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We demonstrate the existence of compactons matter waves in binary mixtures of Bose-Einstein condensates
(BEC) trapped in deep optical lattices (OL) subjected to equal contributions of intraspecies Rashba and Dressel-
haus spin-orbit coupling (SOC) under periodic time modulations of the intraspecies scattering length. We show
that these modulations lead to a rescaling of the SOC parameters that involves the density imbalance of the two
components. This gives rise to density dependent SOC parameters that strongly influence the existence and the
stability of compacton matter waves. The stability of SOC-compactons is investigated both by linear stability
analysis and by time integrations of the coupled Gross-Pitaevskii equations. We find that SOC restricts the
parameter ranges for stable stationary SOC-compacton existence but, on the other side, it gives a more stringent
signature of their occurrence. In particular, SOC-compactons should appear when the intraspecies interactions
and the number of atoms in the two components are perfectly balanced (or close to being balanced for the
metastable case). The possibility to use SOC-compactons as a tool for indirect measurements of the number of
atoms and/or the intraspecies interactions is also suggested.

DOLI: 10.1103/PhysRevE.107.044218

I. INTRODUCTION

Recently, theoretical and experimental investigations of
Bose-Einstein condensates (BEC) based on Floquet engineer-
ing (FE) of the different parameters have been performed
(see, for example, the review [1]). The FE usually involves
linear optical lattices, periodically shaken in time either
through frequency or amplitude [2,3], or nonlinear optical
lattices in which FE is realized through the modulation of
the interactions [4]. Periodic modulations of the scattering
lengths can also be used to emulate synthetic dimensions
and to create density-dependent gauge fields [5], this being
a research area of rapidly growing interest connected with
interesting physical phenomena, including pair superfluidity,
exactly defect-free Mott insulator states [6], etc. In the case
of BEC with modulated interactions in double-well potential,
the investigation shows that the tunneling transition amplitude
between two wells depends on the relative imbalance of the
atomic population between wells. This phenomenon leads to
the suppression of the tunneling between wells for specific
values of the imbalance [7], a prediction that was recently
experimentally confirmed in [8].

For Bose-Einstein condensates trapped in a deep optical
lattice (OL) the phenomenon of tunneling suppression leads
to the existence of a new form of localized matter waves,
also called BEC compactons, in which the density is strictly
localized on a compact domain without any exponential decay
tail at the boundary [4]. BEC compactons can exist not only in
ordinary (e.g., single component) BEC but also in binary BEC
mixtures [9,10], as well as in multidimensional contexts [11].
In the case of a deep modulation of the potential, the problem

24770-0045/2023/107(4)/044218(13)

044218-1

can be reduced to the nonlinear lattice described by a discrete
nonlinear Schrodinger (DNLS) model with modulated nonlin-
earity. In this case the maximum localization is achieved with
one-site compactons, i.e., excitations in which all the matter
remains localized in a single well of the OL.

In binary BEC mixtures, however, another type of cou-
pling, besides the one induced by the two-body inter and in-
traspecies interactions, is also possible, namely the spin-orbit-
coupling (SOC). BEC with spin-orbit coupling (SOC-BEC)
is presently receiving a lot of attention as with the ultracold
atoms variety of synthetic SOC, which can be engineered
and controlled by external laser fields. The experimental re-
alization of SOC-BEC for the case of binary mixtures was
reported in [2,3], while nonlinear excitations of intra-SOC and
inter-SOC, i.e., with the spatial derivative of the SOC term
acting inside each species or between the species, respectively,
were theoretically investigated in [12]. For SOC-BEC trapped
in deep OL, the existence of strongly localized excitation in
the form of discrete breathers was theoretically investigated in
[13] and the SOC tunability induced by periodic time modula-
tions of the Zeeman term was demonstrated in [14]. Recently,
the nonlinearity management of the spin-orbit coupled BEC
has been investigated in [15] where it has been shown that
for slow time periodic modulations of the nonlinearity, reso-
nances between the frequencies of the modulation and of the
intrinsic nonlinear modes (solitons) can lead to the appearance
of instability and stability tongues for the solitons.

We remark that only a few studies exist for the case of
SOC-BEC in deep OL subjected to nonlinear management
[2]. This case is rather interesting because, compared to pre-
vious studies, the presence of the SOC term may affect the
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compacton matter waves excitations found in absence of SOC
[4,9,10]. In particular, the spatial derivative of the SOC term
may interfere with the tunneling of atoms between adjacent
wells, making it unclear whether SOC-compactons may still
be possible

The aim of the present paper is to provide an answer
to the above problem, i.e., we investigate the formation of
binary matter-wave compactons in the presence of SOC. For
this, we consider an intra-SOC-BEC mixture in a deep OL
subjected to strong nonlinear management (SNM) consisting
of time-periodic modulations of the inter-species scattering
length. Using the averaging method, we show that the SNM
induces a rescaling of the inter-well tunneling constant and
of the SOC parameters that depend on the density imbalance
between neighboring sites, thus making the conditions for the
compacton existence and stability much more involved.

In particular, we show that the interplay between SOC
and interwell tunneling produce a big effect on the stability
of the compactons which appears very much reduced by the
presence of SOC. This is true even for the case of a single
site compacton for which the existence range is completely
independent of SOC parameters. A detailed linear stability
analysis shows that single site compactons are stable for a
wide range of interwell tunneling when the SOC parameter
is relatively small. The SOC range, however, can be made
wider by increasing the Rabi frequency. This is also true for
compactons localized on more than one site.

It is worth noting that the possibility to induce by means
of SNM a local density imbalance dependence on the SOC
parameters is a fact that exists independently of compactons.
Recently, a density-dependent SOC was also introduced in
ultracold Bose and Fermi gases in terms of interaction as-
sisted Raman processes [16]. We remark that our approach is
different from this, being completely independent of indirect
Raman processes (the density dependence of the SOC in our
case is only due to scattering length modulations).

The paper is organized as follows. In Sec. II, we introduce
the model equations for the system and show in detail the
averaging procedure to derive the effective equations that are
valid in the limit of strong modulations of the interspecies
scattering length. In Secs. III and IV we study the SOC-
compacton stationary and existence conditions, respectively.
In Sec. V we present numerical results for the cases of one,
two, and three site compactons and investigate their stability
both by linear analysis and by direct time integrations of the
equations of motion. Finally, in Sec. VI the main results of
this paper are briefly summarized.

II. MODEL EQUATIONS AND AVERAGING

As a model for a quasione-dimensional BEC mixture
trapped in an OL in the presence of SOC, we consider the
following coupled Gross-Pitaevskii equations (CGPE):

LoV
lFlE =HV = [H() +Hn[]lp,
p hik
HO = 2_ + px07 + Vol(x) + hQGx;
= 2%w al)|qj | 0 (1)
nZ = s
S, apl¥,l?

where o, ; are usual Pauli matrices and ¥ = (W, )7 de-
notes the two-component wave function normalized to the
total number of atoms. This quasi-1D model can be derived
from a more general three-dimensional setting by considering
a trapping potential with the transversal frequency w; much
larger than the longitudinal one, w; >> . The linear part,
H), of the Hamiltonian H includes the kinetic energy p)z( /(2m)
of the condensate, the diagonal SOC term of strength «, the
off-diagonal Rabi oscillation term of frequency €, and an
optical lattice in the x direction represented by a periodic po-
tential V,;(x) ~ sin®(kx) where k;, is the lattice wave number.
Note that the SOC term is diagonal in the two components,
meaning that we are considering the intra-SOC case (a similar
analysis can be done for the inter-SOC case with an off-
diagonal « term and a diagonal Zeeman term). The nonlinear
part, H,;, includes contact interactions, with a;; (j =1,2)
and aj,, the two-body intraspecies and interspecies scattering
lengths, respectively. By rescaling variables and component
wave functions according to:

hik?
X = i, t — wpt, wherewg = R —L.
ki hT 2m
Vor (x) — ERV (x) = EgVy cos(2x),

vi(x, 1), ()

2a)a

Eq. (1) can be put in the dimensionless form:

K. 92
af] = [—ﬁ + V) —(— 1)’1——]1&,

0 ais
+ (i|wj|2+ﬁ|w3,|2>w,
ap ap

Q .
+—v3_;, (=12) 3)
wg

with ap denoting the background scattering length and Ex
the lattice recoil energy. By expanding the two compo-
nent fields as ¥y (x,7) = Y, u,(t)w(x — na) and Yo (x, 1) =
>, on(Ow(x — na) with w(x — na) the lower band Wannier
function of the underlying linear system [17], one obtains
in the tight-binding approximation appropriate for deep op-
tical lattices and the following discrete nonlinear Schrédinger
system [13]:

iun,t - - F(un+l + un—l) + iO’(Mn+1 - un—l)
+ Qu, + [V1|Mn|2 + )/|Un|2]um
ivn,t = - F(vn+1 + vn—l) - iU(Un+1 - vn—l)

+ Q’/tn + [V|Mn|2 + 7/2|vn|2]vn- (4)

Here n denotes the lattice site at position na, a being the
lattice constant, I is the intersite hopping coefficient, o, 2 are
the rescaled SOC strength and Rabi frequency, respectively,
while y;, i = 1,2 and y are the coefficients of the intra and
interspecies interactions, respectively. The system (4) is of
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Hamiltonian form with the Hamiltonian given by
H= Z |:—1“(u,1+1u;k + y, Uy)
n

— F(Un+1v;'; + U:+1Un) + ig(ull+1u: - u:+lu")

— 10 (Vyy 1V, — Uy V) + Qv + upvy,)

1
+ 5 lun|* + yalval*) + y(r>|un|2|vn|2}. S

In the absence of nonlinearity, i.e., y; = y» =y =0, the
dispersion relation can be obtained by substituting u, =
Aexpli(kna — put)] and v, = Bexpli(kna — ut)] into Eq. (4),
giving the following lower and upper branches for the chemi-
cal potentials of the two components:

i (k) = —2T cos(k) & 1/ Q2 + o2 sin®(k), (6)

where we have fixed, here and below, @ = 1 without any loss
of generality. In the following we investigate the possibility
of compacton formation via an interspecies NM, this being
more simple than the intraspecies case since it involves the
modulation of just a single parameter, i.e., the interspecies
scattering length. Specifically, we keep the intraspecies non-
linear coefficients, y;, i = 1, 2, in Eq. (4) to be constants and
assume the interspecies nonlinearity coefficient y to be a time
periodic function of the form:

M ‘
y) =y + Y cos (w_)
€ €

with € a real parameter which allows to control the strength
of the management and to separate the fast and slow time
scales (see below). Our analysis will be valid in the limit of
strong NM which requires € < 1. In this case it is possible to
eliminate the explicit time dependence from Eq. (5) by means
of the transformation:

u, = Une*il\(f)lvnl2 v, = Vne*iA(t)\UnI2 (7)
with
. y® ¢
A(t) =asin(wt), a=—, T=-—, ®)
w €

and to apply the averaging method to eliminate the fast time
scale. The resulting averaged equations for the amplitudes U,
and V,, are given in the Appendix [see Egs. (Al) and (A2).
It should be noted here that the averaged equations are only
valid for ¢t < 1/e with accuracy of O(e) [18].

It turns out that the averaged equations also have Hamil-
tonian structure (see Appendix) with the same Hamiltonian
(5) of the unmodulated system but with u,, and v, replaced by
U, and V,, respectively, and parameters I, o, and 2 rescaled
according to

I — I =Ty ),
o — &; = aJo(abi)),

QL — Qi = QJ()((X@()) (9)

with i = 1,2, Jy denoting the Bessel function of order zero
and Qli, in, 6y defined as

60 = U, |* — IVul?,
eli = |Un:t1|2 - |Un|21
0F = [V |* — V% (10)

From this we see that the effect of the modulation is to intro-
duce a dependence in the parameters I, o of the unmodulated
system, on the density imbalance between adjacent sites of the
same component, and a dependence on the density imbalance
between the two components on the same site, for 2. Obvi-
ously the condition for compacton existence, i.e., the complete
suppression of the tunneling at the compacton edges, also
involves the SOC parameters and will have more restrictive
conditions to be satisfied.

This can also be intuitively understood by observing that
the term proportional to o, in the Hamiltonian changes the ki-
netic energy of both components while the term proportional
to o, corresponds to Rabi-coupling leading to oscillations
between the two BEC components. On the other hand, the
variation of the kinetic energy due to the o part of the SOC
interferes with the natural dispersion of the system, i.e., with
the intrawell tunneling I, while the Rabi term interferes with
the stationarity condition of compacton. From this it is clear
that the conditions of parameters for the SOC-compacton
existence are expected to be more stringent than those in the
absence of SOC.

Finally, we remark that while in the density-dependent
SOC approach considered in Ref. [16], the rescaling of the
parameter €2 involves both the zeroth and the first-order Bessel
functions; in our case, due to the absence of indirect Raman
processes, only the function Jj is involved.

III. STATIONARY CONDITIONS FOR SOC-COMPACTONS
We look for stationary SOC-compactons of the form
U, =Aze ™MV, = B,e " (11)

with A,, B, complex amplitudes and i, @, chemical po-
tentials for the two BEC components. By substituting these
expressions into the averaged equations for U, V,, given in the
Appendix, one finds that all the time dependent exponential
factors can be canceled out except the ones that are propor-
tional to €2, these being of the form

Qe imitna) {o{AﬁBZC‘zmzt-’l (aBp) — €' B, [Jo(atby)
— a|An|211(Ot90)]} (12)

for Eq. (A3), and similar expression but with the exchanges
A < B, 1 <> 1o, and with a minus sign in front of Jy. From
these expressions it is clear that stationary SOC-compactons
are possible only if € = 0 or if the chemical potentials of the
two species are equal, i.e., | = uy = . The corresponding
steady-state equations then are

WA, = Filg=o0, H2B, = F2la=0o (13)
for case 2 = 0, and

MAn=Fly uB, = F (14)
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for case | = o = u. Here F; and F, denote the right hand
side of Egs. (A3) and (A4), respectively, but with the re-
placements U, — A,, V, — B,. We remark that although the
above stationary conditions are specific of the intra-SOC sys-
tem, similar conditions would also appear for the inter-SOC
system [19].

As we shall see in the next section, the condition 2 =0
is too restrictive and can be satisfied only for one-site com-
pactons. In this case, however, although the stability of the
solutions will be influenced by the SOC, the analytical ex-
pression of the solutions will be the same as for the non-SOC
case.

Note that Eq. (14) implies the equality of the number of
atoms Np, N, in the two components, this being true in gen-
eral also for multisite SOC-compactons. This can be easily
understood from the fact that for Ny # N, and 2 # 0, there
will be oscillations in the number of atoms that will make the
zero tunneling conditions at the compacton edges impossible
to satisfy. The only way to avoid this is to equilibrate the two
components. This, however, requires the additional restriction
of the equality of the intraspecies interactions (see below).

IV. EXISTENCE CONDITIONS FOR SOC-COMPACTONS

The conditions for the existence of stationary compactons
are obtained once the following compacton ansatz is adopted:

An» Bn # O
A,, B, = 0 otherwise, (15)

ifng <n<ny+s,

with ng and ny + s denoting the left and right edges of the
compacton, respectively, and s its width. Since the coupling in
the stationary equations involves only first next neighbors, the
substitution of the ansatz (15) into either Eq. (13) or Eq. (14)
will give 2(s 4 3) nontrivial equations in correspondence of
sites nop — 1, ..., np + s + 1 and with all other equations, for
n<ng—2and n > ny+ s+ 2, automatically satisfied. The
compacton existence relies on the possibility to solve these
2(s + 3) equations for the nonzero amplitudes by achieving
both the tunneling suppression at the compacton edges and
the fixing of the chemical potentials.

A. One-site SOC-compactons

For a one-site compacton the condition € =0 implies
existence conditions are completely independent of the SOC
parameters o, 2 and therefore will be similar to the case
of BEC mixtures in absence of SOC considered in previous
papers [9,10]. On the other hand, for Ny = N, = N/2 the
compacton existence will depend on €2 but not on o; this is
because the o term always involves as a factor a zero ampli-
tude on a site ng £ 1 different to the site ng. In both cases,
however, the SOC terms will strongly influence the stability,
therefore it is worth considering in more detail the existence
conditions for these two cases.

Case 2 = 0. We take s = 0 in Eq. (15) and fix the ampli-
tudes at site ng as A,, = a + ib, By, = c +id, with a, b, c,d
reals. By substituting into Eq. (13), one obtains, in correspon-
dence to sites ng &= 1, four equations that are automatically
satisfied if Jo(a(c?> + d?)) = 0 and Jo(a(a®> + %)) =0, e.g.,

if a, b, ¢, d are taken as

§

a2+b2=N1=—m, é
o

c4+d*=N, = (16)
o
with &,,, & two different zeros of the Bessel function Jy. One
can then check that the other two equations, e.g., the ones for
the site ng, give the chemical potentials as
w=Ny?+Ny, w2 =Ny + Ny a7
Case 2 # 0. In this case, we must have Ny = N, = N/2,
so we fix s = 0 in Eq. (15) and take A,, = B,, = a + ib, with
a, breals. One can check that the equations in correspondence
to the edges ny % 1 are automatically satisfied if Jy(a(a® +
b)) =0, e.g., if a®> + b* = N/2 = & /a, with & a zero of Jy.
The other two equations for the site 7y can be solved for the
chemical potential only if y; = y, = p, thus giving

N
n=s0"+n+a (18)

Note that in this case €2 enters the pu expressions simply as a
shift.

B. Two-site SOC-compactons

For a two-site compacton, 2 = 0 will not provide real
solutions for the chemical potentials due to the presence of
imaginary terms proportional to o. It is possible, however, to
eliminate such terms by considering some suitable ansatzes
for the amplitudes. For this, let us fix s = 1 in Eq. (15) and
take A,, = B,+1 =a+ib, B,y = A,,+1 = a—ib, with a, b
reals (in-phase solution). From Eq. (14) one then obtains
eight equations in correspondence of sites ng — 1, ng, np +
1, and ng + 2. One can show that these equations lead to the
following solution for the chemical potential:

Q-r
a2 — 2

w= (a2+b2)< +y +y<°>) (19)

with a, b given by
Q-—-rI
a’ = & I+ ——).
2o VI —Q)? +0?
Q-T
), (20)

b = 2(1 _——
2o V(T = Q)2 +02

and &; denoting a zero of Jy. Using Eq. (20) one can rewrite
Eq. (19) in a more explicit form:

N
M=Zw+y®H-aLHr—Qﬂ (21)

showing the full dependence on parameters I, o, Q2 and on
the total numbers of atoms N.

Similarly, one can obtain out-of-phase two-site com-
pactons solutions by assuming the ansatz A,, = —By 41 =
a+ib, B,, = —An,+1 = a — ib. In this case, the expressions
for u, a, b are the same as in Egs. (19)—(21), except for the
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(a)
2 ' —|—6—Re(A)
—&—Im(A )
1.5} —a—IA)|
< 1
0.5}
e, & < ' <o © 2]
-2 0 2
n
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I'=1.00
5 L
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-1 -0.5 0 0.5 1

i

2 ' —|—6—Re(B,)
—<4—1Im(B,)

—&—|B,|

0 0.5 1
r

FIG. 1. (a), (b) Binary one-site compactons (14) localized at n = 0, for the case ¢ =0, 2 =0, and with Ay = By = a + ib, where
a=0.5&/a and b = \/£& /a — a?. Other parameters are fixedas I' =1,y =y, = —1, y@ = —0.2, y = 1.0, o = 1.0. (c) The eigen-

value spectrum at I” = 1, (d) gain G versus I".

replacement I — —1I  in all equations and for the change of
sign in front of the fractions appearing inside the parentheses
in Eq. (20).

C. Multi-site SOC-compactons

In principle, the above analysis, being completely general,
can be applied to SOC-compactons of arbitrary size. The
equations to solve, however, in these cases become much
more involved for an exact analysis and one must recourse to
numerical methods. An example of this is given for a three-site
compacton in the next section.

V. NUMERICAL RESULTS

In order to check the above results, we will use both linear
stability analysis and direct numerical integrations of the orig-
inal discrete CGPE equations in Eq. (4). For the linear stability
analysis, the standard procedure is employed by considering
the ansatz with perturbation of the form

Up = [An + £(ane™™ + bpe™ H]e™™,

V= [By + e(cue™ + d,e™ ")l ™, (22)

where A = A, + iA; denotes the linearization eigenvalue and
& < 1. Substituting Eq. (22) in Egs. (A3) and (A4), and taking
only the terms with O(¢) (linear terms of &), one obtains
an eigenvalue problem for A that can be solved numerically.

Ideally, the perturbation part in Eq. (22) will remain small
(stable) if all imaginary eigenvalues A; are zeros or negligibly
small, for gain G = max(|};]) >~ 0.

Typically, the results of the linear stability analysis of SOC-
compactons are further checked by direct integrations of both
the averaged and original equations Eq. (4). Since they are
found in agreement, however, results in the following will be
reported only for the original equations.

A. One-site SOC-compactons

As discussed above, the existence condition for one-site
SOC-compactons, apart from possible shifts of the chemical
potential by €2, are the same as in the absence of SOC. This,
however, does not imply that there is no effect of the SOC on
compactons because both o and €2 can strongly influence their
stability.

We show this by comparing results of the linear stability
analysis in the case of absence of SOC, i.e., 0 =0, Q =0,
(see Fig. 1) with the ones obtained in the presence of SOC (see
Figs. 2 and 3). From Fig. 1 we see that the linear spectrum has
a gain G that is practically zero for all I" € [0, 1], meaning
that the solutions are stable, a fact that is already known from
previous results [10]. By taking o = 2 and setting 2 = —1,
we find that the solution becomes unstable [see panels (a)
and (b) of Fig. 2], however, by decreasing o = 1 and setting
Q = —2, the stability can be restored almost for the whole
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(@)
10 I'=1.00
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1
(c)
O I'=1.00
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10t
O
-1 0.5 0 0.5 1
A

i

(b)

0.56

0.54 1

0.52 1

0 0.2 0.4 0.6 0.8 1
r

FIG. 2. Parameters for panels (a) and (b) are fixed as in panels (c) and (d) of Fig. 1 except 0 = 2, 2 = —1 and for panels (c) and (d),

oc=1Q=-2.

range in I of the zero SOC case, as one can see from pan-
els (c) and (d) of Fig. 2. Similar results are obtained for
different choices of the system parameters and for different
compacton amplitudes. In general, we have that stable one-site
SOC-compactons can exist in wide regions of the parameter
space.

We have also investigated the effects of the nonlinearity
management parameters ¥ 9, y(1) on the stability of one-site
SOC-compactons. Note from Eq. (16) that the compacton
amplitude is inversely proportional to the value of !, de-
spite ¥ alone not affecting the stability. Remarkably, the
solutions become significantly stable when |y©®| is much
larger than y ", as demonstrated in Figs. 3(a) and 3(b), and
oppositely, the solutions become unstable when |y | is much
lower than y 1, as portrayed in Figs. 3(c) and 3(d). The above
linear stability results are further confirmed by nonlinear sta-
bility analysis achieved via numerical timeintegrations of the
nonlinear system in Eq. (4), as one can see from Fig. 4.

B. Two-site SOC-compactons

For multisite compactons, we must necessarily have the
condition €2 ## 0, i.e., equal chemical potentials for the two
BEC components and this implies equal intraspecies in-
teractions. Let us consider first the case of an in-phase
SOC-compacton with amplitudes Ag = B = a+ibandA| =

By =a—ib with a = /€ /2a and b= /& /a —a* We
fix parameters as follows: y; =y, =1, y @ =4, y =1,

w=1, =4, and ¢ = 1. Note that all the nonlinear pa-
rameters here are positive, i.e., interactions are repulsive. In
panels (a) and (b) of Fig. 5 we show the real and imaginary
parts versus n of the first and second component A,, B,,
respectively, of a two-site in-phase compacton, while in the
bottom panels, (c) and (d), their stability analysis is reported
as a function of the parameter I". From panel (d) it is clear that
for I' less than & 0.3 the gain G is positive and the solution
is unstable, while for all I" > 0.3 the gain reduces to zero and
the solution becomes stable. Panel (c) of the figure just shows
the stability in terms of the linear eigenvalues at I" = 1 from
which we see that they are all real numbers.

Similarly, for an out-of-phase two-site compacton we fix
the amplitudes as Ao = —B; = a+iband By = —A| =a —
ib with the same a, b of the previous case. Parameters are fixed
sy =n=—1,y0=-4yD=10=1,Q=—4, and
o = 1. Results are reported in Fig. 6, where panels (a) and (b)
depict the solutions of typical out-of-phase profiles and panels
(c) and (d) show the results from the stability analysis. Notice
that despite the type of interactions changed from repulsive
to attractive, the range of stability is the same as for the in-
phase case. Thus, independently on the sign of the interaction,
in the interval 0.3 < I < 1 both the in-phase and the out-of
phase compactons appear to be stable. This is quite interesting
because it shows SOC-compacton bistability in contrast with
usual inter-site breathers (i.e., localized out-of-phase solutions
with tails), which are known to be unstable in discretized spin-
orbit-coupled BEC in absence of SNM [12].
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FIG. 3. Linear stability analysis for the one-site compactons; (a) The eigenvalue spectrum for case I' =1,y =y, = —1, y@ = —1,

y® =02, =10, Q =-04,0 =1; (b) Gain G versus I" with parameters as in (a), (c) The eigenvalue spectrum for case I' =1,
=p=—1,y0=-02,yV=10=1,Q2=-04,0 =1, (d) Gain G versus I with parameters as in (c).

The stability of the solution also depends on the ratio
n = |y©@/y®| between the dc and ac strengths of the inter-
site interaction, with the two-site SOC-compacton becoming
unstable for n < 1. This is shown in Fig. 7 for the case of the
same two-site in-phase compacton depicted in Fig. 5 but with
n=0.5.

Finally, we find the results of the linear stability analysis
to be in very good agreement with those obtained from direct
numerical integrations of Eq. (4). An example of this is shown
in Fig. 8 where the stable and unstable time evolution of the
two-site in-phase compactons of Figs. 5 and 7 at I' = 1, are
reported.

C. Three-site SOC-compactons

Three-site SOC-compacton solutions are obtained from
Eq. (15) with s = 2 by taking 11 = p, = p and assuming the
following ansatz for the solution: A,, = a + ib, B,, = a — ib,
Ay+1 =c+id. and B+ = ¢ —id with a, b, ¢, d real num-
bers. Direct substitution of the ansatz into Eq. (14) provides
ten equations which are reduced to six (for instance only those
for sites ng — 2, ng — 1, ny) thanks to the symmetry of the
solution around the central site ny. From the equations for
the site ngp — 2 one obtains the zero tunneling conditions for
Ayy+2, Byy+2 at the edges of the compacton in terms of roots
of the Bessel function as in Eq. (16). Substituting these condi-
tions into the equation relative to sites nop — 1, one obtains two
equations that can be combined into the following expression

for the chemical potential:

w= {al"[Re(wrziwy)

"~ Re(wn)
+ Re(wozi )i (a(|z2* — [w2]*))

+ I'Re(z)Jo(a(jz1 1 — |wi[*))

— QRe(wy) — y|wi "Re(w,)

— y©lwi PRe(wy) — a0y (a(|z2|* — [wa*))
- [Im(woziwy) — Im(woz1 )]

—adoa(|z1]* — [wi)Im(z2)}. (23)

Here we used y; = y» = v and denoted z; = a+ib, 7250 =
a—ib, w; = c +id, and w, = ¢ — id. Lastly, from the equa-
tions for site ng one gets:

nzjrr + 20211 (Wa— 22— + Wa—jZ2—j)
Jie(wii* = lzj41?)
+ aQ(z-jlzj1 1> + ZZ*}'Z?+1)
Ti(@(zj1 P = lz2-517)
+ 2T wjJo(a(wajl* — |z22—;1%))
— Qo jlo(al|zj|* = |z2-j*)

—vizinlPzim — ¥ Pz 201 =0, (24)
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FIG. 4. Space-time evolution of the on-site compactons by solving Eq. (4) with € = 0.01, (a) |u,| and (b) |v,| for stable case as in

Fig. 3(a) while (c) |u,| and (d) |v,| for unstable case as in Fig. 3(c).

with j =0, 1. These nonlinear equations together with the
previous ones should be solved numerically for a, b, c,d,
giving the the compacton amplitudes of the two components
at sites ng, ng £ 1.

Stability patterns for three-site compactons are in general
similar to the ones previously investigated, as shown in Fig. 9,
the only distinctive feature being the absence of stable solu-
tions for the case ¥ < ™, and even for case y©@ > y1;
if the difference is not sufficiently large, the solution might
become unstable as depicted in Fig. 10. Lastly, in the top and
bottom panels of Fig. 11 we report the time evolution obtained
from numerical integrations of Eq. (4) by initial conditions
the solutions at I" = 1 depicted in Figs. 9 and 10, for which
the linear stability analysis predicts stability and instability,
respectively. As one can see from panels (a) and (b) and (c)
and (d) of Fig. 11, these predictions are fully confirmed by
direct numerical integrations of Eq. (4).

VI. CONCLUSIONS

In this paper we have investigated the existence and stabil-
ity properties of compacton matter wave excitations of binary
BEC mixtures with spin-orbit coupling trapped in an OL,
subjected to SNM. We considered for simplicity an inter-SOC
system (i.e., with an off-diagonal Rabi term) and assumed
both the OL to be deep enough to justify the tight-binding

approximation, and the strength and the frequency of the
modulation to be large enough to use the averaging method.

Within this model, we derived effective averaged equa-
tions of motion for the matter wave complex amplitudes in
the form of a two coupled discrete NLS and demonstrated that
the SNM introduces a local density imbalance dependence not
only in the tunneling parameter I" but also in the SOC parame-
ters o and €2. This density dependence of the SOC parameters
persists in the system independently of the SOC-compacton
existence.

The dependence of both o and 2 on the local density
imbalance, however, give rise to conditions for stable SOC-
compactons existence that are more restrictive than the ones
obtained in the absence of SOC. In general, the stationarity
condition requires the equality of the chemical potentials of
the two components, a fact that can be satisfied when the
number of atoms of the two species are equal as well as
their intraspecies nonlinearities. We have also investigated the
stability of SOC-compactons versus the system parameters,
i.e., the SOC strength o, the Rabi frequency €2, the coupling
or hopping constant I', and the ratio between the nonlinear
coefficients y©, (V. This has been done both using a linear
stability analysis of the averaged equations and by direct
numerical time integrations of the original nonlinear PDE
equations. Numerical simulations show that by keeping the
other parameters fixed, an enlargement of the stability region
of SOC-compactons can be achieved by decreasing o or by
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FIG. 5. Two-site in-phase compacton forcase y; =y, = 1,y® =4, y0 =1, 0=1,Q =4, and o = 1.
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FIG. 6. Two-site out-phase compacton forcase y; = y» = —1,y@ = -4,y = 1,0 =1,Q = -4, and 0 = 1.
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FIG. 8. Space-time evolution of the two-site compactons obtained from numerical integrations of Eq. (4) with € = 0.01. (a) |u,| and (b) |v,|
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FIG. 11. Space-time evolution of the three-site compactons obtained from numerical integrations of Eq. (4) with ¢ = 0.01, (a) |u,| and
(b) |v,| for the stable case at I' = 1 in Fig. 9. (c) |u,| and (d) |v,| for unstable case at I' = 1 in Fig. 10.

increasing 2. Stability also seems more easily obtainable for
ly@| > |y and large values of I'.

From this, we conclude that while on one side the SOC
restricts the parameter range for stationary SOC-compacton
existence, on the other side it gives a more stringent signature
of their occurrence. Indeed, they should appear when the
intra-species interactions and the number of atoms in the two
components are perfectly balanced (or close to being balanced
for metastable cases). This suggests SOC-compactons as pos-
sible tools for indirect measurements of the number of atoms,
and/or the intraspecies interactions in experiments.
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APPENDIX: AVERAGED EQUATIONS
AND HAMILTONIAN STRUCTURE

Below we provide the derivation of the averaged system
Eq. (11). By substituting Eq. (7) into Eq. (4) we get:

iUy, = —ilCU,((AX))V, — (AX[)VF)

— o U,((AX )WV, + (AX] V)
+ iQAXValUL > — (AXy)V,UY)
—I'(X") +io(X;) + QUXy Vi

+ 102U, + y O W, 20, (A1)

Vs = —ilV,((AXNHU, — (AX)UY)
+ oV, ((AX,)U, + (AX;)UY)
+iQUAX U, Vul* — (AX;UEVY)
= I'X[") —io(X[) + QX )Uy
+ 12 lVilPV + ¥ C1U PV, (A2)
where
XE = Uy Vo PGP g, oAV PG
XE = VAU PoUP) gy AW PO,
X = AP,
and (-) is the rapid modulated term to be averaged. The aver-
aged terms can be evaluated as
(AXE) = Vit (A7) £V, (Ae™),
(AXF) = Up1 (AeD%) £ U, (AP,
(XiE) = Vi1 (6) £ V1 (),
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(X)) = Uy (€™ £ U,y (%),
(AXS) = (Ae®™), (X)) = (eF2%)

with

2w 4, (1) 1

iAGE w . (D

(AeTAy = —/ r_ sm(wr)eiﬂw
2 0 w

= Fiahi(@f}), () = Jo(ab]),

L.
(Jf sin(wt) dt

(Ae* ™ty = Liad (abp), (€AY = Ji(abp).

Here Jy, J; are the Bessel functions of orders O and 1, re-
spectively, and o = y(l) /w and ot Gzi, 6y are defined as in
Eq. (10). Substituting the above averages into Egs. (Al) and
(A2) yields
iUn; = — T{aU[(Vy Vi + Vit V)T (@6])

+ (Vo Vi 4+ Vit VO (@0,)] + Upi1 Jo (b))

+ UnrJo@0)} + (11U > + v QI PY U

+ io {aUn[(Vn*_;,_lvn - Vn+lvn*)~]l (aefr) - (Vn*_lvn

— Vart VO (@0,)] + Ung1 Jo(a05) — Up—1Jo (b))

— Qa1 (@00) (ValUnl® + V,SU;) — Vado(ebo)}.

(A3)

iVn,r = - F{aVn[( n*+1l]n + Un-HUn*)Jl (Ol@;)
+ (U, \Up + Ut U (@07)] + Vi1 Jo(b])

+ Voo Jo@OD)} + (nlVal® + y O 1ULIPY,

— io{aV, Uy Uy — Upn UDT (@65) — (U U,

— Un1UNJ1(@05)] + Vi1 Jo(@6]) — Va1 Jo (b))}
+ Q{1 (@00)(Un|Va* + U V,2) + Updo(ebo) )

(A4)

Furthermore, Eqgs. (A3) and (A4) can be written in terms of
iU,; = 8H,,/8U, and iV, , = 6H,,/8V,’, respectively, where
the averaged Hamiltonian is

Hoy =) [—Fh(aej)(UnHU: + U Uy

— TJo(@b ) Vi Vi + V5 Vi)
+ioJo(@8; ) Upp U — U, Uy)
— (0o (@B ) Va1 Vi = Vi Vi)
+ QJo(abo)(U,V, + U, V,)

1
- 5<y1|Un|“ +»IVial®) + y<°>|Un|2|Vn|2}. (AS)

By comparing the averaged Hamiltonian in Eq. (A5) with
the original Hamiltonian Eq. (5), their terms coincide if one
rescales the tunneling or hopping constant I, the SOC pa-
rameter o, and the Rabi frequency €2 according to Eq. (9).
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