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Topological measures of order for imperfect two-dimensional Bravais lattices
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Motivated by patterns with defects in natural and laboratory systems, we develop two quantitative measures of
order for imperfect Bravais lattices in the plane. A tool from topological data analysis called persistent homology
combined with the sliced Wasserstein distance, a metric on point distributions, are the key components for
defining these measures. The measures generalize previous measures of order using persistent homology that
were applicable only to imperfect hexagonal lattices in two dimensions. We illustrate the sensitivities of these
measures to the degree of perturbation of perfect hexagonal, square, and rhombic Bravais lattices. We also study
imperfect hexagonal, square, and rhombic lattices produced by numerical simulations of pattern-forming partial
differential equations. These numerical experiments serve to compare the measures of lattice order and reveal
differences in the evolution of the patterns in various partial differential equations.
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I. INTRODUCTION

Two-dimensional (2D) patterns arise in a wide variety of
natural systems and laboratory experiments. Classic Rayleigh-
Bénard convection experiments, for example, give rise to
hexagonal or square patterns [1,2], while two-frequency para-
metric forcing of surface waves on a fluid can produce
rhomboidal, hexagonal, and square patterns [3]. Bombarding
a solid surface with a broad ion beam, on the other hand,
can result in nanoscale mounds (so-called “nanodots”) ar-
ranged in hexagonal or square arrays [4–8]. These patterns are
seldom perfect Bravais lattices. Defects, such as grain bound-
aries between regions in which the patterns have different
orientations, pairs of pentagons and heptagons in otherwise
hexagonal lattices, and dislocations are common.

Effective methods of characterizing the order in a 2D pat-
tern are desirable in a number of applications. For example,
hexagonal arrays of nanodots produced by ion bombardment
have served as templates for the formation of arrays of nano-
magnets which could potentially be used in the production
of high-density magnetic data storage devices [9,10]. In such
applications, one aims for as ordered a pattern as possible. A
gauge of the degree of order is needed to assess the quality of
the end product of fabrication methods.

A number of methods have traditionally been applied to
measure the order in a 2D pattern. One such method is to
compute the width of the lowest-order peak in the Fourier
transform of the pattern. However, this method is difficult to
apply in cases for which the peaks in the Fourier transform
are not separable from the background or from each other. A
second widely employed method examines how the pattern’s
autocorrelation function decays with distance. If it decays
exponentially, the characteristic length scale of the decay (the

correlation length ξ ) gives an estimate of the range over which
the order extends. However, this method does not apply if
there is not a region of exponential decay in the autocorre-
lation function. This method has been tested in the context of
imperfectly ordered hexagonal arrays of nanodots by Böttger
et al. [11]. These authors found ξ to remain nearly constant
even as order increased in their samples. Thus, ξ can be an
insensitive gauge of order even in cases for which it can be
measured.

A relatively new tool of computational topology called
persistent homology (PH) characterizes topological features
such as components or holes of various dimensions in finite
point sets [12]. PH probes these features at all length scales
and thus may be characterized as a geometric-topological
method. PH has proved to be a powerful tool for probing
topological features of data in a wide variety of applications.
(See Ref. [13] for an accessible introduction to PH and its
applications in materials science and Ref. [14] for a more
general review.) In physics and materials science, PH methods
have been applied to describe multiscale topological and geo-
metric features of atomic configurations in silica glass [15,16],
to characterize the structure of granular media and the force
networks within them [17–19], and to study fluid flow [20]
and crystallization mechanisms [21]. They have also been
used to identify nanovoids formed during the crazing process
of glassy polymers [22] and to represent energy landscapes of
molecules such as n-alkanes [14].

PH has recently been applied to gauge the degree of order
in imperfect hexagonal lattices [23,24]. Two measures of or-
der were employed: the variance of H0 [var(H0)] and the H1

sum (�H1). These two measures of hexagonal order are zero
for a perfect hexagonal lattice and grow larger if the lattice is
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perturbed. They can be applied no matter whether the pattern
is very disordered or nearly defect free. The variance of H0,
however, cannot distinguish one type of lattice from another.
The H1 sum, on the other hand, probes hexagonal order but
does not have an obvious generalization to other kinds of 2D
lattice.

In this paper, we introduce PH-based measures of order
that can be employed to quantify the degree of order in any im-
perfect 2D Bravais lattice relative to a given perfect (or ideal)
lattice. A 2D Bravais lattice is a set {z1�v1 + z2�v2 : zi ∈ Z}
for two vectors �v1, �v2 ∈ R2. We will apply the introduced
measures to finite subsets of such lattices (such as the set
of points in a Bravais lattice that are also in a given square
subset of R2) and simply refer to these as “lattices.” By an
imperfect lattice we mean a set of points that resembles a
lattice but may be a perturbation of a lattice or have defects.
To make it clear when we are referring to perfect lattices, we
will refer to these as ideal lattices. To compute the measures
of order, we first choose an ideal lattice that is used as a
point of reference in assessing the degree of order in imperfect
2D Bravais lattices. We then apply PH to capture topological
properties of both the ideal and imperfect lattices. Briefly,
PH keeps track of topological features that form (are born)
or disappear (die) as a “connectivity” parameter is increased;
this parameter determines how the data points are connected
by edges and faces. For each topological feature, a point is
added to a birth-death diagram whose coordinate values are
the associated birth and death values of the connectivity pa-
rameter. Since the lattices consist of points in the 2D plane, PH
provides two birth-death diagrams for each of the lattices—an
H0 birth-death diagram that provides information on topolog-
ical components and an H1 birth-death diagram that provides
information on topological holes. We then apply a metric on
point distributions to give distances between the H0 and H1

birth-death diagrams of the idealized and imperfect lattices.
These distances, which we call WD0 and WD1, respectively,
are our measures of order for the imperfect lattice. To illustrate
their use, we apply these measures to imperfect hexagonal,
square, and rhombic patterns produced by partial differential
equations. We also apply them to imperfect lattices produced
by perturbing perfectly regular Bravais lattices.

This paper is organized as follows: After providing
background material on persistent homology, birth-death di-
agrams, and a metric on point distributions called the sliced
Wasserstein metric, we define our PH-based measures of order
in Sec. II. We apply these measures of order to perturbations
of perfect 2D lattices in Sec. III and to imperfect hexagonal,
rhombic, and square lattices derived from pattern-forming
partial differential equations (PDEs) in Sec. IV. The imper-
fect lattices derived from PDEs, and therefore the measures
of order, evolve over time, and we compare this evolution
for different PDEs and different choices of parameters. We
conclude with a discussion of our results in Sec. V.

II. PERSISTENT HOMOLOGY, THE WASSERSTEIN
DISTANCE, AND TWO MEASURES OF ORDER

Let u(x, y, t ) be a real-valued function of the coordinates
x and y and of the time t . For the sake of specificity, we
will take u(x, y, t ) to be the height of a surface above the

point (x, y) in the x-y plane at time t , although u could be
one of many different physical quantities, including density,
temperature, or electric field strength. Mounds on the surface
will for brevity be referred to as “dots,” in analogy with the
term “nanodot” that is often used to refer to nanoscale surface
mounds. The lattice L is defined to be the set of points in the
x-y plane where local maxima in u are located. These lattice
points are the apexes of the dots. Our goal will be to gauge the
degree of order in the arrangement of lattice points.

PH is a computational tool that can be used to characterize
topological features such as the number of connected compo-
nents or the number of holes in a collection of data points [12].
In the present case, we will use PH to identify these features
in L, and so to provide us with a means to quantify the degree
of order in the lattice.

In order to use PH, we create the Vietoris-Rips complex
and the associated birth-death (BD) diagram from the lat-
tice points [12]. The Vietoris-Rips complex is a simplicial
complex that consists of vertices, edges, and faces and is
characterized by a connectivity parameter r ∈ [0,∞). The
BD diagram is a plot that consists of points whose horizontal
and vertical coordinates specify the value of r at which some
feature of the simplicial complex is created and destroyed,
respectively.

Our discussion of PH will be brief and is given for the sake
of completeness. Readers may find more detail and figures il-
lustrating the construction of the Vietoris-Rips complex and
the associated BD diagram in Ref. [24].

The Vietoris-Rips complex for a specific value of r is
constructed in the following way. For every two points in the
lattice that are a distance r or less from one another, a line is
drawn between them and is included as an edge in the simpli-
cial complex. Should three edges meet and form a triangle, the
triangle is filled in and is included in the complex as a face.
Vietoris-Rips complexes for a perfect rectangular lattice are
shown in the first column of Fig. 1 for four values of r. The
construction of the Vietoris-Rips complex for an imperfect
hexagonal lattice is illustrated by Fig. 2 of Ref. [24].

To produce the BD diagram, the Vietoris-Rips complex
is constructed for all values of r, starting at zero and then
increasing. Two sets of points are plotted on the BD diagram,
H0 and H1. H0 is the set of points that signify the creation and
destruction of components in the complex, and H1 is the set of
points that signify the creation and destruction of topological
holes. For r = 0, the complex has no edges or faces, and the
total number of components is simply the number of lattice
points under consideration. As r increases, edges begin to
form between vertices. Each addition of an edge potentially
decreases the number of components in the simplicial com-
plex. If the number of components decreases by n at r = r̂,
then n points (0, r̂) are added to H0.

As the complex is constructed, holes may develop for some
values of r. These are regions where four or more edges have
been joined to form a polygon but r is not yet large enough for
a triangle to have formed within it. For example, suppose four
lattice points are arranged in the shape of a square, and the
value of r lies between the side length and the diagonal length
of the square. The square encloses a hole for this value of r.
When such holes are created and then closed up, points (rb,
rd ) are added to the set H1, where rb is the value of r at which
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FIG. 1. Left column: Vietoris-Rips complexes built on a perfect
rectangular lattice with side lengths a and b, where b > a. Com-
plexes are shown at four values of the connectivity parameter r.
Lines denote edges in the complexes, and faces are shown as shaded
triangles. Right column: The associated BD diagram. The red points
belong to H0 and the blue points to H1. Note that multiple points can
and do lie at the same coordinates, atop one another, and both the
total number of points and ratio of the number of points at different
locations depend on the size of the domain. The horizontal dashed
line is located at infinity, and the dot located on it is a single point.

the hole forms and rd is the value at which the hole closes
up. For the rectangular lattice with sides lengths a and b with
a < b, complexes are shown in the first column of Fig. 1 for
r = 0 and the three values of r at which additional edges or
faces are added. The shorter (longer) sides of the rectangles
are connected at r = a (r = b). Diagonal edges appear at
r = √

a2 + b2, thus creating triangles which are filled in by
faces. Therefore, as shown in the second column of Fig. 1,
rectangular lattices have points associated with H0 at three
locations in the BD diagram—one point at (0,∞), and the rest
of the points are divided between (0, a) and (0, b). Holes form
at r = b and disappear at r = √

a2 + b2, giving points with
coordinates (b,

√
a2 + b2) in the H1 BD diagram. The BD

diagram for the imperfect hexagonal lattice shown in Fig. 2
of Ref. [24] is shown in Fig. 3 of that paper.

In order to quantify the degree of order in our patterns, we
introduce the Wasserstein distance (WD) [25] into our analy-
sis. The WD can be thought of as the “distance” between two
distributions of points. It is the minimum distance over which
points must be moved to go from one distribution to the other.
The WD is also known as the “earth mover’s distance”—
intuitively, one can think of the two point distributions as two
different mounds of earth, and the earth mover’s distance is the
minimum distance over which earth must be moved to convert
one mound into the other. More explicitly, the earth mover’s
distance is the sum of the distances between the points in the
first distribution and their images in the second distribution
under a bijection for which that sum is the minimum over all
possible bijections.

One way to use the WD to produce a measure of order
would be to compare the lattice points of an imperfect lattice
with an ideal lattice. If the two lattices were the same, the WD
would be zero, and if they were different, it would be positive.

There is a significant issue with this, however—if the “im-
perfect” lattice is obtained simply by rotating or translating
the ideal lattice, the WD would be nonzero, even though the
two lattices are essentially the same lattice and have the same
degree of order. Instead of using the WD in this way, we first
use PH to create BD diagrams for the idealized and imperfect
lattices, and then use a variant of the WD to compare these
diagrams. This allows us to make comparisons in a way that is
unaffected by translations or rotations, since the BD diagram
of a lattice is unchanged by these transformations.

As our first step in defining the variant of the WD dis-
tance between two BD diagrams that we will employ, we
first augment each BD diagram by taking the union of the
points in that diagram with the set of points on the diagonal
D ≡ {(rb, rd )| rb = rd} in the birth-death coordinate plane.
This provides two benefits. First, the augmented distributions
have the same (uncountably infinite) cardinality, and therefore
bijections may be found between them, as required to compute
the Wasserstein distance. Second, points in one BD diagram
that lie close to the diagonal may be mapped by a bijection
to the diagonal in the second augmented BD diagram. This
captures the idea that such points stem from small, “noisy”
perturbations of the data and so are of limited significance
[26].

Denoting the augmented BD diagrams by Ĥ0 = H0 ∪ D
and Ĥ1 = H1 ∪ D, our two gauges of the order in an imperfect
lattice L could be taken to be the WD distances between
the distributions Ĥ0 (Ĥ1) for L and the distributions Ĥ0 (Ĥ1)
for an idealized lattice I. There is a difficulty with this ap-
proach, however. In one dimension, the WD between two
distributions of points has a closed form that can be approxi-
mated. The same is not true in two dimensions, however [27].
For this reason, we will employ a variant of the WD, the
sliced Wasserstein distance (SWD) [28–30], rather than the
WD itself. The SWD between two distributions of points S1

and S2 is computed by drawing an infinite number of lines
of random orientation through them and making use of or-
thogonal projections to define corresponding one-dimensional
(1D) distributions on these lines. (A detailed description of
how these projections are carried out is given in the next
paragraph.) The two 1D distributions on each line are then
compared by computing the 1D WD, W , between them. The
distance W between these 1D projections when averaged over
a sufficiently large number of cuts is the SWD, and it gives a
good approximation to the WD between the two distributions
of points in two dimensions. The SWD is itself a metric [31].

The sliced Wasserstein distance between S1 and S2 is by
definition [30]

SW(S1, S2) = 1

π

∫ π

0
W

(
Sθ

1 ∪ Sθ
2�, Sθ

2 ∪ Sθ
1�

)
dθ, (1)

where θ is the angle at which a line �θ is drawn as measured
from the diagonal, Sθ

i is the set of points from Si that are
orthogonally projected onto the line drawn at angle θ , and Sθ

i�
is the set of points from Si first projected onto the diagonal D
and then subsequently onto the line at θ , and i is 1 or 2. See
Fig. 2 for an illustration of the formation of the set Sθ

2 ∪ Sθ
1�.

The sets Sθ
1 ∪ Sθ

2� and Sθ
2 ∪ Sθ

1� have the same cardinality even
if the sets S1 and S2 do not. In this way, the SWD allows one
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FIG. 2. Illustration of the formation of the set Sθ
2 ∪ Sθ

1� in the
definition of the sliced Wasserstein distance. Two sets S1 (filled green
triangles) and S2 (filled blue circles) in the x-y plane are shown in
panel (a). In panel (b), the sets are shown together with the diagonal
of the x-y plane (dotted line) and a line �θ chosen at an angle θ

to the diagonal (dashed line). The set Sθ
2 (open blue circles) is the

orthogonal projection of S2 onto the line �θ . The set Sθ
1� is formed

by first projecting S1 orthogonally onto the diagonal to create S1�

(open light green triangles). The set Sθ
1� (open green triangles) is the

orthogonal projection of S1� onto the line �θ .

to make meaningful comparisons between two point sets of
different sizes. If S1 and S2 are BD diagrams, this implemen-
tation of the SWD also automatically satisfies the condition of
first augmenting the diagrams with the points on the diagonal
before computing the distance [30].

Comparing the BD diagrams obtained from L with those
obtained from a chosen idealized lattice I yields two SWDs—
one between the two H0 BD diagrams, and another between
the two H1 BD diagrams. These distances are normalized by
the number of points in their respective sets and will be called
WD0 and WD1, respectively. We define the degree of order of
L relative to I to be the measures WD0 and WD1. If WD0 and
WD1 are both equal to zero, then we say that L is perfectly
ordered relative to I. The larger the values of WD0 and WD1,
the less well ordered L is relative to I.

A limitation of the PH-based measures studied in Ref. [24]
(the variance of H0 and sum of H1) is that they cannot be used
to study an arbitrary lattice, for example, rectangular lattices.
var(H0) is simply the variance of points in H0, excluding the
point at infinity, and �H1 is the sum of the vertical distances

FIG. 3. Hexagonal lattices (top row), rhombic lattices with an internal angle of 75◦ (middle row), and square lattices (bottom row),
consisting of 30 × 30 points and perturbed as described in the text with the parameter μ chosen to be 0.1 (first column), 0.18 (second column),
and 0.3 (third column).
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FIG. 4. The measures of order WD0 (green) and WD1 (blue) plotted against μ for (a) the perturbed hexagonal lattice, (b) the perturbed
rhombic lattice with an internal angle of 75◦, and (c) the perturbed square lattice. The variance in the measures is shown with a colored band,
and each plot is averaged over 100 perturbed lattices. The lattice spacing of the ordered lattice is one in all cases.

between points in H1 and the diagonal. Both var(H0) and �H1

are zero for hexagonal lattices and are small for lattices that
are close to being hexagonal. Therefore, in Ref. [24], perfect
order is defined by the condition var(H0) = �H1 = 0. As
shown in Fig. 1, rectangular lattices have points in H0 at three
locations in the BD diagram—one point at (0,∞), and the rest
of the points are divided between (0, a) and (0, b), where a
and b are the short and long side lengths of the rectangular
unit cell. This results in var(H0) being nonzero even though
the lattice is perfectly ordered. The other measure of order,
�H1, is also nonzero, since all points in H1 are located at (b,√

a2 + b2) and this point lies above the diagonal. The SWD
does not have this problem, since if the sliced Wasserstein
distance between two sets of points is zero, then two sets are
equal.

III. RANDOMLY PERTURBED SQUARE, HEXAGONAL,
AND RHOMBIC LATTICES

To better understand the behavior of the measures of order
WD0 and WD1, we began by analyzing perturbed 2D lattices.
We start with a perfectly ordered 2D lattice with unit lattice
spacing consisting of N × N lattice points in a Lx × Ly rect-
angular domain. This is the ideal lattice I. We compute the
measures WD0 and WD1 of perturbations L of I relative to
I. We perturb I in the following way: For each point in I, we
define a displacement vector V with two independent compo-
nents, Vx and Vy. The components are chosen randomly from
a uniform distribution between 0 and μ2Li, where μ ∈ [0, 1]
is a number that characterizes the size of the perturbation.
Each point is then translated along its displacement vector.
For μ = 0, the lattice is unperturbed, and for μ = 1, each
point is equally likely to end up anywhere in the domain. This
makes μ = 1 equivalent to randomly and uniformly placing
points within the domain. Periodic boundary conditions are
used during the perturbation process, so that perturbed points
cannot end up outside the domain. We chose to look at the case
in which N = 30. Figure 3 shows examples of these perturbed
lattices for three different values of μ.

After generating the perturbed lattices, we examined the
effect that changing μ has on the measures of order. This
tells us how sensitive these measures of order are at differ-

ent magnitudes of perturbation. As we shall see, for all the
cases studied here, the measures of order are more effective
at differentiating between two slightly different values of μ

when the values are small. We analyzed hexagonal, rhombic,
and square lattices in this manner. We also considered a set
of points randomly chosen from a uniform distribution in the
same square domain. We averaged the measures of order over
250 of these random sets and used the values to normalize our
measures of order of the perturbed lattices, so that when look-
ing at a completely random set of points, we should expect to
see each of the measures of order be equal to one, on average.
This allows for a fair comparison between the measures WD0

and WD1.
Figure 4 shows plots of WD0 and WD1 vs μ for perturbed

hexagonal, rhombic, and square lattices. We can use the mag-
nitude of the derivative of a measure with respect to μ to
characterize the sensitivity of these measures to changes in
the level of noise. When a curve is relatively flat, the measure
struggles to differentiate between differing amounts of noise,
and when the curve rises or falls sharply, the measure is highly
sensitive to changes in the level of noise.

The behavior of WD0 is quite similar for all three types
of lattice—the curves are monotonically increasing and are
steeper at smaller μ, indicating that the measure is more
sensitive in that regime than at large μ. WD1 behaves quite
differently for the hexagonal and rhombic cases than for the
square lattice since the curves for the hexagonal and rhombic
cases are not monotonically increasing functions of μ. WD1 is
also more sensitive for small μ than WD0 is for all three kinds
of lattice, since the slope of WD1 is larger. For hexagonal and
nearly hexagonal rhombic lattices, WD1 alone is not sufficient
to characterize the level of noise of a given lattice since it is
possible for two distinct values of μ to produce disordered lat-
tices that have the same value of WD1: for example, μ = 0.15
and μ = 0.3 give approximately the same value of WD1 in the
case of the hexagonal lattice.

IV. SIMULATIONS OF 2D PATTERN-FORMING SYSTEMS

We studied four equations of motion that produce surfaces
with dots arranged in lattices with different symmetries. The
four are introduced and covered in detail in the following sub-
sections. They were selected because they produce hexagonal,
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square, or rhombic lattices of dots for appropriately chosen
parameter values, and because of their inherent physical inter-
est.

We integrated the partial differential equations numeri-
cally using the fourth-order Runge-Kutta exponential time-
differencing method described by Cox and Matthews [32]
on the domain with 0 � x � L and 0 � y � L and employed
periodic boundary conditions. An initial condition of spatial
white noise with amplitude 0.001 was used. The linear terms
in the partial differential equations were computed in Fourier
space, and the nonlinear terms in real space. A central fi-
nite differencing scheme accurate to fourth order in the grid
spacing was used to compute the nonlinear terms. In order
to perform PH on the disordered arrays of dots produced by
our simulations, we used the Python packages ripser and
persim [33].

The process we employed to compute the measures of
order WD0 and WD1 from surface height data is as follows:
First, we located the set L of local maxima on the surface by
comparing each point on the surface with its nearest and next-
nearest neighbors on the computational grid. For a chosen
idealized lattice I, we then calculated the SWDs between the
H0 BD diagrams of L and I to obtain WD0 and between the
H1 BD diagrams of the two sets to obtain WD1.

In the case of the perturbed 2D lattices studied in Sec. III,
we started with an idealized lattice and then compared it to
perturbations of the lattice. In contrast, in the current case, we
must judiciously choose the idealized lattice I that the set L of
local maxima will be compared with. To select I, we need to
choose (1) the type of lattice (hexagonal, square, or rhombic),
(2) the scale of the lattice, and (3) the domain of the lattice,
by which we mean the finite subset of the infinite lattice that
we consider. The BD diagrams of I depend on all of these
factors. In particular, the scale and domain of I impact the
number of points in I and therefore the numbers of points in
the BD diagrams of I. Although the definition of the SWD of
BD diagrams allows us to compare sets of different sizes, the
WD0 and WD1 measures of order equal zero for two identical
types of lattice only if we include the same number of points
in each. We therefore arranged for I to have the same number
of points as L. To this end, we first ran the simulation of the
surface long enough that the time evolution of the surface had
essentially ceased. We used this surface to choose a single
ideal lattice I which we employed in calculating the measures
of order for the surface at any previous time in the simulation.
We then noted that, for the hexagonal, square, and rhombic
ideal lattices, the H0 BD diagram includes multiple points
at (0, a), where a is the minimum distance between lattice
points. For rhombic lattices, this last statement assumes that
the internal angle θ of the rhombus is greater than π/3. This
assumption will be sufficient for the examples we investigate,
and so we restrict our discussion of ideal rhombic lattices to
this case. Also, the H1 BD diagram includes multiple points
at (a, b), where b = a for the hexagonal lattice, b = √

2a for
the square lattice, and b = 2a sin(θ/2) for a rhombic lattice.
We therefore find the BD diagrams of L and determine a as
the average value of the y coordinates of points in the H0 BD
diagram. If we wish to compute order relative to a rhombic
lattice with internal angle larger than π/3, we determine b
as the average value of the y coordinates of points in the H1

FIG. 5. The birth-death diagram of a perfect hexagonal lattice
with lattice constant a. The red points belong to H0, and the blue
points belong to H1. Note that multiple points lie at the same po-
sitions in the birth-death diagram, atop one another. The horizontal
dashed line is located at infinity, and the dot located on it is a single
point.

BD diagram. We thus determine both the type and scale of
the lattice I. The domain of I, and therefore the numbers of
points at (0, a) and (a, b) in the H0 and H1 BD diagrams, is
then chosen to be the same spatial domain as the simulation
of the partial differential equation.

A. Hexagonal lattices

The first equation of motion we studied is the Swift-
Hohenberg (SH) equation in two dimensions,

ut = ru − (1 + ∇2)2u + gu2 − u3. (2)

[We remind the reader that u(x, y, t ) is the height of the surface
above the point (x, y) in the x-y plane at time t .]The SH equa-
tion was first introduced as a phenomenological model for
analyzing transitions in behavior in Rayleigh-Bénard convec-
tion [34]. It has since been utilized widely as a model system
for studies in pattern formation, including pattern selection
and the formation and dynamics of defects [35,36].

In our simulations, we chose the parameters r and g so that
Eq. (2) produces hexagonal arrays of dots. The BD diagram of
a perfectly ordered hexagonal lattice with lattice spacing a is
shown in Fig. 5. H0 consists of multiple points at (0, a) as well
as a single point at infinity. H1, on the other hand, consists of
multiple points at (a, a). The actual number of points at each
location in the BD diagram depends on the size of the lattice
under consideration (i.e., the number of lattice points). The
points in H1 lie on the diagonal. This can be interpreted as
holes in the simplicial complex being created and closed up at
the same value of r.

Figure 6 shows a simulation of Eq. (2) for r = 0.05 and
g = 1 at three different times, along with the corresponding
BD diagrams. Note that the spread of points in H0 and H1 de-
creases with time, which is indicative of an increasing degree
of order. This was studied in Ref. [24], where the variance of
H0 [var(H0)] and the sum of vertical distances between points
in H1 and the diagonal (�H1) were introduced as measures of
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FIG. 6. Plots of simulations of Eq. (2) for the parameter values r = 0.05 and g = 1 at times (a) t = 50, (b) t = 500, and (c) t = 5000.
Regions that are yellow (black) are high (low). The corresponding BD diagrams are shown in panels (d), (e), and (f). The domain size was
100 × 100.

order for imperfect hexagonal lattices. Figure 7 shows plots of
var(H0) and �H1 as functions of time. Also shown are the two
new measures of order, WD0 and WD1 as functions of time. In
computing WD0 and WD1 as functions of time, we employed
a single ideal lattice I for that simulation chosen using the
surface at the end time of the simulation, as described above.
All four of these measures were normalized by the number of
points in their respective sets, H0 or H1, in the BD diagram.

The plots of �H1 in Fig. 7(b) and WD1 in Fig. 7(c) are very
similar. In fact, the plots are identical, save for the different
scale of the vertical axis. This is no coincidence—�H1 is a
scalar multiple of WD1 for hexagonal lattices—specifically,
the ratio between �H1 and WD1 is π/

√
2. This is a conse-

quence of the definition of the SWD, along with the fact that

the idealized BD diagram for hexagons has the points in H1

lying on the diagonal. To show this, consider a single point
from the set H1 for L that lies away from the diagonal. The
contribution to �H1 is simply the vertical distance between
this point and the diagonal, and is equal to

√
2l , where l is the

orthogonal distance between the point and the diagonal. The
contribution to WD1 of a single point in H1 is determined as
follows: let S1 consist of the point under consideration, and let
S2 be an arbitrary single point on the diagonal. Since S2 is a
point on the diagonal, Sθ

2� = Sθ
2 . Following Eq. (1), we have

the integral

SW = 1

π

∫ π

0
W

(
Sθ

1 ∪ Sθ
2 , Sθ

2 ∪ Sθ
1�

)
dθ. (3)

FIG. 7. Plots of the normalized measures of order vs t , averaged over 10 simulations of Eq. (2), with the shaded regions showing the
variances. The parameter values in Eq. (2) were r = 0.05 and g = 1, and the domain size was 100 × 100. The panels show (a) var(H0 ),
(b) �H1, and (c) WD0 and WD1.
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FIG. 8. Plots of (a) WD0 and (b) WD1 vs t for simulations of Eq. (2) for g = 1. In all plots the solid lines are averages and the shaded
regions are the variances across 20 runs. The domain size in the simulations was 100 × 100.

We can remove identical points from both sets without affect-
ing the integrand, giving us

SW = 1

π

∫ π

0
W

(
Sθ

1 , Sθ
1�

)
dθ. (4)

Consequently, we end up computing W between Sθ
1� and Sθ

1 .
This quantity is simply |l sin θ |. When integrated over θ and
multiplied by 1/π , we find that the contribution to the SWD
(i.e., WD1) of the point under consideration is 2l/π . Now
consider all of the points in H1. If lp is the vertical distance of a
point p ∈ H1 from the diagonal, we have �H1 = √

2�p∈H1 lp,
and WD1 = 2

π
�p∈H1 lp. The ratio between �H1 and WD1 is

therefore π/
√

2. This relationship is seen only in lattices
whose idealized H1 points lie on the diagonal. For the square
and rhombic lattices that are studied in the following subsec-
tions, such a relationship is not expected, nor is it present.

WD0 is a measure that characterizes the set of bond lengths
between lattice points. It is the sum of the absolute distances
between points in H0 and their mean value, and so is similar
to var(H0). The more bond lengths that are different than the
mean bond length, the larger WD0 is. WD1, on the other hand,
measures the presence of topological holes in the lattice. For
a perfect hexagonal lattice, holes open and close at the same
value of r and therefore holes are not persistent features of
the lattice. If WD1 is nonzero, the H1 BD diagram has points
off the diagonal, indicating persistent topological holes, and
the lattice is imperfect. Lattices with a low degree of hexag-
onal order have large WD1 values. Note that, for example, if
a near-perfect square lattice were compared to an idealized
hexagonal lattice, WD0 would suggest a high degree of order
is present, while WD1 would indicate a very low degree of
order. However, since the idealized H1 set of points lies on the
diagonal, WD1 measures how hexagonal a lattice is, and so
this behavior is expected. By tuning the idealized lattice, WD0

and WD1 are easily generalizable to square and rhombic lat-
tices, and these cases are studied in the following subsections.

We also study the effect that changing parameter values
has on the evolution of the degree of order. For the SH equa-
tion (2), we can vary the distance to threshold, r, and the

strength of the quadratic term, g. Plots of WD0 and WD1 are
shown in Fig. 8, averaged over 20 runs for each case.

Varying the parameter g while keeping r constant did not
result in significant differences for the range of g values we
looked at, and so the corresponding plots are not shown here.
From the plots of WD0 and WD1 vs t in Fig. 8, we see that
as r is decreased, the transition from disorder to order occurs
at a later time. However, the degree of order in the final state
is also higher. This is expected behavior for this model, as r
is the distance from threshold. The linear growth rate σ for a
Fourier mode with 2D wave vector k for Eq. (2) is

σ (k) = r − (1 − |ck|2)2. (5)

As r is decreased, the width of the band of unstable wave
vectors decreases, resulting in the observed increased degree
of order. Furthermore, the growth rates of all wave vectors
decrease, resulting in the transition to order occurring at a later
time.

We also study the damped Kuramoto-Sivashinsky equa-
tion (dKS) [37],

ut = −∇2u − ∇4u − αu + (∇u)2, (6)

where, again, u(x, y, t ) is taken to be the height of the surface
above the point (x, y) in the x-y plane at time t . The dKS
equation has been studied as a simple model in which, as
a parameter is varied, a regular, periodic pattern first devel-
ops a secondary instability and then spatiotemporal chaos
occurs [37]. In the case of the dKS equation, the parameter
is the damping coefficient, α. For α slightly smaller than the
critical value αc = 1/4, the equation of motion produces a
hexagonal lattice of mounds with a high degree of order. A
breathing hexagonal state emerges as α is reduced through a
second critical value. Finally, as α tends to zero, the equa-
tion of motion (6) behaves increasingly like the undamped
Kuramoto-Sivashinsky equation, which is known to produce
spatiotemporal chaos [38].

Figure 9 shows plots of the surface at t = 5000 for three
different values of the damping coefficient α, along with
the corresponding BD diagrams. Figure 10 shows the cor-
responding plots of WD0 and WD1 vs t . WD0 and WD1
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FIG. 9. Plots of simulations of Eq. (6) at t = 5000 for the parameter values (a) α = 0.1, (b) α = 0.19, and (c) α = 0.225. The correspond-
ing birth-death diagrams are shown in panels (d), (e), and (f). The domain size was 100 × 100.

approach nearly constant values as time passes, and these
values decrease with α, indicating an increase in the degree
of hexagonal order as α is increased toward the critical value
αc. This makes sense considering the effect of the damping
term—as α is increased, fewer Fourier modes have a positive
growth rate, resulting in a narrowed band of unstable wave
vectors, up until the critical value α = 0.25 is exceeded and
all Fourier modes have negative growth rates. The marked
fluctuations in WD0 and WD1 that occur for the case α = 0
are a consequence of the spatiotemporal chaos exhibited by
the undamped Kuramoto-Sivashinsky equation.

For small values of α, the moving temporal averages of
WD0 and WD1 are large and nearly constant; see Fig. 10(a).
The measure WD1 decreases slowly with time even for large
α because there are long-lived “holes” in the pattern where
dots are missing, as observed in Figs. 9(b) and 9(c). Figure 11
shows the gradual transition between these two types of be-

havior as α increases. The α dependence of the behavior is
most sensitive in the range 0.10 < α < 0.20.

B. Square lattices

The third equation of motion we analyzed is the Lifshitz-
Petrich (LP) equation in two dimensions [39],

ut = ru − c(1 + ∇2)2(q2 + ∇2)2u + γ u2 − u3. (7)

This PDE is a generalization of the SH equation and was
advanced as a model for pattern formation with two unsta-
ble length scales. It has been used to study the dynamics of
surface waves on a fluid driven with two distinct frequencies
[39].

The LP equation produces a variety of patterns, but we
restricted ourselves to analyzing square lattices. We focused
on the parameter values c = 1, γ = 1 and q = √

2, along with

FIG. 10. Plots of WD0 and WD1 for simulations of Eq. (6) for the parameter values (a) α = 0.1, (b) α = 0.19, and (c) α = 0.225. The
domain size was 100 × 100.
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FIG. 11. Plots of WD0 and WD1 at t = 5000 vs α for simulations
of Eq. (6). Data are averaged over 10 runs, and the domain size was
100 × 100.

a range of r values. Equation (7) produces square lattices of
dots for these parameters.

The BD diagram of an idealized square lattice with lattice
spacing a is shown in Fig. 12. There are multiple points that
lie at (0, a) in H0, and multiple points lie at (a,

√
2a) in H1.

The number of such points depends on the scale of the lattice
and the domain it occupies.

Figure 13 shows plots of the surface at three different
times for r = 0.015 [Figs. 13(a)–13(c)], along with the corre-
sponding BD diagrams [Figs. 13(d)–13(f)]. There is an initial
transient that lasts up to about time t = 550 during which
the surface remains disordered, and the surface height does
not display marked maxima and minima. The surface then
rapidly changes to form several regions of squares that are
rotated relative to one another. This sudden transition happens
for every value of r that we examined. The smaller regions
occupied by square arrays of dots are quickly absorbed into
larger ones, and at the end of the simulation, at t = 2500,

FIG. 12. The BD diagram of an idealized square lattice with
lattice spacing a. Red points belong to H0, and blue points belong
to H1. The horizontal dashed line is at infinity, and the dot that lies
on it is a single point.

the domain typically consists of a few ordered regions. Fig-
ure 13(g) shows the evolution of the measures of order, which
both drop precipitously near time t = 550.

In Fig. 13(c), at the end of the simulation at t = 2500, the
surface evolution has slowed down significantly, and there
exist two subdomains of different orientations. PH cannot
distinguish between the two regions—two regions with the
same degree of order that are rotated relative to one another
produce identical birth-death diagrams, and therefore iden-
tical WD0 and WD1 values. However, the grain boundaries
between these two regions do have an impact on both the BD
diagrams and the measures of order. When including the grain
boundaries in the PH analysis as we have done, the measures
of order increase, indicating a decrease in the degree of order
when compared to a subdomain in isolation. The increase in
WD0 and WD1 is small, since the majority of the surface is in
one orientation or the other, and the grain boundaries occupy
a relatively small fraction of the entire domain.

For a nearly perfect surface, the full width at half maximum
of the peaks in the power spectral density (PSD) can be used
as a measure of the degree of order. While this does suffice for
surfaces that are very nearly perfect, the presence of multiple
rotated regions makes identification of the peaks in the PSD
more difficult, and so the width of the peaks might not be a
reliable measure of the degree of order of a surface.

Consider the two surfaces shown in Figs. 14(a) and 14(b)
and the corresponding PSDs in Figs. 14(c) and 14(d). The
near-perfect square array of dots shown in Fig. 14(b) has a
PSD that clearly shows two primary peaks along each major
axis and two secondary peaks along each diagonal. The sur-
face shown in Fig. 14(a), on the other hand, has two distinct
ordered regions in the domain that are rotated relative to one
another. Within each region, however, the degree of order ap-
pears to be comparable to the near-perfect surface. In the PSD,
we can see structure similar to Fig. 14(d)—two such spectra
are rotated and overlaid one atop the another, corresponding
to the two regions of square order in the domain.

WD0 and WD1 provide an excellent alternative to the
Fourier transform when there are rotated regions. Since PH
cannot distinguish one region from another identical but ro-
tated region, the process of measuring the degree of order is
not at all hindered by the presence of rotated regions. The
interfaces between ordered regions, however, will affect the
distributions of points in the BD diagrams, and the overall
degree of order will be lower than a completely uniformly
oriented surface, as expected.

We also studied the effect of changing the distance to
threshold r for the LP equation (7). Figure 15 shows plots
of WD0 and WD1 vs time for different values of r, averaged
over 10 runs each. As r is reduced, the surface remains in
a relatively flat, disordered state for a progressively longer
period of time. However, after the surface suddenly transitions
to a highly ordered square state, the degree of order is greater
for smaller r. The linear growth rate σ for the Fourier mode
with wave vector k is

σ (k) = r − c(1 − ck2)2(q2 − k2)2. (8)

The behavior is very similar to that of Eq. (2). As before, the
growth rates of all wave vectors decrease with decreasing r,
resulting in the transition to order occurring at later times.
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FIG. 13. Plots of simulations of Eq. (7) for the parameter values r = 0.015, c = 1, γ = 1, and q = √
2 at times (a) t = 50, (b) t = 600,

and (c) t = 2500. The corresponding BD diagrams are shown in panels (d), (e), and (f). The domain size was 100 × 100. Plots of WD0 and
WD1 are shown in panel (g). The vertical dashed lines show the times corresponding to the preceding panels.

However, as r is reduced toward the critical value r = 0,
the widths of the bands of unstable wave vectors decrease,
resulting in the observed increased degree of order at long
times. This is illustrated by Fig. 16, which gives the values
of WD0 and WD1 for five values of r at t = 2000 (the end
time in Fig. 15), averaged over 10 runs.

An inherent timescale for the transition to order may be
determined from curves such as those in Fig. 15 by first taking
the derivative of WD0 or WD1 with respect to time. In both
cases, the derivative is similar to a Gaussian function of time.
The full width at half maximum of the Gaussian-like curve
divided by the time at which the curve achieves its maximum

value is a nondimensional measure of how gradual the shift
is, with larger values indicating a more gradual transition to
order. For the curves shown in Fig. 15, these measures result
in values of 0.36 (r = 0.05) 0.13 (r = 0.015) 0.085 (r =
0.01), and 0.054 (r = 0.005) for WD0, and 0.36 (r = 0.05),
0.15 (r = 0.015), 0.093 (r = 0.01), and 0.060 (r = 0.005) for
WD1. Note that the transition becomes more abrupt as the
critical point is approached according to both measures.

C. Rhombic lattices

Consider a perfect rhombic lattice. a is the length of the
side of a rhombus in the lattice, θ is the acute interior angle of
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FIG. 14. Plots of the surface at t = 2500 from simulations of
Eq. (7) for r = 0.015, c = 1, γ = 1, and q = √

2. A simulation with
an imperfect final state is shown in (a), and one with a nearly perfect
final state is shown in (b). The corresponding Fourier spectra are
shown in (c) and (d), and the corresponding BD diagrams are shown
in (e) and (f).

the rhombus, and b is the length of the shorter diagonal. b is
determined by a and θ , and is given by

b = 2a sin (θ/2). (9)

FIG. 16. Plots of WD0 and WD1 vs r at time t = 2000 averaged
over 10 simulations each of Eq. (7) for the parameter values c = 1,
γ = 1, and q = √

2. The domain size was 100 × 100.

Note that θ = π/2 corresponds to a square lattice and θ =
π/3 to a hexagonal lattice. When varying θ between these
bounds, b varies continuously from

√
2a to a. We will restrict

our attention to the case θ > π/3, which implies that b > a.
The BD diagram for the idealized rhombic lattice is shown in
Fig. 17.

To study rhombic patterns, we simulated an equation pro-
posed by Bestehorn to describe pattern formation in fluids
[40,41], namely,

ut = εu − (∇2 + k2
0

)2
u + u3 − bu∇4(u2). (10)

We chose the parameter values ε = 0.05, k0 = 1, and b = 1.
Plots of the surface at three different times are shown in
Figs. 18(a)–18(c) for a 100 × 100 domain. The associated
BD diagrams, which are shown in Figs. 18(d)–18(f), reflect
the increased order seen in the real-space images. Figure 19
shows plots of the measures of order WD0 and WD1 vs t ,
for two different choices of the ideal lattice, namely, a square

FIG. 15. Plots of (a) WD0 and (b) WD1 vs t for simulations of Eq. (7). The solid lines show averages and shaded regions show variances,
averaged over 10 runs. The selected values of the parameter r were 0.005 (black curves), 0.01 (red curves), 0.015 (blue curves), and 0.05 (green
curves). The values of the remaining parameters were c = 1, γ = 1, and q = √

2. The domain size was 100 × 100 for all simulations.
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FIG. 17. BD diagram of an idealized rhombic lattice with rhom-
bus side length a and short diagonal length b for the case b > a. Red
points belong to H0, and blue points belong to H1. The horizontal
dashed line is at infinity, and the dot that lies on it is a single point.

lattice [Fig. 19(a)] and a rhombic lattice [Fig. 19(b)]. The
specific rhombic lattice chosen was different for each of 10
simulations and was determined using the average coordinates
of H0 and H1 at t = 2000. The WD0 measure (red curves in
both panels of Fig. 19) is insensitive to whether a square or
rhombic ideal lattice was chosen since the H0 BD diagram for
squares and rhombi both consist of multiple points at (0, a).
The WD1 measure (blue curves in both panels), in contrast,
is sensitive to the choice of ideal lattice; the WD1 measure

FIG. 19. Plots of WD0 and WD1 vs t , averaged over 10 runs of
Eq. (10), with the shaded region showing the variance. The panels
correspond to the WD plots for simulations on a 100 × 100 domain
compared to (a) a square ideal lattice, and (b) rhombic ideal lattices.
The parameter values in Eq. (10) were ε = 0.05, k0 = 1, and b = 1.

approaches zero and has smaller variance if the ideal lattice
taken to be a rhombic lattice that is chosen separately for each
simulation.

V. DISCUSSION

Perturbations of ideal lattices and simulations of pattern-
forming partial differential equations provided the data that
we analyzed in this paper. However, the algorithm for com-
puting the WD0 and WD1 measures of order may be applied
equally well to experimental data such as hexagonal or square
arrays of nanodots that form when a solid surface is bom-
barded by a broad ion beam. Given an experimental surface
measured by, for example, atomic force microscopy, the local
maxima of that surface provide the set of points in the plane
from which birth-death diagrams are computed. The next step

FIG. 18. Plots of simulations of Eq. (10) for the parameter values ε = 0.05, k0 = 1, and b = 1, at times (a) t = 100, (b) t = 350, and
(c) t = 2000. The corresponding birth-death diagrams are shown in panels (d), (e), and (f). The domain size was 100 × 100.
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in computing WD0 and WD1 is to choose the ideal lattice
that the data will be compared to. For our examples involving
patterns produced by partial differential equations, we chose
the ideal lattice by running the simulation long enough that the
pattern was close to an ideal, periodic lattice. For experimental
data, one would choose a type of lattice that most closely
resembles the data and then compute the average distance
between the data points to determine the length scale of the
ideal lattice.

In both of the applications of the WD0 and WD1 measures
of order we discussed, i.e., to perturbations of perfect lattices
and to patterns produced by partial differential equations, we
compared sets of points to a given ideal lattice. The reverse
situation is also possible: one could determine, for a given set
of points L, the ideal lattice I that yields the smallest WD0

and WD1 measures of order. This approach could be helpful
if it is unclear which ideal lattice most closely resembles the
imperfect lattice produced by an experiment.

The Wasserstein distance is a metric and therefore satisfies
the reverse triangle inequality. Thus, for any imperfect lattice
L and ideal lattices I1 and I2,

|SW(Hi(L), Hi(I2)) − SW(Hi(L), Hi(I1))|
� SW(Hi(I1), Hi(I2)), (11)

for i = 1, 2. A crucial feature of persistent homology is
that the birth-death diagrams Hi depend continuously on
the data [12,14]. This implies that the ideal lattices I1

and I2 can be chosen to be close enough together so that
SW(Hi(I1), Hi(I2)) is small. Equation (11) then shows that
SW(Hi(L), Hi(I2)) and SW(Hi(L), Hi(I1)) are nearly equal.
It follows that WD0 and WD1 change only a little if we change
the ideal lattice a little. The maximum change in the measure
of order given by SW(Hi(I1), Hi(I2)) can be easily computed
due to the simplicity of the birth-death diagrams.

The WD1 measure of order applied to perturbations of
perfect 2D lattices displays a curious feature: As shown in
Fig. 4, WD1 is not a monotonic function of the perturbation
parameter μ. At the local maximum, WD1 is, in fact, larger
than the average WD1 value for a random set of points. This
peak is particularly prominent for hexagonal lattices. Fig-
ures 3(a)–3(c) show perturbed hexagonal lattices for values
of μ less than, equal to, and greater than the value μ = 0.18
at which the maximum occurs, in an attempt to give clues to
the origin of this intriguing observation, which eludes a simple
explanation.

Many pattern-forming systems produce roll patterns as
well as dot patterns, and transitions may occur from dot pat-
terns to roll patterns as a parameter is varied. For example,
in Rayleigh-Bénard convection experiments, transitions occur
from hexagons to rolls as the Rayleigh number increases.
The measures of order introduced in this paper do not handle
roll patterns well; extracting local maxima from rolls typi-
cally results in strings of data points, and it is unclear which
ideal lattice these strings should be compared to. Another
approach to computing the birth-death diagrams may be more
appropriate for roll patterns: A method called level-set per-
sistence computes birth-death diagrams given surfaces rather
than point sets [42]. Although we have chosen, in this paper,
the more intuitive approach of analyzing the topology of point

sets, one could compute birth-death diagrams directly from
surfaces produced by experiments or simulations rather than
from local maxima extracted from a surface.

VI. CONCLUSIONS

Although we restricted our analysis to hexagonal, square,
and rhombic lattices, the WD0 and WD1 measures of order
introduced in this paper allow for the comparison of a set
S of points in the plane to any planar Bravais lattice. Each
measure outputs a single number as the measure of order of
that set relative to a perfect Bravais lattice. The smaller that
number, the more ordered is the set relative to the selected
ideal lattice. In the method, PH is first used to find the H0 and
H1 birth-death diagrams of both the set S and the ideal lattice.
A metric on birth-death diagrams is then employed to arrive at
the measure of order for S relative to the chosen ideal lattice.
Making use of the sliced Wasserstein distance as the metric on
distributions of points makes these measures practical since
they can be computed in a reasonable amount of time.

Two measures of hexagonal order that also utilize PH
were introduced in Ref. [24], namely, var(H0) and �H1.
Those measures—which only be used to gauge the degree of
hexagonal order in an imperfect lattice—focus on computing
statistical properties of the H0 and H1 BD diagrams instead
of employing the sliced Wasserstein distance. We showed in
this paper that, for hexagonal lattices, the WD1 measure is a
scalar multiple of �H1. In this sense, WD1 is a generalization
of �H1 which extends the use of PH to measure order with
respect to any planar lattice.

For equations of motion that can be obtained variationally
from a free energy, one may find that it is sufficient to calculate
the free energy and use it as a measure of order. For models
of this kind, the lower the free energy, the higher the degree
of order. Of course, this method cannot be used for nonvaria-
tional equations. This further motivates our use of PH and the
SWD, since our method can be applied to any model, whether
or not there exists a free energy.

We studied the time evolution of the WD0 and WD1

measures of order for patterns produced by four partial differ-
ential equations: hexagonal patterns in the Swift-Hohenberg
equation, the transition from spatiotemporally complex to
hexagonal patterns in the damped Kuramoto-Sivashinsky
equation, square patterns in the Lifshitz-Petrich equation, and
rhombic patterns produced by the Bestehorn equation. The
outputs of these differential equations are surfaces, and to
calculate the degree of order relative to a Bravais lattice, we
first find the positions of the local maxima of a surface. With
initial conditions of spatial white noise, the patterns naturally
start with a low degree of order. WD0 and WD1 may remain
nearly constant with low degrees of order for an extended
period of time before quite suddenly shifting to an ordered
state. The evolution of square order in the Lifshitz-Petrich
equation, Eq. (7), is a prime example of this behavior, as
shown by Fig. 13. For hexagonal order, the Swift-Hohenberg
equation exhibits similar behavior. Although there is only a
short time before the pattern becomes well ordered in the
example of Fig. 7, increasing the distance of the bifurcation
parameter r from its critical value increases the time before
order sets in according to these measures, as shown in Fig. 8.
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In contrast to these examples in which the shift from dis-
order to order occurs quite suddenly and the WD measures
are approximately sigmoidal functions of time, the Bestehorn
equation, Eq. (10), shows a gradual shift to rhombic order that
is not sigmoidal in nature; see Fig. 19(b).

The measures of order we introduced in this paper, WD0

and WD1, may effectively be applied even in cases for which
there is little apparent order. This is demonstrated by our study
of the damped Kuramoto-Sivashinsky equation, Eq. (6). For
values of damping coefficient α that are relatively close to the
critical value αc = 1/4, relatively regular hexagonal patterns
are observed, and WD0 and WD1 show a quick shift to order
as time passes; see Fig. 10(c). In contrast, for small α, the
order is weak, and WD0 and WD1 exhibit fluctuations of large
amplitude. These fluctuations may result from spatiotemporal
chaos, which is known to exist for α = 0.

The measures of order WD0 and WD1 can be extended
in a natural way to provide measures of order with respect
to Bravais lattices in any spatial dimension, such as lattices
resulting from simulations of partial differential equations in

three dimensions [43,44]. In the case of three dimensions, in
addition to WD0 and WD1, there would be a third measure of
order WD2 that would come from comparing the birth-death
diagrams for three-dimensional holes in the imperfect and
ideal lattices. It is relatively easy to gain an impression of
the order in a 2D pattern simply by looking at it. This is
much more difficult in three dimensions, however, and so the
topological measures of order we introduced in this paper
are expected to be even more useful in that context. These
measures of order may also be applied to patterns occurring on
spheres [45] or other nonplanar 2D surfaces whose topology
prevents the formation of a perfect lattice without defects.
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