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Instabilities of a Bose-Einstein condensate with mixed nonlinear and linear lattices
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Bose-Einstein condensates (BECs) in periodic potentials generate interesting physics on the instabilities of
Bloch states. The lowest-energy Bloch states of BECs in pure nonlinear lattices are dynamically and Landau
unstable, which breaks down BEC superfluidity. In this paper we propose to use an out-of-phase linear lattice
to stabilize them. The stabilization mechanism is revealed by the averaged interaction. We further incorporate a
constant interaction into BECs with mixed nonlinear and linear lattices and reveal its effect on the instabilities
of Bloch states in the lowest band.
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I. INTRODUCTION

Since the first experimental realizations in 1995 [1–3],
atomic Bose-Einstein condensates (BECs) have been funda-
mental platforms to explore quantum many-body phenomena.
Theoretically, the dynamics of a BEC can be described well
using the mean-field Gross-Pitaevskii (GP) equation [4]. A
linearization of the GP equation around a BEC state becomes
the so-called Bogoliubov-de Gennes (BdG) equation which
describes elementary excitations of the corresponding BEC
state [5]. The distinguishing feature of the BdG equation is
that the BdG Hamiltonian is non-Hermitian, which allows for
the existence of complex excitations. In the presence of any
complex modes, a small deviation from the BEC state may di-
verge exponentially with time, which destroys the BEC state.
Such breakdown of the corresponding BEC state is referred
to as the dynamical instability. However, not all BEC states
possess the dynamical instability. A standard homogeneous
BEC is dynamically stable and its elementary excitation is
the gapless phonon mode in the long wavelength limit [6].
The identification of the dynamical instability of a BEC state
becomes a fundamental issue.

One of the outstanding systems that nurture dynamical
instability is BECs in optical lattices [7–9]. The optical
lattices modify the dispersion relation of a BEC to give
rise to Bloch spectrum. The associated BEC Bloch states
may be dynamically unstable due to the interplay between
their dispersion and atomic interactions [7–9]. The dynami-
cal instability of BEC Bloch states has been experimentally
observed by measuring the decay of condensed atoms [10].
The optical-lattice-induced dynamical instability relating to
the breakdown of BEC superfluidity has been extensively
studied [11–13]. It can be approached analytically in a
Kronig-Penney potential [14]. Attractive interactions [15] or
complicated atomic interactions [16] give the instability more
features. Two dimensional optical lattices [17] and Bloch
states in higher Bloch bands [18] are investigated theoreti-
cally. Besides the dynamical instability, optical lattices can
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introduce Landau instability to BEC Bloch states [7]. The
Landau instability happens when the BEC Bloch states are
energetically unfavorable [12]. Generalization of a single
BEC in optical lattices to multiple components attracts much
attention [19–29]. Multiple-component BECs in optical lat-
tices combine rich phases due to numerous parameters and
the optical-lattice-modified dispersion relation. The dynam-
ical instability of these systems presents complex features
and becomes more interesting [19,20]. Meanwhile, in the
tight-binding regime of the optical lattices, the dynamical
instability of multiple components is tractable in an analyt-
ical way [21–24]. Furthermore, the optical lattices can be
component-dependent, which introduces rich instability struc-
tures [25–27]. In multiple-component BECs, one can define
spin currents. Multiple-component BECs in optical lattices
provide an important platform to study the dynamical insta-
bility of spin currents [28,29].

Being different from BECs in optical lattices where in-
teractions come from condensed atoms and optical lattices
provide linear periodic potentials are nonlinear lattices, which
represent spatially periodic modulation of the interatomic in-
teractions [30,31]. Nonlinear lattices can be experimentally
implemented by the controllable optical Feshbach resonances
[32–34]. The lowest-energy Bloch states (at Brillouin zone
center in the lowest band) in nonlinear lattices are always
dynamically unstable so that they can not support super-
fluidity [35]. Only Bloch states at a finite quasimomentum
regime close to Brillouin zone edge are dynamically stable
[35]. Physically, for these Bloch states, atoms are mainly
confined into the negative parts of nonlinear lattices, and the
empty-occupation of the positive parts behaviors like barriers
to prevent the tunneling between the negative-part occupa-
tions, which stabilizes the corresponding Bloch states [36]. In
most lattice experiments, BECs are usually prepared in the
lowest-energy Bloch states. However, the instability breaks
the preparations in nonlinear lattices. Therefore, stabilizing
the lowest-energy Bloch states becomes an important aspect
for experimental realizations. References [35–37] propose
to add a constant interaction to nonlinear lattices for their
stabilization. Nonlinear lattices with a constant repulsive in-
teraction generate repulsive effective interatomic interactions
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providing a possible means for the stabilization. Reference
[38] suggests that a linear and coherent Rabi-coupling be-
tween two-component BECs can be used to stabilize the
lowest-energy Bloch states.

In the present paper, we systematically study the insta-
bilities of BECs with mixed nonlinear and linear lattices.
Nonlinear phenomena in mixed nonlinear and linear lattices
have been widely studied [30]. The interplay between nonlin-
ear and linear lattices gives new properties to bright solitons
[39–43] and increases their mobility [44]. These systems pro-
vide a possibility to study the effect of commensurability
between two lattices on the existence of solitons [45]. The
coexistence of two lattices helps to stabilize solitary waves
against collapse [46–49]. The spatially localized states in
multiple-component BECs with mixed nonlinear and linear
lattices are revealed to have interesting properties [50,51].
More importantly, the mixed lattices are proposed to support
long-time Bloch oscillations [52]. So far, all studies on the
mixed nonlinear and linear lattices are relevant to the ex-
istence and stability and dynamical management of solitary
waves. Here, we study the instabilities of spatially extended
waves, i.e., Bloch states, in mixed nonlinear and linear lattices.
Bloch states are relevant to experimentally load BECs into
the mixed lattices. The instabilities of Bloch states in these
systems relate to the breakdown of BEC superfluidity. There-
fore, our study is experimentally involved. We examine the
dynamical instability and Landau instability of Bloch states
in the lowest Bloch band in mixed nonlinear and linear lat-
tices by analyzing the BdG equation. In comparison with the
instabilities of BECs with pure nonlinear lattices as studied
in Refs. [35,36], we find that an out-of-phase linear lattice
can assist to stabilize the Bloch states around the Brillouin
zone center. We present the mechanism of the stabilization
using the concept of the averaged interaction. According to
the mechanism, an in-phase linear lattice is useless for the
stabilization. We further reveal that the out-of-phase and in-
phase linear lattices can modify the dynamical instability of
the Bloch states around Brillouin zone edges; the out-of-phase
linear lattice destabilizes the states and the in-phase lattice
strengthens their stabilities. Meanwhile, we incorporate a con-
stant interaction into the BECs with mixed lattices and study
the effect of repulsive and attractive constant interactions on
the instabilities of Bloch states.

The paper is organized as follows. In Sec. II, we present the
theoretical framework for the study on the instabilities of BEC
Bloch states in mixed nonlinear and linear lattices. It includes
the GP equation and the derivations of the BdG equation. In
Sec. III, we show nonlinear Bloch spectrum and indicate the
existence of nonlinear Bloch states. The properties of Bloch
states are shown by their density distributions. In Sec. IV,
the dynamical and Landau instabilities of Bloch states are
presented, with a purpose that a linear lattice can stabilize the
Bloch states around the Brillouin zone center. The mechanism
of the stabilization is uncovered. We also study the effect of a
constant interaction. The conclusion follows in Sec. V.

II. MODEL

We consider a BEC with spatially periodic modulated in-
teractions in the presence of a linear optical lattice. The system

is described by the Gross-Pitaevskii (GP) equation as follows:

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− V cos(x)ψ + Gnon|ψ |2ψ. (1)

ψ (x, t ) is the wave function of the BEC. The GP equation is
dimensionless. We have already used the units of energy and
length as 8Erec and 1/2kl , respectively. Here, the recoil energy
of the optical lattice lasers is Erec = h̄2k2

l /2m and kl is the
wave number of the optical lattice lasers and m is the atom
mass. The linear optical lattice is described by −V cos(x)
with the lattice depth V . The nonlinear coefficient in the GP
equation is

Gnon = g1 + g2 cos(x). (2)

The nonlinear lattice is described by g2 cos(x) with g2 being
the nonlinear-lattice amplitude. We also incorporate a constant
interaction with the nonlinear coefficient g1. We consider that
two lattices have the same spatial structure and the same
period. The relative phase between two lattices are controlled
by the sign of g2 and V . Concretely, we assume g2 > 0 and
change the sign of V to analyze. When V > 0 the two lattices
are out of phase, and they are in phase when V < 0.

The experimental loading of BECs into the mixed nonlin-
ear and linear lattices connects with Bloch states. They are
defined as ψ (x, t ) = eikx−iμktφk (x). Here k is the quasimo-
mentum, μk is the chemical potential, and φk (x) is a periodic
function having the same period as the mixed lattices, i.e.,
φk (x + 2π ) = φk (x). Substituting the Bloch state solutions
into the GP equation, we have

μkφk = −1

2

(
d

dx
+ ik

)2

φk − V cos(x)φk + Gnon|φk|2φk .

(3)
By solving above nonlinear equation with a normalization
condition

∫ 2π

0 dx|φk (x)|2 = 1, we can get Bloch spectrum
μ(k) and the associated Bloch states φk . In detail, we expand
the periodic function φk using a plane-wave basis, and the
above nonlinear equation turns to be coupled nonlinear ordi-
nary equations for the plane-wave coefficients [12], which can
be solved using the standard Newton relaxation method.

Once we know the BEC Bloch states, we study their dy-
namical instability by linearizing the GP equation around the
Bloch states. We add perturbations to the Bloch states,

ψ (x, t ) = eikx−iμkt

× [φk (x) + ukq(x)eiqx−iωkqt + v∗
kq(x)e−iqx+iω∗

kqt ],

(4)

where q is the quasimomentum of perturbations, ωkq is the
energy of perturbations, and ukq(x) and vkq(x) are the per-
turbation amplitudes. After substituting the general wave
function in Eq. (4) into the GP equation and keeping only the
linear terms relating to the perturbation amplitudes, we get the
following Bogoliubov–de Gennes (BdG) equation:

ωkq

(
ukq

vkq

)
= HBdG(k, q)

(
ukq

vkq

)
, (5)
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where the BdG Hamiltonian is

HBdG(k, q) =
(

L(k, q) Gnonφ
2
k−Gnonφ

∗2
k −L(−k, q)

)
, (6)

with

L(k, q)

= −1

2

[
∂

∂x
+ i(k + q)

]2

− V cos(x) − μk + 2Gnon|φk|2.

(7)

The unique feature of the BdG Hamiltonian for a condensate
is that it is non-Hermitian, i.e., H†

BdG �= HBdG. Therefore,
the BdG Hamiltonian allows for the existence of complex
eigenvalues in ωkq. In the presence of complex modes in
ωkq, it is known that the perturbation amplitudes in Eq. (4)
shall grow up exponentially with time, which means that a
small perturbation shall deviate the evolution of the wave
function far away from the condensed state. Consequently,
the condensed state is dynamically unstable if there exists any
complex mode in ωkq. Through this dynamical instability, the
condensed state is broken to lose superfluidity. We examine
the dynamical instability of Bloch states by diagonalizing the
BdG equation in Eq. (5). We note that the BdG Hamiltonian
is spatially periodic due to the Bloch states. To carry out the
diagonalization, we assume that the perturbation amplitudes
are periodic functions which can be represented by a plane-
wave expansion, so the BdG Hamiltonian is projected into
the plane-wave basis and the resulted ωkq are in the form of
Bloch spectrum with the Brillouin zone q ∈ (−0.5, 0.5] [27].
We are only interested in the Bloch states in the lowest band
in Eq. (3). Considering the Brillouin zone k ∈ (−0.5, 0.5] and
the symmetry μk = μ−k , we only analyze the instabilities of
the Bloch states at k ∈ [0, 0.5] in the lowest band. Meanwhile,
the symmetry of the BdG Hamiltonian is

σxHBdG(k, q)σx = −H∗
BdG(k,−q), (8)

where σx is a Pauli matrix. With the symmetry, we know that
if the eigenvalue of HBdG is ω at (k, q), then the eigenvalue
immediately becomes −ω∗ at (k,−q). Therefore, the pertur-
bation energy has a symmetry ωkq = −ω∗

k−q. Considering this
symmetry, we only calculate the Bloch spectrum belonging
to q ∈ [0, 0.5] in the BdG equation to check whether there
exists any complex eigenvalue. We define the growth rate �

to describe the instability. It is the maximum value of the
imaginary parts of ωkq,

� = Max[Imag(ωkq)]. (9)

If the calculated growth rate is nonzero (zero), then the corre-
sponding Bloch state is dynamically unstable (stable).

We also examine the Landau instability of the Bloch states.
In comparison with the linearization of the GP equation for the
dynamical instability, the Landau instability needs to linearize
the energy functional of the system around the Bloch states
[7]. Small perturbations around the Bloch states generate an
additional energy functional as [7]

σzHBdG(k, q), (10)

where σz = diag(1,−1) is a Pauli matrix. σzHBdG(k, q) is
Hermitian so that its eigenvalues are real-valued. If there is

FIG. 1. Nonlinear Bloch spectrum and associated nonlinear
Bloch states of a BEC in a pure nonlinear lattice. g2 = 0.05 and
V = 0, g1 = 0. (a) The lowest two Bloch bands. (b),(c) The density
distributions of nonlinear Bloch states at Brillouin zone center and
edge in the lowest band, respectively [labeled by squares in panel
(a)]. Pink stripes represent the regions that the nonlinear lattice is
positive g2 cos x > 0.

any negative eigenvalue in σzHBdG(k, q), then the correspond-
ing Bloch states are not local minima of the energy functional
and they are Landau unstable. The occurrence of the Landau
instability relates to Landau’s criteria of superfluidity [17]. We
use the same procedure as the treatment of the BdG Hamilto-
nian to diagonalize σzHBdG(k, q) to seek whether there exists
any negative eigenvalue in σzHBdG(k, q).

III. NONLINEAR BLOCH BANDS AND ASSOCIATED
BLOCH STATES

We first study the existence of Bloch states in mixed
nonlinear and linear lattices by solving Eq. (3). Figure 1
demonstrates nonlinear Bloch spectrum and associated Bloch
states for a pure nonlinear lattice (V = 0 and g1 = 0). Only
lowest two bands are shown in Fig. 1(a). It is interesting to
find that the nonlinear Bloch spectrum is similar to that of a
linear lattice. An energy gap is opened around Brillouin zone
edges k = ±0.5 between the lowest two bands. The nonlinear
Bloch state at k = 0 in the lowest band is the lowest-energy
state. Its density distribution is shown in Fig. 1(b). The oc-
cupations in the minima of each nonlinear-lattice cell (white
regions) dominates. Meanwhile, there are also populations in
the maxima of the cells (shadowy regions). In contrast, the
populations of the maxima for the Bloch state at the Brillouin
zone edge in the lowest band are negligible [see Fig. 1(c)].

Figure 2 demonstrates nonlinear Bloch bands with a non-
linear lattice and an out-of-phase linear lattice V > 0. We find
that V = 0.05 is a critical value where the lowest two bands
close gap and they connect at Brillouin zone edge (black-solid
lines). Increasing V from zero to the critical value, the size of
the gap between them decreases. Beyond the critical value,
the gap is reopened (red-solid lines). The gap between the
lowest bands decreases to close and reopens is a signature of
the competition between the two lattices. At the critical value
V = g2, the out-of-phase linear lattice completely cancels the
effect of the nonlinear lattice. When V < g2 the nonlinear
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FIG. 2. Nonlinear Bloch spectrum and associated nonlinear
Bloch states of a BEC with a nonlinear lattice and an out-of-phase
linear lattice. The nonlinear lattice amplitude is g2 = 0.05 and the
constant interaction is g1 = 0. (a) The lowest two Bloch bands. When
V < 0.05 there is a gap opening between them (cyan-solid lines).
V = 0.05 is a critical value where the lowest two bands connect
at Brillouin zone edges (black-solid lines). When V = 0.08 gap is
still closed (dotted lines). Further increasing V results in the gap
reopening (red-solid lines). (b),(c) The density distributions of non-
linear Bloch states at Brillouin zone center (blue lines) and edge (red
lines) in the lowest band for V = 0.04 and V = 0.12, respectively
[labeled by squares in panel (a)]. Pink stripes represent the regions
that the nonlinear lattice is positive g2 cos x > 0. Since the linear
lattice is out-of-phase, in the striped regions the linear lattice is
negative −V cos x < 0.

lattice dominates over the linear lattice. This can be seen from
the density distribution of the Bloch state at k = 0. As shown
in Fig. 2(b), the occupations in the minima of nonlinear-lattice
cells are still larger than these in the maxima (see the blue
line). This feature is the same as that in a pure nonlinear
lattice. However, the Bloch state at the Brillouin zone edge
chooses to occupy the cells of the linear lattice [see the red line
in Fig. 2(b)]. When V > g2 and the gap is reopened, the linear
lattice surpasses the nonlinear one. Density distributes in the
cells of the linear lattice for all Bloch states. Illustrating den-
sity distributions are demonstrated in Fig. 2(c) for V = 0.12.

Figure 3 demonstrates nonlinear Bloch bands with a non-
linear lattice and an in-phase linear lattice. The linear lattice
has the same phase as the nonlinear lattice. It enhances the
effect of the nonlinear lattice. Therefore, with the help of the
linear lattice, the gap size between the lowest two bands is
wider than that in a pure lattice [see Fig. 3(a)]. The Bloch
states distribute inside the cells of both lattices [see Figs. 3(b)
and 3(c)].

IV. INSTABILITIES OF NONLINEAR BLOCH STATES

A. The out-of-phase linear lattices V > 0

The dynamical instability and Landau instability of the
BEC Bloch states in the lowest Bloch band with mixed non-
linear and linear lattices are studied by diagonalizing the BdG
Hamiltonian in Eq. (6) and the energy functional Hamiltonian
in Eq. (10), respectively. Figure 4 demonstrates typical results

FIG. 3. Nonlinear Bloch spectrum and associated nonlinear
Bloch states of a BEC with a nonlinear lattice and an in-phase linear
lattice V < 0. g2 = 0.05, V = −0.05, and g1 = 0. (a) The lowest
two Bloch bands. (b),(c) The density distributions of nonlinear Bloch
states at Brillouin zone center and edge in the lowest band, respec-
tively [labeled by squares in panel (a)]. Dark-blue stripes represent
the regions that the nonlinear lattice is positive g2 cos x > 0, since the
linear lattice is in-phase, it is also positive −V cos x > 0 in striped
regions.

for out-of-phase linear lattices in the (k, q) plane where k and
q are the quasimomenta of the Bloch states and perturbations,
respectively. The results in the first row are for a pure non-
linear lattice with different amplitude g2. The pure nonlinear
lattice has been studied in Refs. [35,36]. Our results are con-
sistent with theirs. In a pure nonlinear lattice, all Bloch states
in the lowest band are Landau unstable (which represented
by gray areas in the plots). For a small amplitude g2 [such as
g2 = 0.02, 0.1 in Figs. 4(a.1) and 4(a.2)], the Bloch states at a
finite region of k close to Brillouin zone edge are dynamically
stable (represented by the out of the colored areas). When the
amplitude is g2 = 0.2 in Fig. 4(a.3) the Bloch states around
Brillouin zone edge are dynamically stable. The outstanding
feature for the pure nonlinear lattice is that the Bloch states
around Brillouin zone center k = 0 are dynamically unstable.

In the presence of an out-of-phase linear lattice (V = 0.05
in plots in the second row) the instabilities of the Bloch states
change dramatically for a small g2. Figure 4(b.1) shows that
the Bloch states around k = 0 become both dynamically and
Landau stable. Especially, the dynamically unstable Bloch
states shrink to k ∈ [0.25, 0.5], which means that the Bloch
states at k ∈ [0, 0.25) are dynamically stable. The results
indicate that an out-of-phase linear lattice can stabilize the
lowest-energy Bloch states against the dynamical and Landau
instabilities. The stabilization only works when the linear
lattice dominates over the nonlinear lattice, i.e., V > g2. If the
nonlinear lattice dominates, then the instabilities are similar to
these in a pure nonlinear lattice, and the typical examples are
shown in Figs. 4(b.2) and 4(b.3).

We use the averaged interaction firstly introduced in
Ref. [35] to uncover the mechanism of the stabilization of the
lowest-energy Bloch state by the out-of-phase linear lattice.
The averaged interaction G is defined as

G =
∫ 2π

0
dx[g1 + g2 cos(x)]|φk|4. (11)
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FIG. 4. Instabilities of the BEC Bloch states in the lowest Bloch
band with a nonlinear lattice and an out-of-phase linear lattice V > 0.
k and q are the quasimomenta of the Bloch states and perturbations,
respectively. The colored shadow areas represent that the Bloch states
are dynamical unstable, and the color scale labels the growth rate �

defined in Eq. (9); the scale changes from the dark purple � = 0
to bright red � = 0.1. The gray areas indicate that the Bloch states
have Landau instability. In the white regions, they are completely
stable. For a fixed Bloch state represented by a fixed k, if there is any
unstable mode in a q, the corresponding Bloch state is unstable.

It represents the average value of the nonlinear energy over
a period. In Fig. 5, we plot the averaged interaction of the
k = 0 Bloch state as a function of g2. The blue-circle line is for
the parameters of V = 0.05 and g1 = 0, corresponding to the
second row in Fig. 4. It shows that the averaged interaction is
repulsive (i.e., G > 0) when 0 < g2 < 0.05 and is attractive if
g2 > 0.05. It is known that the Bloch state at k = 0 in a linear
lattice is only dynamically and Landau stable when a constant
nonlinearity is repulsive [7]. The averaged interaction behaves
as an effective nonlinearity that the condensed atoms feel.
If it is repulsive, then it is reasonable that the k = 0 Bloch
state is stable in the presence of the linear lattice. Oppositely,
an attractive averaged interaction can not stabilize the k = 0
Bloch state. In the absence of the linear lattice, the calculated
averaged interaction of the k = 0 Bloch state is shown by the
orange-triangular line in Fig. 5. All of them are attractive,
which results in the dynamical and Landau instabilities, and
this expectation is consistent with the results demonstrating
in the first row in Fig. 4. In the presence of a dominating

FIG. 5. The averaged interaction G [defined in Eq. (11)] of the
Bloch state at k = 0 with a nonlinear lattice and an out-of-phase
linear lattice. The horizontal red dashed line is G = 0 for guiding
eyes.

out-of-phase linear lattice, it changes density distributions of
the Bloch state so that the averaged interaction may become
repulsive. Therefore, the out-of-phase linear lattice provides
an experimentally accessible means to stabilize the lowest-
energy Bloch state.

We also incorporate a nonzero constant interaction g1 �= 0
into the out-of-phase linear lattice. The results are shown in
the third row in Fig. 4 for a repulsive constant interaction g1 =
0.05 and V = 0.05. For the small nonlinear-lattice amplitude,
such as g2 = 0.02 and g2 = 0.1 in Figs. 4(c.1) and 4(c.2),
the stable regions around k = 0 (white areas) become very
wide. In comparison with the results of g1 = 0 in the second
row, the repulsive constant interaction g1 further enhances the
stability of the Bloch states around k = 0. However, if g2

dominates, such as g2 = 0.2 in Fig. 4(c.3), the structure of in-
stabilities becomes the same with a pure nonlinear lattice. The
brown-square line in Fig. 5 describes the averaged interaction
of the k = 0 Bloch states for this case. It shows that up to a
critical g2 the averaged interaction is repulsive and beyond the
critical g2 it becomes attractive due to the dominating g2. The
repulsive constant interaction broadens the repulsive area of
the averaged interaction comparing with the case of g1 = 0
and V = 0.05. This is because that g1 > 0 itself contributes
repulsively to G in Eq. (11). So a repulsive constant interaction
is favorable for the stabilization of the k = 0 Bloch state with
mixed lattices. g1 < 0 contributes attractively to G, so the
stabilization can not be benefited from g1 < 0. Surprisingly,
We still find the repulsive averaged interactions with a large
linear lattice V = 0.2 and an attractive constant g1 = −0.02.
The result is shown by the black-dot line in Fig. 5. In the
middle region of g2, the averaged interaction is repulsive. The
instability results demonstrated in the forth row in Fig. 4 con-
firm that a small g2 in Fig. 4(d.1) and a large one in Fig. 4(d.3)
lead to instabilities to the Bloch states around k = 0 and the
middle value as g2 = 0.1 in Fig. 4(d.1) results in a stable
Bloch state at k = 0.

044219-5



JUN HONG, CHENHUI WANG, AND YONGPING ZHANG PHYSICAL REVIEW E 107, 044219 (2023)

FIG. 6. Instabilities of the BEC Bloch states in the lowest Bloch
band with a nonlinear lattice and an in-phase linear lattice V < 0.
The colored shadow areas represent that the Bloch states are dynam-
ical unstable, and the color scale labels the growth rate � defined in
Eq. (9); the scale changes from the dark purple � = 0 to bright red
� = 0.1. The gray areas indicate that the Bloch states have Landau
instability. In the white regions, they are completely stable.

B. The in-phase linear lattices V < 0

The typical results of the BEC Bloch states with a nonlinear
lattice and an in-phase linear lattice are described in Fig. 6.
The first row shows the results of the in-phase linear lattice
V = −0.05 and g1 = 0. All Bloch states are Landau unstable.
Outstandingly, the states around Brillouin zone edge k = 0.5
(center k = 0) are dynamically stable (unstable). The physical
reason is that the in-phase linear lattice enhances the effect
of the nonlinear lattice since the structures of two lattices
are spatially matched. Therefore, the averaged interactions G
for the states at k = 0 and at k = 0.5 are always attractive.

Reference [15] have revealed that the Bloch states with attrac-
tive interactions in a linear lattice are always Landau unstable
and are dynamically stable (unstable) around the Brillouin
zone edges (center). So it is the attractive averaged interaction
that makes the states around k = 0 (k = 0.5) dynamically
unstable (stable).

We also add a constant interaction g1 into the mixed
lattices. The second row in Fig. 6 shows the results for a
repulsive interaction g1 = 0.05, and the third row shows the
results for an attractive one, g1 = −0.02. The repulsive con-
stant interaction in Fig. 6(b.1) is dominant, therefore, the
instability structures in the (k, q) plane are similar to these of
a BEC with repulsive interactions in a linear lattice [7]. When
the repulsive constant interaction losses the dominant role, the
instabilities become the same as these with only the mixed
lattices [see Figs. 6(b.2) and 6(b.3)]. However, an attractive
constant interaction has the same effect with the mixed lattice.
The third row shows that the presence of an attractive constant
interaction g1 = −0.02 does not qualitatively modify the in-
stability structures in comparison with the first row.

C. Dynamical instabilities of Bloch states at Brillouin zone
center and edge

The BEC experiment has shown that the trigger of the
Landau instability requires a long time and the dynamical
instability happens in a short time [10]. Therefore, the dy-
namical instability may be more relevant in experiments.
Furthermore, the Bloch states at Brillouin zone center and
edges are distinctively interesting due to their high symme-
tries. Here, we summarize their dynamical instabilities studied
in previous sections to clearly show that the linear lattice can
be an efficient approach to stabilize unstable Bloch states of a
nonlinear lattice.

Figure 7 is the dynamical-instability-phase-diagram of the
k = 0 Bloch states in the space of (g2,V ). Figure 7(a) is
the case of a zero constant interaction, g1 = 0. The white
area represents that the state is dynamically stable. Only the
out-of-phase linear lattice V > 0 could stabilize it. The red
line corresponds to zero averaged interaction of the k = 0

FIG. 7. The dynamical-instability-phase-diagram of the BEC Bloch states at Brillouin zone center k = 0 with the mixed nonlinear and
linear lattices in the parameter space (g2,V ). (a) g1 = 0, (b) g1 = 0.05, and (c) g1 = −0.02. In the white regions, the k = 0 Bloch state is
dynamically stable; in the dark regions, the Bloch state is dynamically unstable. The red lines represent the zero averaged interaction G = 0,
and in the regions above the red lines the averaged interaction is repulsive and in the other regions it is attractive.
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FIG. 8. The dynamical-instability-phase-diagram of the BEC Bloch states at Brillouin zone edge k = 0.5 with the mixed nonlinear and
linear lattices in the parameter space (g2,V ). (a) g1 = 0, (b) g1 = 0.05, and (c) g1 = −0.02. In the white regions, the k = 0.5 Bloch state is
dynamically stable; in the dark regions, the Bloch state is dynamically unstable.

Bloch state, G = 0, above which G is repulsive. Note that
the boundary between the white (stable) and dark (unstable)
areas is slightly mismatched with the line G = 0. This means
that the mechanism to stabilize the k = 0 Bloch state by
the linear-lattice-induced repulsive averaged interaction is not
exact. However, the mechanism truly provides an intuitive
and qualitative way for our understanding of the stabilization.
With the help of a repulsive constant interaction g1 = 0.05 in
Fig. 7(b), the stabilization is extended from the out-of-phase
lattice V > 0 to the in-phase one V < 0. Even the constant
interaction is attractive, such as g1 = −0.02 in Fig. 7(c), we
still find that a large out-of-phase lattice can stabilize the states
with a finite g2.

Figure 8 is the dynamical-instability-phase-diagram of the
k = 0.5 Bloch states in the space of (g2,V ). In the absence of
the constant interaction g1 = 0 in Fig. 8(a), the effect of the
linear lattice reflects two aspects: the in-phase lattice V < 0
always strengths the stability of the k = 0.5 state; the out-
of-phase lattice V > 0 weakens its stability in the sense that

FIG. 9. The time evolution of the k = 0 Bloch states represented
by the marked points in Fig. 7(b) with g1 = 0.05. Plots show the
density distributions as a function of time t . (a) A stable evolution
g2 = 0.1 and V = 0.1. (b) An unstable evolution g2 = 0.15 and
V = 0.1.

the lattice increases the critical value of g2 beyond which the
state becomes stable. In the presence of a repulsive constant
interaction g1 = 0.05 in Fig. 8(b), it is dominant if g2 and
−V are small, which destabilizes the state. However, for an
attractive constant interaction g1 = −0.02 in Fig. 8(c), the
diagram is qualitatively same with the g1 = 0 case in Fig. 8(a).

Finally, we comment that the dynamical instability of the
Bloch states calculated from the BdG equation in Eq. (5) can
also be examined by the direct evolution of the GP equation in
Eq. (1) with the corresponding Bloch states serving as initial
states. Figure 9 shows typical examples of evolution. The two
k = 0 Bloch states are represented by the marked points in
Fig. 7. The one of them is known to be dynamically stable
and the other is unstable from the calculation of the BdG
equation. We set them as initial states to evolve the GP equa-
tion. As expected, the stable state evolves stably [see Fig. 9(a)]
and the unstable state breaks down during the evolution [see
Fig. 9(b)]. The time evolution of the Bloch states offers an
experimental approach to examine the instability. In the ex-
periment [33], the mixed nonlinear and linear lattices with
the same period can be implemented by the optical Feshbach
resonance of an optical standing wave. Following this experi-
ment, we propose to load the BEC into the k = 0 Bloch state
by adiabatically ramping up the standing wave. The system
is then held for a certain time to let free evolution of the
Bloch state. Finally, the decay of condensed atom number is
observed, from which the loss rate is measured. The loss rate
is relevant to the growth rate defined in Eq. (9).

V. CONCLUSION

BECs in periodic potentials give rise to interesting physics
relevant to instabilities of Bloch states. Their instabilities are
experimentally involved to relate to the breakdown of BEC
superfluidity. It has been shown that even the lowest-energy
Bloch state is unstable for the BECs in a nonlinear lattice
which challenges its experimental implementations. We pro-
pose to add a linear lattice to the BECs with the nonlinear
lattice to stabilize the lowest-energy Bloch state. We system-
atically study the instabilities of BEC Bloch states in mixed
nonlinear and linear lattices. The two lattices have the same
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spatial structure and the same period, but leaving the rel-
ative phase is tunable. We find that an out-of-phase linear
lattice enables to make Bloch states around Brillouin zone
center to be dynamically and Landau stable. The stabilization
mechanism is revealed as the out-of-phase lattice changes
density distributions to induce repulsive averaged interactions.
In contrast, an in-phase linear lattice enhances the effect of
the nonlinear lattice and can not change density distributions.
It always induces attractive averaged interactions, therefore it
is useless for the stabilization. It is known that Bloch states
around Brillouin zone edge become dynamically stable in the
pure nonlinear lattice when the lattice amplitude is beyond a
critical value. The presence of the out-of-phase lattice moves
the critical value to be more large and the in-phase lattice
assists to make them dynamically stable no matter the value
of the nonlinear-lattice amplitude.

We also incorporate a constant interaction into the BECs
with mixed nonlinear and linear lattices. A repulsive constant
interaction extends the out-of-phase-linear-lattice-induced
stabilization of the Bloch states around Brillouin zone center
to the in-phase linear lattice. Even in the presence of an attrac-
tive constant interaction, we find the out-of-phase linear lattice
still can stabilize the states. For the Bloch states around Bril-
louin zone edges, the constant interaction, no matter attractive
or repulsive, does not qualitatively change their instability
properties.
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