing values. The result is two coupling indices that
quantify coupling strength in each direction more accurately than the already established state-space measures.
We test the proposed method on different dynamical systems and analyze numerical stability. As a result, a
procedure for optimal parameter selection is proposed, circumventing the challenge of determining the optimal
embedding parameters. We show it is robust to noise and reliable in shorter time series. Moreover, we show that
it can detect cardiorespiratory interaction in measured data. A numerically efficient implementation is available
at https://repo.ijs.si/e2pub/cd-vec.
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I. INTRODUCTION

Complex systems found in nature can often be considered
as many interacting subsystems. Subsystems are often inher-
ently connected and cannot be considered isolated from each
other, which raises the question of how they interact with each
other. In this article, we propose a method that belongs to
the family of state-space distance approaches. It is capable
of detecting and quantifying interactions in a computationally
efficient way. It can be applied to bivariate time series to quan-
tify the coupling strength in both directions. Furthermore, it is
applicable to both linear and nonlinear coupling.

When considering two subsystems, there are four possi-
bilities for the direction of their interaction. They can be
independent, unidirectionally coupled (in either direction), or
bidirectionally coupled. Another property often of interest is
the nature of coupling, e.g., linear or nonlinear. Additionally,
the coupling can be time-dependent, which poses a new prob-
lem in detecting it. The problem becomes even more complex
in the case of more than two subsystems.

Typically, we measure a subsystem. For example, consider
the system of a human body. We can characterize the cardiac
subsystem by measuring the heart’s electrical activity with
an electrocardiogram. By performing such measurements for
each subsystem, we obtain time series. The goal is to infer
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the direction and the nature of the interactions between the
subsystems from measured time series.

This article shows that the proposed coupling indices can
infer the coupling direction for various regular and chaotic
systems. It can quantify the coupling strength in both direc-
tions for unidirectional or bidirectional coupling. It turns out
to be noise robust and also efficient for shorter time series.
Most importantly, compared to the most prominent state-
space approaches, the proposed indices more accurately and
reliably detect the coupling direction. We discuss the possible
pitfalls of state-space approaches in detail. We present an in-
depth analysis of the behavior of the proposed quantities. As a
result, we propose a procedure of selecting optimal parameter
values, thus achieving a robust performance. In such a way,
we circumvent the problem of optimal embedding parameters
selection. Additionally, we present a means of dealing with
artefacts or missing values. Finally, we test the effectiveness
of the approach on measured cardiorespiratory data.

Related work

Identifying causal relationships arises in different fields
that deal with complex systems. For this purpose, different
methods for detecting coupling between subsystems are be-
ing developed. Some of the most widely used are Granger
causality, information theory, phase dynamics, and state-space
methods. Prominent examples of areas where they are ap-
plicable are physiology [1,2], neuroscience [3], earth system
sciences [4], ecology [5,6], and economics [7,8].

A brief overview of coupling detection methods is
given below. For a more comprehensive overview of the
available approaches, the prospective reader is referred to the
overviews [9,10] and references therein.
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Granger causality. Coupling detection methods often fol-
low the idea of Granger causality [7]. The method in the
original work is based on fitting a vector autoregressive model.
Based on this idea, numerous other methods were proposed,
such as partial directed coherence [11], which is a multivariate
frequency approach to the original Granger causality.

Information transfer. A widely used family of methods for
studying interactions is based on information theory. Most
commonly studied is the transfer entropy [12], which quan-
tifies information transfer from one subsystem to another. It
is mathematically equivalent to conditional mutual informa-
tion [13]. It is a model-free method that can detect both linear
and nonlinear coupling. Entropy methods rely on estimating
multidimensional probability distributions, which can be chal-
lenging for shorter time series.

Phase dynamics. For oscillatory systems, methods based
on the oscillation phase can be used. Rosenblum and
Pikovsky [14] proposed a method for quantifying asymmetry
in the interaction between two oscillating subsystems. Phase
transformation can be used together with information mea-
sures to more accurately quantify information flow between
oscillators [15]. Time-frequency approaches can also be used,
such as wavelet phase coherence [16] for detecting linear
interactions, and wavelet bispectral analysis [17] for detecting
nonlinear interactions.

State-space methods. In weakly coupled bivariate systems,
close states of the driven subsystem are mapped to close states
of the driving subsystem. The opposite effect is much smaller.
Different methods quantifying this effect in both directions
have been proposed [18–20].

Bivariate versus multivariate. An important distinction is
between bivariate and multivariate methods. In the case of
more than two interacting subsystems, all of them must be
accounted for when analyzing interactions. This necessity led
to the multivariate approach of many of the mentioned ap-
proaches. Partial Granger causality [21] is an extension to the
Granger causality that excludes the effects of latent variables.
Causation entropy [22] is a measure similar to transfer entropy
that considers multiple variables. Multivariate methods, how-
ever, often lead to the curse of dimensionality, which means
the estimation of multivariate measures becomes increasingly
problematic with an increasing dimension of the measured
system.

II. CROSS-DISTANCE VECTORS

Consider a pair of unidirectionally coupled subsystems
x(t ) = (x1(t ), . . . , xnx (t )) and y(t ) = (y1(t ), . . . , yny (t )). If
the coupling direction is y → x, their time evolution is
described by

dx(t )

dt
= f (x, t ) + g(x, y), (1a)

dy(t )

dt
= h(y, t ), (1b)

where g(x, y) is the coupling function. We consider time-
independent coupling functions, though they generally can
depend on time. Our goal is to define a measure for the
magnitude and direction of coupling from the observed time

series. For g(x, y) �= 0, the subsystems, and therefore their
trajectories, are not independent.

The trajectories of both subsystems x(t ) and y(t ) are ob-
served at equally spaced times ti = t0 + i�t for i ∈ Z. Thus,
we obtain time series of these trajectories [x(ti ) : i ∈ Z] and
[y(ti ) : i ∈ Z]. We assume that �t is sufficiently small to cap-
ture all the necessary information. The influence of �t and
potential downsampling are described in detail in Sec. IV E.
Furthermore, we assume that the signals do not contain any
trends, no commensurate frequency components, and other
trivial artefacts that can be easily removed by a simple pre-
processing.

Most often, only one dimension of a subsystem is mea-
sured. Thus, a single time series of length N is obtained.
Therefore, we consider time series of one-dimensional values
and omit the bold notation.

We split the time series into segments of length L. There are
a total of N − L + 1 segments for each time series. Segments
at a time moment ti are defined as

ox
i = (x(ti ), x(ti+1), . . . , x(ti+L−1)), (2)

oy
i = (y(ti ), y(ti+1), . . . , y(ti+L−1)). (3)

Furthermore, let us assume a measure of the similarity of
two segments, i.e., a distance between two vectors

d
(
ox

i , ox
j

) = ∥∥ox
i − ox

j

∥∥. (4)

We ask two questions:
(i) If two segments of the driven subsystem ox

i and ox
j at

times ti and t j are similar, are the segments at those times of
the driving subsystem oy

i and oy
j also similar?

(ii) Inversely, if two segments of the driving subsystem oy
i

and oy
j at times ti and t j are similar, are the segments at those

times of the driven subsystem ox
i and ox

j also similar?
To clarify, we ask whether the following statements are true

in the coupling direction y → x:

(i) d
(
ox

i , ox
j

) ≈ 0 ⇒ d
(
oy

i , oy
j

) ≈ 0, (5)

(ii) d
(
oy

i , oy
j

) ≈ 0 ⇒ d
(
ox

i , ox
j

) ≈ 0. (6)

It is well known that statement (5) is true and (6) is false for
weakly coupled oscillators [18]. We provide an explanation of
why this is the case for different subsystems in Appendix A.
State-space methods take advantage of this property to infer
the coupling direction from measured time series. In what fol-
lows, we propose a measure that quantifies coupling strength
in each direction more accurately than the already established
state-space indices.

A. Cross-distance vector algorithm

First, we construct segments (2) and (3) and choose a
distance measure (4). In this article, we use

d
(
ox

i , ox
j

) =
√√√√ 1

L

L∑
m=1

(x(ti+m−1) − x(t j+m−1))2. (7)

Next, we construct the distance matrix

Dx, Dx
i j = d

(
ox

i , ox
j

)
(8)
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FIG. 1. Schematic representation of the algorithm for calculating
the cross-distance vector vy→x in (11).

of size (N − L + 1) × (N − L + 1), which contains the dis-
tances between all pairs of segments. We similarly calculate
the distance matrix of the other time series,

Dy, Dy
i j = d

(
oy

i , oy
j

)
. (9)

The goal is to rearrange the ith row of Dy in the same order
as if the ith row of Dx was to be sorted in ascending order. This
is achieved by calculating an index permutation Px

i so that the
ith row is sorted in ascending order under that permutation.
We do this for every row and obtain N − L + 1 permutations.

Now, we sort the ith row of Dy according to the permuta-
tion Px

i for all rows, and we obtain the matrix

Dy→x, Dy→x
i j = Dy

i,Px
i ( j) . (10)

This matrix highlights whether segments of y are similar at
times at which segments of x are similar. For example, if the
first few elements of the ith row of matrix (10) are the smallest
entries in that row, this indicates that statement (5) is true. To
evaluate this for all rows, we finally average out the rows of
the matrix to obtain the cross-distance vector

vy→x, v
y→x
j = 1

N − L + 1

∑
i

Dy→x
i j . (11)

Similarly, we calculate the matrix Dx→y and the vector vx→y

by inverting the roles of x and y. The vector vy→x can be used
to assess the truth of statement (5) and thus detect coupling
in the direction y → x. Conversely, the vector vx→y can be
used to assess the truth of statement (6) and thus detect
coupling in the direction x → y. The complete algorithm is
schematically shown in Fig. 1.

It should be noted that the first entry v
y→x
0 of cross-distance

vectors (11) will always be precisely zero due to zero diag-
onals of the distance matrices. So, v

y→x
1 is the first nonzero

entry. In the subsequent analysis, we will always omit the zero
values in graphs.

B. Coupling index

We can define two coupling indices to quantify coupling
strength in each direction. Ideally, an index is zero when there
is no coupling and increases with increased coupling. Let us
again consider unidirectionally coupled subsystems (1). Mind

FIG. 2. A generic example of the behavior of cross-distance vec-
tors vy→x and vx→y in different limits of the coupling strength. The
direction of coupling in the example is y → x. The orange arrows
represent increasing coupling strength for the three weak-coupling
examples. Note the appearance of tails in the beginning of vy→x , but
not in vx→y.

that the coupling direction is y → x, i.e., x is the driven sub-
system and y is the driving subsystem. Consider three limits of
the coupling strength: no coupling, weak coupling, and strong
coupling. The general behavior of cross-distance vectors in
these limits is shown in Fig. 2.

The two subsystems x and y are independent if there is no
coupling, i.e., g(x, y) = 0 in (1a). Therefore, one subsystem’s
sorting permutation Px

i is random for the subsystem y, and the
cross-distance vector (11) is expected to be roughly constant.
In the limit of infinite time series, both vy→x and vx→y will be
constant. There are examples in which this is not the case (e.g.,
uncoupled subsystems that contain an oscillatory component
with the same frequency), but these are exceptions.

In the limit of strong coupling, the term g(x, y) in (1a)
causes the subsystems to synchronize. In this case, the cross-
distance vectors generally cannot be used to infer the coupling
direction.

If there is weak coupling in the direction y → x, the
values of vy→x change significantly from a constant since
statement (5) is true. The beginning of vy→x decreases [note
the initial tails in Fig. 2(a)]. Apart from this initial tail, the
bulk of vy→x remains roughly constant (though often gains an
increasing trend). Conversely, the other cross-distance vector
vx→y stays roughly constant without the initial tail since state-
ment (6) is false. This is shown in Fig. 2(b).

The decrease in the initial values of vy→x is what allows
us to detect the coupling direction from the cross-distance
vectors, since the tail is present due to the term g(x, y) �= 0 in
Eq. (1a). Note that if a similar term also exists in (1b) (which
means that coupling is bidirectional), the initial values of both
cross-distance vectors vy→x and vx→y exhibit an initial tail. To
obtain the coupling indices, i.e., two values quantifying the
detected coupling strength in each direction, we must some-
how quantify this effect. While this can be done in different
ways, we propose a simple but effective approach.
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We define the coupling index cy→x, which quantifies cou-
pling strength in the direction y → x, as the normalized
difference between the means of v

y→x
j for small j and for

larger j,

cy→x = V y→x
k1+1:k2

− V y→x
1:k1

V y→x
1:k2

, (12)

where

V y→x
i: j = 1

j − i + 1

j∑
k=i

v
y→x
k . (13)

The possible range of k1 and k2 is 1 � k1 < k2 � N − L.
To quantify coupling strength in the other direction, we

calculate cx→y by swapping x and y. Defined in this way,
coupling indices are zero in the absence of coupling and
increase with increasing coupling strength (at least in the limit
of weak coupling). Due to normalization, indices will roughly
range from 0 to 1. They can be slightly negative if there is no
coupling due to finite time series, as seen in most examples
in this article. This is, however, not a problem, as a negative
index can be taken as a strong indicator of the absence of
coupling.

The purpose of Eq. (12) is to quantify the prominence of
the initial tail. The parameter k1 defines the part of vy→x that
includes only the initial tail. Conversely, k2 defines the subse-
quent part, where the rate of increase of vy→x is significantly
smaller.

One might argue that this selection is arbitrary. Other
options, such as kurtosis, could be explored to quantify the
prominence of the initial tail. For simplicity, we quantify
coupling strength with (12) in the subsequent analysis.

Related state space causality measure. From the family
of the state-space approaches, our index (12) is closest to
M(Y |X ) [19]. It will therefore be compared to and used as
a benchmark to test the reliability of the proposed indices c.
Using our notation, M(Y |X ) is defined as

M(Y |X ) = 1

N − L + 1

N−L+1∑
i=1

Ri(Y ) − Rk
i (Y |X )

Ri(Y ) − Rk
i (Y )

, (14)

where

Ri(Y ) = 1

N − L

N−L+1∑
j=1, j �=i

Dy
i j, (15a)

Rk
i (Y ) = 1

k

k+1∑
j=2

Dy→y
i j , (15b)

Rk
i (Y |X ) = 1

k

k+1∑
j=2

Dy→x
i j . (15c)

Roughly speaking, M(Y |X ) quantifies the mean of the initial
tail of vy→x compared to the mean of the whole vector, which
is highly influenced by possible trends in the vector. This
undesired property is also present in other state-space mea-
sures. On the other hand, the indices (12) quantify only the
prominence of the initial tail, ignoring possible trends and thus
resulting in smaller values in the direction without coupling,
which is desired.

FIG. 3. The cross-distance vectors for the system of two cou-
pled harmonic oscillators (18). The system parameters are ω1 =
0.83, ω2 = 2.11, the time series parameters are N = 104,�t = 0.05,
the segment length is L = 10, and the coupling index parameters are
k1 = 100, k2 = 1000.

C. An example

Consider the system of analytically solvable unidirection-
ally coupled harmonic oscillators,

ẍ = −ω2
1x + ε(y − x), (16)

ÿ = −ω2
2y. (17)

The coupling direction is y → x. The solutions to these
equations are oscillations with frequencies ω2 and

√
ω2

1 + ε.
For example, given the initial conditions x(0) = 1, ẋ(0) =
0, y(0) = 1, ẏ(0) = 0, the solution is

x(t ) = 1

ε + ω2
1 − ω2

2

(
ε cos(ω2t )

+ (
ω2

1 − ω2
2

)
cos

(√
ε + ω2

1t
))

,

y(t ) = cos(ω2t ). (18)

Since we have the analytical solution, we can verify state-
ments (5) and (6) directly.

Two segments of x will be similar when the phases of
both of its oscillatory components will match, one of them
being cos(ω2t ). Since this is also the component of y(t ), its
segments at those times will also be similar. This confirms
that the statement (5) is indeed true.

If two segments of y(t ) are similar, the phase of only one
oscillatory component of x(t ) will match. In contrast, the
phase of the other component can take any value [unless the
frequencies of the components of x(t ) are commensurable,
which is an exception]. This confirms that the statement (6)
is indeed false.

Numerically calculated cross-distance vectors are shown in
Fig. 3. As expected, the beginning of vy→x is significantly
smaller than the bulk [Fig. 3(a)], and vx→y stays roughly
constant at nonzero coupling [Fig. 3(b)].
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Additionally, Fig. 3 shows that the coupling index of the
direction of coupling cy→x increases with increased coupling
parameter ε. In contrast, the coupling index in the direction
without coupling cx→y remains roughly constant. By simply
comparing the values, we can correctly determine the cou-
pling direction.

We also notice that the end of vy→x has larger values
than the bulk of the vector, which indicates that a statement
similar to (5) is also true for dissimilarity: if two segments
at times ti and t j of the driven subsystem are very dissimilar,
the segments at these times of the driving subsystem are more
likely also to be dissimilar. This opposite effect is, however,
not as expressed and does not appear in all systems.

When numerically calculating the cross-distance vectors,
we added Gaussian noise N (0, σ 2 = 10−4) to the time se-
ries. In noiseless periodic systems, cross-distance vectors can
exhibit periodic oscillations. By adding small noise, they dis-
appear, and the vectors behave the same as in chaotic systems.
We still used this example due to the availability of the analyti-
cal solution. In practice, periodic systems are of lesser interest
and always contain noise.

In the following section, we will present a numerical anal-
ysis that shows that cross-distance vectors can be used to
determine the direction of coupling in different systems.

III. DIFFERENT SYSTEMS ANALYSIS

The previous section shows that the cross-distance vectors
can detect the coupling direction in the coupled harmonic
oscillators system. Here, we will show that detection is pos-
sible not only for regular subsystems but also for discrete
chaotic subsystems and for autonomous and nonautonomous
continuous chaotic subsystems. For an overview on chaotic
dynamical systems, the reader is referred to [23,24]. We chose
systems that have already been analyzed with a coupling
detection method. The indices M(Y |X ) and M(X |Y ) will be
shown next to cy→x and cx→y. At the end of this section, these
two methods will be compared.

A. Hénon maps

The Hénon map is a discrete-time dynamical system.
Based on the values of its two parameters a and b, it can be
chaotic or converge to a periodic orbit. We choose the most
commonly studied map with parameter values a = 1.4 and
b = 0.3, which yield chaotic dynamics. Two unidirectionally
coupled maps are defined by four equations. The driven sub-
system is described by

x′
1 = a − (

εx1y1 + (1 − ε)x2
1

) + bx2, (19)

x′
2 = x1, (20)

and the driving one by

y′
1 = a − y2

1 + by2, (21)

y′
2 = y1. (22)

The coupling direction is y → x. This system was analyzed
in [25]. We choose time-series length N = 2 × 104 and seg-
ment length L = 10. The cross-distance vectors at a few
values of the coupling parameter ε are shown in Fig. 4. They

FIG. 4. The cross-distance vectors for unidirectionally coupled
Hénon maps at different values of the coupling parameter ε. They
are obtained from the time series of the subsystems’ coordinates x1

and y1 and with segment length L = 10.

behave as expected. In the absence of coupling, they are
both constant. For weak coupling, the initial values of vy→x

decrease with increased coupling, while this does not happen
with vx→y. For strong coupling, both vy→x and vx→y lose the
straight shape, and the coupling direction cannot be inferred
from them.

The dependence of the coupling indices cx→y and cy→x

on the coupling parameter ε is shown in Fig. 5(a). In the
absence of coupling, both coupling indices are close to zero.
With increased coupling, cy→x increases for small values of
ε. The other coupling index cx→y is close to zero until the

FIG. 5. The indices cy→x , cx→y, M(Y |X ), and M(X |Y ) (a), and
index ratios (b) for unidirectionally coupled Hénon maps at different
values of the coupling parameter ε. The coupling indices c were
calculated by (12) with k1 = 10, k2 = 100, and the indices M were
calculated by (14) with k = 10.
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synchronization threshold at ε ≈ 0.75. Therefore, the cross-
distance vectors can be used to infer the coupling direction in
unsynchronized Hénon maps correctly.

B. Rössler systems

The Rössler system is a system of three nonlinear ordinary
differential equations, which define a chaotic continuous-time
dynamical system. Two coupled Rössler subsystems are de-
fined by six equations. We chose the same parameters for
the subsystems as in [13]. The driven subsystem is thus
described by

ẋ1 = −0.985x2 − x3 + ε(y1 − x1), (23)

ẋ2 = 0.985x1 + 0.15x2, (24)

ẋ3 = 0.2 + x3(x1 − 10), (25)

and the driving subsystem is described by

ẏ1 = −1.015y2 − y3, (26)

ẏ2 = 1.015y1 + 0.15y2, (27)

ẏ3 = 0.2 + y3(y1 − 10). (28)

Coupling is unidirectional in the direction y → x. It should
be noted that the first subsystem is in a regular regime for
ε = 0, and in a chaotic regime for ε > 0, while the second
subsystem is always chaotic. Therefore, we omit analysis at
zero coupling.

Time-series parameters are N = 2 × 104,�t = 0.5. The
system integration was done with the Runge-Kutta 4 inte-
grator with time step 0.01. We choose the time series of the
subsystems’ coordinates x1 and y1 and segment length L = 20
for the calculation of the cross-distance vectors.

The behavior of the cross-distance vectors for a few values
of the coupling parameter ε is shown in Fig. 6. It is similar to
the examples seen so far. For weak coupling, the initial values
of vy→x decrease from the bulk, while vx→y stays roughly con-
stant. For strong coupling, both subsystems become identical,
and so do both cross-distance vectors.

The dependence of the coupling indices cx→y and cy→x on
the coupling parameter ε is shown in Fig. 7(a). Similar to
the previous example, cy→x increases with increased coupling
strength while cx→y stays close to zero. At ε ≈ 0.15, synchro-
nization occurs, and the coupling direction can no longer be
inferred from the coupling indices.

This analysis shows that the cross-distance vectors can
again be used to infer the coupling direction in unsynchro-
nized Rössler subsystems correctly.

C. Duffing systems

The Duffing system is a periodically forced nonlinear os-
cillator with damping. It is a nonautonomous continuous-time
dynamical system. It can exhibit chaotic or periodic dynamics
based on the values of its parameters. We chose the parameters

FIG. 6. The cross-distance vectors vy→x and vx→y for unidi-
rectionally coupled Rössler subsystems at different values of the
coupling parameter ε. They are obtained from the time series of the
subsystems’ coordinates x1 and y1 and with segment length L = 20.

of the two subsystems the same as in [26], resulting in coupled
chaotic subsystems. They are described by

ẍ + 0.2ẋ − x + x3 = 0.3 cos(t ) + ε1(y − x), (29)

ÿ + 0.3ẏ − y + y3 = 0.5 cos(1.2t ) + ε2(x − y). (30)

We consider a unidirectional case with ε2 = 0 and a bidirec-
tional case with ε2 = 0.1.

Time-series parameters are N = 5 × 104 and �t = 0.5.
The system integration was done with the Runge-Kutta 4

FIG. 7. The indices cy→x , cx→y, M(Y |X ), and M(X |Y ) (a), and
index ratios (b) for unidirectionally coupled Rössler subsystems at
different values of the coupling parameter ε. The coupling indices c
were calculated by (12) with k1 = 10, k2 = 100, and the indices M
were calculated by (14) with k = 10.
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FIG. 8. The indices cy→x , cx→y, M(Y |X ), and M(X |Y ) (a) and
index ratios (b) for unidirectionally coupled Duffing subsystems at
different values of the coupling parameter ε1. The coupling indices
c were calculated by (12) with k1 = 10, k2 = 100, and the indices M
were calculated by (14) with k = 10.

integrator with a time step of 0.01. The time series of
the first coordinates (positions) and segment length L = 20
were chosen for calculating the cross-distance vectors. Since
the behavior of the cross-distance vectors is very similar to
the above examples, here we only consider the coupling index
dependences.

The dependence of the coupling indices cx→y and cy→x on
the coupling parameter ε1 is shown in Fig. 8(a) (unidirectional
case) and Fig. 9(a) (bidirectional case). In the unidirectional
case, cy→x again increases with increased coupling strength
while cx→y stays close to zero. Synchronization occurs at
around ε1 ≈ 0.75. Therefore, cross-distance vectors can also
be used to infer the coupling direction in nonautonomous
Duffing subsystems correctly.

In the bidirectional case, cx→y always has a positive value,
while cy→x increases with increased ε1 similar to the uni-
directional case. At around ε1 = ε2 = 0.1, the values of the
coupling indices are the same. Therefore, cross-distance vec-
tors can also be used to quantify coupling strength in each
direction in bidirectionally coupled subsystems.

D. Comparison to established indices

We have discussed the behavior of the dependences of
the coupling indices on the coupling parameter for various
systems. The comparison between the coupling indices c and
the established indices M is shown in Figs. 5(a), 7(a), 8(a),
and 9(a). Both index variants were obtained from the same
segments. The choice of the parameter k in (14) was done in a
similar manner as the choice of k1 in (12). It turns out that the
optimal value of k is similar to the optimal value of k1. This
is not surprising since k1 is chosen such that it captures the

FIG. 9. The indices cy→x , cx→y, M(Y |X ), and M(X |Y ) (a) and
index ratios (b) for bidirectionally coupled Duffing subsystems at
different values of the coupling parameter ε1 and at ε2 = 0.1. The
sudden increases in all the indices, seen in four values of ε1, are
due to system bifurcations. The coupling indices c were calculated
by (12) with k1 = 10, k2 = 100, and the indices M were calculated
by (14) with k = 10.

initial tail, much like k. In all of the examples in this article,
k1 = k = 10.

In the unidirectional cases, both indices behave similarly
in the sense that in the direction y → x, they increase with
increased coupling, while the index in the other direction stays
close to zero.

An important difference is between cx→y and M(X |Y ). Ide-
ally, these indices should be zero when the coupling direction
is y → x. The new index cx→y is significantly smaller than
M(X |Y ). Most importantly, the ratio cy→x/cx→y is signifi-
cantly larger than the ratio M(Y |X )/M(X |Y ), which is shown
in Figs. 5(b), 7(b), and 8(b). As explained in Sec. II B, the
summation in (15a) goes up to N − L + 1, which captures the
increasing trend seen in the cross-distance vectors and leads
to larger values of M(X |Y ).

Ideally, the index ratios should be infinite. By comparing
the coupling indices, the coupling direction is more accurately
determined with the c indices.

In the bidirectional case, the main difference between the
two methods is in the indices of the direction x → y. Ideally,
they should be constant since ε2 = 0.1 is constant. The cou-
pling parameter cx→y does vary slightly, but less than M(X |Y ).
Interestingly, bifurcations have a small impact on the coupling
indices c and a large impact on M.

IV. NUMERICAL STABILITY

We have shown that the cross-distance vectors can detect
the coupling direction from measured time series. In this
section, we will discuss the numerical stability and parameter
selection of this method. All the analysis will be done on the
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test system of unidirectionally coupled Duffing subsystems
with the coupling parameters ε1 = 0.1 and ε2 = 0, where the
system integration is done with the Runge-Kutta 4 integrator
and then sampled at �t = 0.5. As in the previous section,
the position coordinates’ time series will be used to obtain
the cross-distance vectors. We chose this system because it
consists of continuous chaotic subsystems, a property com-
monly found in real systems. However, analysis of all systems
in Sec. III gives similar results. The analysis in this section fo-
cuses solely on the cross-distance vectors and the new index c.
A detailed comparison of numerical properties of the indices
c and M is done in Appendix B.

A. Time-series length

An important property is the convergence of the cross-
distance vectors with the length of the time series N . In
Fig. 10, the dependence of the cross-distance vectors on the
length of the time series N is shown at constant L = 20.

The beginning of the cross-distance vector vy→x is signif-
icantly smaller than the bulk, i.e., the vector has an initial
tail. By increasing N , the first point (represented by the black
line) lowers even further from the bulk, which is desired.
This happens because any entry of the cross-distance vector
vy→x cannot be smaller than the smallest entry of the distance
matrix (9), since the vector entry itself is an average of these
distances. When dealing with a finite number of segments
(finite N), the smallest distance between a pair of segments
will be a finite value. With increased N , the smallest distance
(most likely) decreases due to a bigger number of segments.
Thus, the lowest possible value of the cross-distance vector
also decreases, and so do the initial values of vy→x. This
means that coupling is easier to detect for longer time series.
In the limit N → ∞, the initial values of vy→x would reach
zero.

In the opposite direction with no coupling, the effect is
opposite. The initial values of vx→y converge towards the bulk
of the vector, i.e., there is no initial tail, which is also desired.
This means that at large enough N , no coupling is detected in
the direction with no coupling.

Another behavior we notice from Fig. 10 is the change of
the whole shape of the cross-distance vectors. Their smooth-
ness increases with increased N , and they seem to converge to
a particular shape (which depends on the system).

To sum up, by increasing the length of the time series
N , the reliability of this method increases. For large enough
N , the coupling will not be detected in the direction without
coupling, and it will be detected in the direction of coupling.
Interestingly, the coupling direction is reliably inferred in
short time series that contain only about 40 oscillations.

B. Algorithm parameter dependence

We use the same test system for this analysis. The time-
series length is N = 2 × 104. The only parameter of the
cross-distance vectors algorithm is the segment length L.
Figure 11(a) shows the dependence of the first points and
of the mean of the cross-distance vectors on the segment
length L.

× ×
××

× ×

× ×
××

× ×

FIG. 10. The dependence of the cross-distance vectors vy→x and
vx→y on the length of the time series N . The blue lines represent
the cross-distance vectors at a certain N (these are the same lines as
in, for example, Fig. 2). The black lines represent the values of the
first points of the cross-distance vectors. For a better visibility, six
cross-distance vectors are highlighted and have N that is written in
the figure ticks. The scale on the N axis is logarithmic. The i axis
of each plotted cross-distance vector was normalized to i/N (a value
between 0 and 1) for a simpler comparison.

The value of the first point v
y→x
1 generally decreases with

increasing L up to L ≈ 200. Since the mean values of both
cross-distance vectors increase only by a little with increasing
L, this indicates that the significant change is in the initial tail.
In the other direction, v

x→y
1 stays close to the mean v

x→y
mean until

it starts to decrease at around L ≈ 50. This is reflected in the
coupling indices cy→x and cx→y, the dependence of which is
shown in Fig. 11(b). It tells us two important properties.

First, we notice that cy→x does not detect coupling for
L = 1. This is because, at L = 1, the subsystems are not
well reconstructed with the segments. The Takens’ embedding
theorem [27] gives a minimum dimension of delay embedding
vectors needed for reconstructing a system’s attractor. It is
2n + 1, where n is the system dimension (though often, less
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FIG. 11. The dependence of the first points and the averages of
the cross-distance vectors (a) and the coupling indices (b) on the
segment length L. Coupling indices were obtained with Eq. (12) with
k1 = 10 and k2 = 100.

than that is needed). For Duffing subsystems in our exam-
ple, L = 1 does not reconstruct the attractor, which results in
falsely not detecting coupling.

Second, we can see that for L > 1, cy→x is significantly
larger than cx→y and generally increases with increased L,
except for a local maximum at L = 10. The other index cx→y

stays close to zero until L ≈ 50, where it starts to increase vis-
ibly. This means that a too large L results in falsely detecting
coupling. The inherent similarity of neighboring segments is
the reason for false coupling detection in the direction x → y
at L > 50.

The similarity between segments will generally decrease if
we increase segment length L. This becomes obvious when
we notice that with increased L, more dimensions of seg-
ments must match to maintain high similarity. However, the
neighboring segments ox

i and ox
i+1 are autocorrelated and will

therefore always be very similar for any L. This can be seen
from the definition of the distance measure (7).

Therefore, when L becomes large enough, the closest seg-
ment to ox

i will most likely be ox
i+1 (or ox

i−1). The same will
hold for segments of the other subsystem, i.e., the closest to
oy

i will most likely be oy
i+1. This makes it seem as if both

statements (5) and (6) are technically correct (but only for
time autocorrelated segments), regardless of whether there is
coupling. This is the reason for the increase of cx→y at L ≈ 50
in our example. It shows that L cannot be too large as it can
result in falsely detecting coupling. A more detailed analysis
of this effect is done in Appendix C. Guidelines for tuning this
parameter are given in Sec. IV E.

The detected coupling direction turns out to be robust
with respect to the choice of k1 and k2 when calculating the
coupling indices. The general rule is that k1 should contain
the initial tail, which contains the information about coupling.
The choice of k2 is significantly less important. In this article,
we chose 10k1 < k2 < 100k1, though smaller and larger val-
ues give similar results. The point is that k2 must be much

FIG. 12. The noise dependence of the coupling indices cy→x and
cx→y with segment lengths L = 10 (a) and L = 30 (b). Coupling
index parameters are k1 = 10 and k2 = 100.

smaller than N . An analysis of the influence of k1 and k2

values on the indices c is done in Appendix D.

C. Noise dependence

Let us consider the noise robustness of this method. We
use time series of the same test system. The time-series length
is N = 5 × 104. We add Gaussian noise to each point of the
time series x(ti ) → x(ti ) + ξi, ξi ∼ N (0, σ 2), where σ is the
standard deviation of the noise.

In Fig. 12, the dependence of the coupling indices cy→x and
cx→y on σ is shown. As one might expect, the reliability of the
detected coupling direction decreases with increased σ . For
L = 10, the index cy→x decreases to zero at around σ ≈ 0.4,
and for L = 30 at around σ ≈ 0.7, which is more than a third
of the subsystems’ amplitudes. The other index cx→y is close
to zero for all values of σ .

Noise robustness can be further increased by increasing L.
However, one must be careful not to increase it to the point
of false detection, explained in Sec. IV B. This method is,
therefore, quite robust to noise.

D. Robustness to artefacts and missing data

Measurements can contain artefacts, such as spikes, or
have missing values for a time period. Coupling detection in
such data can be problematic. Coupling indices are resilient to
such imperfections in time series.

The solution is to delete the distance matrix elements
whose values were obtained from segments with artefacts or
missing values. This is done by deleting the corresponding
rows and columns, decreasing the matrix size. They must be
deleted from both distance matrices, even if the artefact is
only present in one time series. This allows us to ignore any
unwanted sections of either time series, making this approach
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FIG. 13. Cross-distance vectors obtained from clean data (C) and
from data with artefacts (A). vy→x is shown in (a) and vx→y is shown
in (b). The j axis of each plotted cross-distance vector was normal-
ized to j/N (a value between 0 and 1) for a simpler comparison. Note
that the vectors obtained from clean data and from data with artefacts
are nearly indistinguishable. The index values obtained from clean
data are cy→x = 0.268, cx→y = 0.000, M(Y |X ) = 0.407, M(X |Y ) =
0.052. The index values obtained from data with artefacts are cy→x =
0.263, cx→y = −0.001, M(Y |X ) = 0.385, M(X |Y ) = 0.049.

very flexible. The only requirement is manually choosing the
time-series points to ignore.

To give an example, consider the time series of the
same test system. The time-series length is N = 5 × 104. We
change the values of x between points 5000 and 9000 and the
values of y between 30 000 and 36 000 to random values to
simulate artefacts. Therefore, when computing the distance
matrices, we ignore 4000 + 6000 = 10 000 rows and columns
(which will result in cross-distance vectors with 10 000 fewer
points). Let us compare cross-distance vectors, c indices, and
M indices obtained from clean time series and time series
containing artefacts.

The results are shown in Fig. 13. The cross-distance vectors
obtained from clean data and data containing artefacts are
nearly indistinguishable. The c and the M indices are also
nearly the same. The difference in c is seen in the third
decimal. The difference in M is larger but still small. This
shows that state-space approaches are resilient to artefacts and
missing values.

E. Practical computational details

In this section, we will briefly discuss the practical aspects
of the algorithm and provide a suggestion that can prove
useful.

Tuning the L parameter. For this purpose, we can use
the large similarity of neighboring segments (explained in
Sec. IV B). For a chosen L, we can check whether the closest
segment is often one of the neighbors, i.e., whether the dis-
tance matrices (8) and (9) have very small subdiagonals. If at
least one of them does, we must lower L until subdiagonals
have similar values to the rest of the matrices since small
subdiagonals lead to false detection. This gives the maximal
possible value Lmax. In practice, we recommend a value close

to the maximal Lmax, for example, Lmax/2, since larger L
generally gives more accurate and noise-robust results.

Neighboring segments. In some cases, especially in time
series with a large sampling rate (small time step �t), lower-
ing L cannot adequately raise the values of the subdiagonals.
If the time step is very small, the neighboring segments will
be autocorrelated and will therefore always be very close such
that d (ox

i , ox
i+1) → 0. This can lead to false coupling detection,

as explained in Sec. IV B. We propose two solutions.
The first solution is to downsample the signal. The neigh-

boring segments become less similar by increasing the time
step �t . We must downsample the time series to the point
where neighboring segments are no longer the most similar,
i.e., when the subdiagonal values of the distance matrices are
no longer small compared to the rest of the values.

The second solution is manually decreasing the dimensions
of the distance matrices. This is needed in a case where
downsampling is not an option. One such example is stiff
subsystems, i.e., subsystems that contain small and large
frequency components. In such cases, downsampling can
erase the high-frequency component (and thus erase possibly
crucial information) but still not raise the values of the subdi-
agonals. For this purpose, we suggest an alternative approach.
We can only calculate every Mth value of the full distance
matrices, i.e., we construct them from every Mth segment.
Choosing M large enough ignores the (small) subdiagonals
that appear in full matrices.

Both approaches should be done with a fixed L, for exam-
ple L = 5. Once the subdiagonals are adequately raised, the
chosen approach can be repeated for a larger L. If successful,
the larger L should be taken for better accuracy and noise
robustness.

Both approaches ignore small subdiagonals that would
appear in full matrices, as well as other values that can
be redundant. For example, a full matrix contains ele-
ments d (ox

i , ox
j ) and d (ox

i , ox
j+1), which have similar values if

d (ox
j, ox

j+1) ≈ 0.
The downsampling approach is computationally more effi-

cient, as it effectively decreases segment length L. Therefore,
if possible, it should be chosen over manually decreasing
dimensions.

Time and memory limitations. In a time series of
length N , the computational complexity of the algorithm is
O(N2 log(N )) due to the sorting of all rows of the distance
matrices. As the previous paragraph explains, downsampling
the original time series is recommended since it significantly
decreases the execution time.

Furthermore, the matrices Dx and Dy→x can, in practice, be
too large to store in computer memory. To avoid this, the rows
of the matrices (8) and (9) can be calculated individually to
obtain a single row of Dy→x. One summation in (11) is done
for each row, and the cross-distance vector is obtained by only
storing a few sets of data of size N − L + 1 at once.

GPU implementation. Since the algorithm is based on
matrix operations, GPU devices can significantly decrease
the execution time. For this purpose, we are providing a
GPU-based implementation written in Python using the JAX
library [28]. A time-efficient and memory-efficient implemen-
tation is available at [29].
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FIG. 14. A part of the ECG and respiration signals used for
analysis. Label C means ECG, and label R means respiration. R1 and
C1 were measured simultaneously on one subject, and R2 and C2 were
measured simultaneously on another subject. Time-series parameters
are N = 172 800 and �t = 1

96 s, corresponding to a measurement
time of 30 min.

V. APPLICATION TO PHYSIOLOGICAL SIGNALS

In this section, we will apply the cross-distance vectors
algorithm to time series of physiological measurements. The
goal is to show the applicability of cross-distance vectors to
real-life systems. We will analyze coupling in the human car-
diorespiratory system. The cardiac subsystem is characterized
by ECG (electrocardiogram), and the respiratory subsystem
by respiration curves obtained with a respiratory belt sen-
sor. These subsystems are inherently bidirectionally coupled,
i.e., both subsystems depend on each other. A survey of the
mechanisms responsible for this dependence is given in [30].
Specifically, we will investigate coupling in the direction from
the respiratory to the cardiac subsystem, which we label with
R → C.

The signals used in the analysis are shown in Fig. 14. Thirty
minutes of ECG and respiration curves were measured on two
subjects. In such a way, we obtain two pairs of signals, marked
R1 and C1 for the first subject and R2 and C2 for the second
subject.

FIG. 15. The first 1000 points of the cross-distance vectors in the
direction from the respiratory to the cardiac subsystem. In (a) and (b),
the analyzed signals belong to the same subject, while in (c) and (d),
they are independent. The segment length is L = 20. Dimensions of
distance matrices were decreased by a factor 20.

The most dominant frequency component in ECG signals
is around 1 Hz. The R peak is, however, very short, which
means this subsystem is stiff. Therefore, we do not downsam-
ple the time series but rather manually decrease the distance
matrix sizes by a factor M, as explained in Sec. IV E. In this
case, we chose M = 20, which means we are comparing seg-
ments that are apart by a multiple of M�t = 20/96s ≈ 0.2s.

Figures 15(a) and 15(b) represent cross-distance vectors
for R1 → C1 and R2 → C2. In these cases, ECG and respi-
ratory signals belong to the same person and were measured
simultaneously. Therefore, we expect to detect coupling. In-
deed, the cross-distance vectors have an initial tail, suggesting
coupling is present in the underlying subsystems.

Figures 15(c) and 15(d) represent cross-distance vectors
for R2 → C1 and R1 → C2. Since the signals belong to differ-
ent subjects that are inherently independent, we do not expect
to detect coupling. Indeed, the cross-distance vectors do not
have an initial tail, suggesting no coupling in the underlying
subsystems.

Let us compare the c indices, obtained with parame-
ters k1 = 10, k2 = 1000. The indices cR1→C1 = 0.105 and
cR2→C2 = 0.176 are nearly two orders of magnitude larger
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than cR2→C1 = −0.0004 and cR1→C2 = −0.006. This means
that coupling indices have significantly larger values when the
coupling is present in the underlying subsystems than when
the subsystems are independent. Coupling indices cR2→C1 and
cR1→C2 even have a small negative value, which is a strong
indication of the absence of coupling.

For comparison, the M indices were also computed with
parameter k = 10. They were computed from the same dis-
tance matrices as the c indices, i.e., matrices obtained by
comparing every 20th segment with L = 20. The obtained val-
ues are M(R1|C1) = 0.150, M(R2|C2) = 0.254, M(R2|C1) =
−0.003, and M(R1|C2) = −0.009. The M indices also cor-
rectly detect the existence of coupling in the first two cases
and have a small negative value in the second two cases.

When considering the coupling indices c in an application,
it should be noted that they require the time series to belong to
a dynamical system that can be reconstructed with time-delay
embedding. Otherwise, approaches such as Granger causality
or information transfer are more suitable. However, contrary
to the indices c, these approaches may not be reliable in short
time series. To sum up, the new coupling indices c excel in
causality detection from bivariate time series generated by a
dynamical systems, especially in short signals.

VI. CONCLUSION

In this article, we have defined cross-distance vectors as
a means of inferring the direction of coupling from bivariate
time series, and we provided an algorithm for calculating
them. Cross-distance vectors provide information about cou-
pling by calculating two coupling indices, which quantify
coupling strength in both directions.

The new coupling indices can infer the coupling direction
in various coupled dynamical systems. Comparing the new
coupling indices to the conventional indices based on state-
space distance shows more accurate results with the presented
approach. Analysis of numerical stability has shown that the
reliability of the new indices increases with the length of the
time series but is also reliable in short time series, containing
only about 40 oscillations. The performance of the coupling
indices was also evaluated in detecting cardiorespiratory in-
teraction in measured data.

The algorithm has a simple implementation that requires
the choice of only a maximum of three parameters. The
selection of the optimal parameters’ values can be made
systematically, which results in robust performance and cir-
cumvents the challenge of determining optimal embedding
parameters. A numerically efficient implementation is avail-
able at [29].

A logical continuation is an extension of the new method
for inferring connections in a network of multiple subsystems.
Should the multivariate extension be as effective as the bi-
variate variant, it could become an essential tool in analyzing
complex multivariate problems such as brain connectivity.

The data that support the analysis of this article have been
generated by the authors and can be fully reproduced from the
repository in Ref. [29].
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APPENDIX A: MAPPING OF CLOSE STATES

In what follows, we will provide an argument to illustrate
why close states in the driven subsystem are mapped to close
states in the driving subsystem for various subsystems with
different properties.

One might assume that the statement (5) is false and the
statement (6) is true. It may seem that the times when the
driving subsystem is self-similar will appear as times of large
self-similarity in the driven subsystem via coupling. Hence (6)
is true. Since this logic does not apply in the other direction,
one might expect that the statement (5) is false. This is, how-
ever, not the case. In a special case under two assumptions,
we provide an analytic argument. For a more general case, we
will provide a heuristic argument.

Special case. Consider that two segments of the driven
subsystem ox

i and ox
j are identical (this is only possible for

subsystems in a regular dynamical regime),

x(ti+k ) = x(t j+k ),

k = 0, 1, . . . , L − 1. (A1)

If the subsystem coordinates match over a time period, their
time evolution must also match. The first assumption is that
f is time-independent, which gives us the following L equa-
tions:

f (x(ti+k )) + g(x(ti+k ), y(ti+k ))

= f (x(t j+k )) + g(x(t j+k ), y(t j+k )),

k = 0, 1, . . . , L − 1. (A2)

Additionally, from (A1) it follows that

f (x(ti+k )) = f (x(t j+k )), (A3)

k = 0, 1, . . . , L − 1.

Combining (A2) and (A3) gives us

g(x(ti+k ), y(ti+k )) = g(x(t j+k ), y(t j+k )),

k = 0, 1, . . . , L − 1. (A4)

Since (A1) holds, we can consider the first argument of g as
constant and define k functions

g̃(y(ti+k )) = g(x(ti+k ), y(ti+k )),

k = 0, 1, . . . , L − 1. (A5)

The second assumption is that functions g̃(y(ti+k )) are injec-
tive. If this is the case, from (A4) it follows that

y(ti+k ) = y(t j+k ),

k = 0, 1, . . . , L − 1. (A6)
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This means that statement (5) is true. This argument does not
work in the other direction with swapped x and y, since y does
not depend on x, i.e., there is no coupling function in the time
evolution of y. Therefore, the statement (6) is false.

General case. We argue that if the subsystems are suffi-
ciently nice, this also holds without the two assumptions if
segment length L is large enough. To obtain (A4) from (A2)
with time-dependent f (x, t ), we argue that it would seem
unlikely for the sum of f and g to match over a time period
if they do not match individually. The analysis in Sec. III C
shows that this indeed holds for coupled periodically forced
Duffing subsystems. To obtain (A6) from (A4) if g̃(y(ti+k ))
are not injective, we would similarly argue that if g matches
over a long enough time period, so must its arguments.

We can use the same arguments for chaotic subsystems by
demanding the distance of segments to be less than δ instead
of them being identical. Under the admissibility conditions of
the Poincaré recurrence theorem, the choice of δ can be arbi-
trarily small. The arguments hold for chaotic subsystems by
swapping all the equalities in Eqs. (A1)–(A6) with arbitrarily
small proximity.

APPENDIX B: DETAILED COMPARISON OF c and M

Here the goal is to compare the numerical stability of c
and M indices. For that purpose, the analysis from Sec. IV is
repeated for M, and both results are presented jointly. All the
analysis is done on the same test system of coupled Duffing
oscillators as in Sec. IV. Also, all the parameters are the same
as in Sec. IV. Coupling is unidirectional with direction y → x.

1. Dependence on time-series length

The analysis in Sec. IV A was done on the cross-distance
vectors. For results to be comparable to M, we compute the c
indices. As explained in Sec. III D, the indices are most fairly
compared when their parameters are k = k1. In our case, k =
k1 = 10 and k2 = 100 are taken, the same as in Sec. III C.
While these are not optimal parameters for every N , we keep
them fixed for simplicity. The segment length is L = 20, as in
Sec. IV A. The comparison is done in Fig. 16.

The general behavior is similar for both indices, as seen
in Fig. 16(a). At small N , all indices are large. The main
difference between M and c is seen at large N where cx→y

converges to zero, which is desirable, while M(X |Y ) seems to
converge to a finite positive value. As explained in Sec. II B,
this is because c ignores possible trends in the cross-distance
vectors, while M does not.

The index ratios are shown in Fig. 16(b). Ideally, the ratios
are infinite since the coupling is unidirectional. For nearly
all values of N , the ratio cy→x/cx→y is larger than the ratio
M(Y |X )/M(X |Y ), especially for large N . For small N , the
difference is smaller, but the c ratio is generally still larger.
This shows that c better determines the coupling direction for
both short and long time series.

2. Dependence on L

Let us compare the L dependence from Fig. 11 for indices
c and M. The chosen time-series length is N = 2 × 104, same
as in Sec. IV B.

FIG. 16. The dependence of the indices cy→x , cx→y, M(Y |X ),
M(X |Y ) (a) and the index ratios cy→x/cx→y, M(Y |X )/M(X |Y ) (b) on
the length of the time series N . The M index parameter is k = 10 and
the c index parameters are k1 = 10, k2 = 100.

The dependence of the indices c and M on the segment
length L is shown in Fig. 17(a). The dependence is very simi-
lar for both index variants. The main difference is that both M
indices are slightly larger (since they do not ignore trends seen
in cross-distance vectors). At L = 1, the M indices both have a
very similar positive value, while the c indices are both much
closer to zero. Interestingly, the bias of M(X |Y ) due to trends
is nearly constant for segment length up to L ≈ 50, where L
becomes too large (as explained in Sec. IV B).

The index ratios cy→x/cx→y and M(Y |X )/M(X |Y ) are
shown in Fig. 17(b). The ratio of the c indices is significantly
larger than that of the M indices for all values of L except
for L = 1. This means that the c indices better determine

FIG. 17. The dependence of the c and M indices (a) and the index
ratios cy→x/cx→y and M(Y |X )/M(X |Y ) (b) on the segment length L.
The M index parameter is k = 10 and the c index parameters are
k1 = 10, k2 = 100.
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FIG. 18. The dependence of the c and M indices (a) and the
index ratios cy→x/cx→y and M(Y |X )/M(X |Y ) (b) on the standard
deviation of noise σ . The M index parameter is k = 10 and the
c index parameters are k1 = 10, k2 = 100. The segment length is
L = 10.

the coupling direction regardless of the choice of segment
length L.

3. Dependence on noise

Let us compare the noise robustness of the c and the
M indices similarly as in Sec. IV C. The chosen time-series
length is again N = 5 × 104 and the chosen segment length is
L = 10, the same as in Fig. 12(a).

The dependence of the c and M indices on the standard
deviation of noise σ is shown in Fig. 18(a). It turns out that
the dependence is very similar for both indices. They are both
robust to noise. As seen in Fig. 18(b), the index ratio is larger
for c than for M up to around σ ≈ 0.5, at which point both
ratios become close to 1.

APPENDIX C: THE N and L DEPENDENCE OF
CROSS-DISTANCE VECTORS

To get a complete picture of the behavior of the cross-
distance vectors, we compute them for numerous values of
pairs (N, L). We again use the test system from Sec. IV. We
are interested in the cross-distance vectors’ first (nonzero)
point. The results are shown in Fig. 19. Figure 19 can be
understood as plotting the black lines in Fig. 10, calculated
for different L. Equivalently, Fig. 19(a) can be seen as plotting
v

y→x
1 from Figs. 11(a) and 19(b) as v

x→y
1 from Fig. 11(a), both

calculated for different N .
Figure 19(a) shows v

y→x
1 , which corresponds to the direc-

tion of coupling. One can roughly identify three areas in the
(N, L) grid that are highlighted using two red lines. Note that
the areas are not strictly defined but assist in explaining the
figure. Area 1 has very small values. There, L is too large at
a given N , which results in detecting coupling regardless of
the underlying dynamics (area of falsely detecting coupling).

FIG. 19. The first point of the cross-distance vectors v
y→x
1 (a) and

v
x→y
1 (b) for different values of the time-series length N and the

segment length L. In (a), the two red lines separate the grid into
three areas, and the white line approximately represents optimal L
at a given N . The white area in the upper left corner represents the
impossible pairs (N, L) where L � N .

Area 3 has large values. There L = 1, which is too small
(at any N) to reconstruct the underlying state space, which
results in not detecting coupling regardless of the underlying
dynamics (area of falsely not detecting coupling). Area 2
has moderate values. There, L is large enough to reconstruct
the underlying state space but small enough to avoid false
detection.

The white line highlights the approximate area where the
optimal L at a given N is. We understand the optimal L as
the value in area 2 where v

y→x
1 is the smallest at a given N .

The optimal L increases with increased N .
Figure 19(b) shows v

x→y
1 , which corresponds to the direc-

tion without coupling. In this case, the three areas and the
optimal L are not as obvious as in the other direction. We only
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FIG. 20. The dependence of the coupling indices c on the cou-
pling parameter ε for different values of the parameter k1 and fixed
k2 = 150.

clearly see where L becomes too large, which leads to false
coupling detection.

It should be noted that in both figures, there is a white area
in the upper left corner. This area represents the impossible
pairs (N, L), i.e., L � N .

APPENDIX D: THE CHOICE OF PARAMETERS k1 AND k2

To analyze the influence of the parameters k1 and k2 on the
coupling indices c, we consider the same test system used in
Sec. IV. Specifically, we will plot the c indices from Fig. 8(a)
(blue and orange lines), obtained with different k1 and k2.

The influence of the change of k1 is shown in Fig. 20. In
this case, we fixed the parameter k2 = 150, which is close
to k2 most often used in the article. We can make some
important observations. First, we notice that for small values
of k1, the values of cy→x increase quickly with increased ε,
which allows for more reliable detection at small coupling.
Furthermore, the values of cy→x reach higher values, while
the values of cx→y remain unchanged, which is also desirable.
However, there is a negative side to using such small values
of k1. The variance of both indices is not negligible, as seen

FIG. 21. The dependence of the coupling indices c on the cou-
pling parameter ε for different values of the parameter k2 and fixed
k1 = 10.

by a larger spread of cx→y around zero and a negative value
of cy→x at ε = 0. On the other hand, increasing k1 decreases
the variance of both indices. However, it also reduces the rate
of increase of cy→x and introduces a bias at moderate values
of ε (around 0.5). Therefore, the choice of k1 offers a tradeoff
between bias and variance of the indices c.

The influence of the change of k2 is shown in Fig. 21.
Similar to the influence of k1, the variance of both indices
is larger at smaller k2. Furthermore, larger k2 increases cx→y

at moderate values of ε, increasing the false positive error.
Most importantly, this false positive error increases drastically
when k2 is close to the time-series length N (k2 = 49 000 in
our case). One can notice a strong similarity between the case
of k2 = 49 000 and the M indices in Fig. 8(a) (green and red
lines). Based on this analysis, we draw the conclusion that the
safe choice for k2 is approximately 10k1 < k2 < 100k1.
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