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Intrinsic thermalization of the honeycomb optical lattice
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Ultracold atoms confined to optical lattices provide a platform for simulation of phenomena not readily
accessible in condensed matter and chemical systems. One area of growing interest is the mechanism by which
isolated condensed matter systems can thermalize. The mechanism for thermalization of quantum systems has
been directly linked to a transition to chaos in their classical counterpart. Here we show that the broken spatial
symmetries of the honeycomb optical lattice leads to a transition to chaos in the single-particle dynamics which,
in turn, causes mixing of the energy bands of the quantum honeycomb lattice. For systems with single-particle
chaos, “soft” interactions between atoms can cause the system to thermalize (achieve a Fermi-Dirac distribution
for fermions or a Bose-Einstein distribution for bosons).

DOI: 10.1103/PhysRevE.107.044213

I. INTRODUCTION

Ultracold atoms confined to optical lattices provide a plat-
form to explore a variety of phenomena currently inaccessible
in condensed matter systems [1,2]. Optical lattices are typi-
cally formed by the interference of multiple laser beams. This
gives a controllable periodic light structure that is then used to
mimic the crystal lattice of a solid. Optical lattices are easily
controlled and techniques exist which allow detection of the
dynamics of individual atoms in the lattice. These systems
can be isolated from outside influences and, in addition to
other interesting phenomena, provide a means to study the
dynamical mechanisms by which they can thermalize.

The thermalization of an isolated quantum gas of interact-
ing hard sphere particles occurs because the dynamics of the
classical counterpart of the system is chaotic. Such systems
have spectra whose statistical properties are similar to the
spectra of random matrices and they extremize information.
When the classical counterpart is chaotic, isolated dilute quan-
tum gases have been shown to have reduced single-particle
distribution functions that are Bose-Einstein distributions if
the particles are bosons, and Fermi-Dirac distributions if the
particles are fermions [3].

The dynamics of isolated noninteracting particles can
also become chaotic when the spatial symmetry of the po-
tential energy that confines them is broken. Two classic
examples are the dynamics of single particles in the Sinai
billiard or the Bunimovitch billiard [4,5]. These billiards
induce K-flow in the single-particle dynamics. It has been
shown [6–8] that when a gas, with “soft” interactions (interac-
tions that do not induce K-flow), is confined to billiards with
single-particle K-flow, the gas can thermalize and have single-
particle distributions that are Fermi-Dirac, Bose-Einstein, or
even Bose-Einstein condensate (BEC) thermal distributions.
This thermalization does not occur in billiards that do not
induce K-flow in the single-particle dynamics.

In the sections below, we examine the dynamics of non-
interacting ultracold alkali atoms confined to a honeycomb

optical lattice. Honeycomb-like optical lattices have been re-
alized in the laboratory [9]. The honeycomb lattice has been
of huge interest to a wide variety of scientists because it has
the unique property that there are energy regimes, near the K-
points (Dirac points), where the particles become effectively
massless (with photon-like dispersion relations). Honeycomb
lattices occur naturally in the form of graphene sheets and car-
bon nanotubes and support the propagation of electron matter
waves [10,11]. Honeycomb structures have also been formed
with photonic crystals and support interesting electromagnetic
wave propagation [12–14].

In Sec. II and Appendix A, we obtain the honeycomb opti-
cal lattice considered in subsequent sections. Then in Sec. III,
we examine the classical dynamics of the alkali atoms in the
optical lattice. In Sec. IV, we examine the quantum dynamics
of alkali atoms in the optical lattice, and obtain the energy
band structure for the alkali atoms. Finally, in Sec. V, we make
some concluding remarks.

II. INTERACTION OF ATOMS WITH OPTICAL LATTICE

We consider noninteracting alkali atoms, with mass m and
electric dipole moment d , confined to a honeycomb optical
lattice. The optical lattice is created by careful orientation of
a system of lasers and oscillating electric fields. The laser
radiation interacts with a two-level subsystem of the atom’s
electronic levels [15–18]. When the radiation is detuned from
resonance with the two-level subsystem, the absorption and
emission of radiation exerts a force on the atoms without ex-
citing them. As we show in Appendix A, the Hamiltonian for
the alkali atoms in the optical lattice, in Cartesian coordinates,
can be written

Htot = p2
x

2m
+ p2

z

2m
+ 2U + 2Ucos

[
2kLx√

3

]

− 4Ucos

[
kLx√

3

]
cos[kLz] = Etot, (1)
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FIG. 1. The honeycomb potential V (x, z) for Uo = 20. Along the
line z = 0, a potential energy minimum occurs for V ( 1

2
√

3
, 0) = −20,

a saddle point occurs for V (0, 0) = 0, and a potential energy maxi-
mum occurs for V (

√
3

2 , 0) = 160.

where the wave vector kL = 2π
a (a = λL is the laser wave-

length and the lattice constant), U = d2|Eo|2
2h̄�

, h̄ is Planck’s
constant, � is the detuning of the laser frequency from res-
onance with the atom, and Eo is the electric field strength.

We now go to dimensionless units. First introduce the

energy EL = h̄2k2
L

2m . Then let x′ = x/a, z′ = z/a, Htot = H ′
totEL,

U = UoEL, px = h̄kL p′
x, and pz = h̄kL p′

z. If we substitute
these expressions into Eq. (1), divide by EL, and then drop
the primes, we obtain

Htot = p2
x + p2

z + V (x, z) = Etot, (2)

where

V (x, z) = +2Uo + 2Uocos

[
4πx√

3

]
− 4Uocos

[
2πx√

3

]
cos[2πz]

(3)

and Etot is the total energy of the atoms trapped in the optical
lattice. Values for various parameters, for the case of cesium
atoms in the optical lattice, are given in Appendix B. In the
subsequent discussion, we will take Uo = 20. A plot of the
honeycomb potential V (x, z) for Uo = 20 is shown in Fig. 1.

III. CLASSICAL DYNAMICS OF ATOMS
IN THE HONEYCOMB OPTICAL LATTICE

The optical lattice Hamiltonian, in Cartesian coordinates,
is given by Eqs. (2) and (3). In Fig. 2, we show a unit cell
of the classical honeycomb lattice (the region enclosed by the
dotted lines). Classically, the energy regime −20 � Etot � 0
(the dark triangle regions in Fig. 2 is close to integrable, while
the energy regime 0 � Etot � 160 (outside the dark triangle in
the unit cell) consists of a periodic array of triple peak scat-
terers (a soft version of the triple hard-disk system [19,20])
which induce completely chaotic behavior (K-flow) in the
particle dynamics for a wide range of energies above Etot = 0.
For energies closer to the peak at E = 160, the particle dy-
namics begins to show mixed behavior [16,21]. As we shall
show below, we find similar behavior for the honeycomb
lattice, which for energies E > 0 consists of a periodic array
of triple peak scatterers.

FIG. 2. The unit cell for the classical dynamics is the triangle
enclosed by the dark dotted lines. The dotted line runs through three
saddle points and three peaks of the potential. The dark triangle in
the center is the region with energy Etot < 0. The regions outside the
dark inner triangle have energy 0�Etot � 160.

A. Classical dynamics for −20 � Etot � 0

In order to show the nature of the particle dynamics for
energies −20 � Etot � 0, it is useful to perform a canonical
transformation on the Hamiltonian [Eqs. (2) and (3)]. If we
consider the (pendulum-like) Hamiltonian

H0
x = p2

x + 2Uocos

[
4πx√

3

]
= E0

x , (4)

we can perform a canonical transformation [22] from Carte-
sian variables (px, x) to action-angle variables (Jx,�) such
that H0

x = E0
x (Jx ),

x =
√

3

2π
sin−1

[
k sn

(
32

3π
K(k)�, k

)]
+

√
3

4
, (5)

and

px = 2k
√

Uo cn

(
32

3π
K(k)�, k

)
, (6)

where the modulus k2 = Ex (Jx )+2Uo

4Uo
(note that 0 � k � 1). For

Uo = 20, the condition 0 � k � 1 requires −40 � Ex � +40
and 0 � Jx � 8.3. Since the action is quantized in units of
Planck’s constant, we expect there will be no more than eight
quantum states for Etot < 0 [23].

In terms of (Jx,�, pz, z), the total Hamiltonian takes the
form

Htot = E0
x (Jx ) + p2

z + 4Uok sn

(
32

3π
K(k)�, k

)
cos[2πz]

+ 2Uo = Etot. (7)

The nature of the dynamics becomes clear if we
note the series expansion for the Jacobi sn function
sn[ 32

3π
K(k)�, k] = ∑∞

�=0C�(k)sin[(2� + 1) 16
3 �], where

C�(k) = π
kK(k) csch[(2� + 1)π

2
K(k′ )
K(k) ]. Some values of

C�(k) include C0(0.999999) = 1.2530, C0(0.5) = 1.0176,
C0(0.1) = 1.00063, C1(0.999999) = 0.3687, C1(0.5) =
0.0180, C1(0.1) = 0.0006. C2(0.999999) = 0.1546,
C2(0.5) = 0.0003, C2(0.1) = 4 × 10−7. The values of C�(k)
fall off rapidly with increasing �.
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FIG. 3. The Arnold web of resonances for energy −20�E � 0.
The two central resonance lines are � = 0. The two outer resonance
lines are � = 1.

In terms of the series expansion, the total Hamiltonian
takes the form

Htot = E0
x (Jx ) + p2

z + 2Uo + 4Uok
∑∞

�=0
C�(k)sin

×
[

(2� + 1)
16

3
�

]
cos[2πz], (8)

or

Htot = E0
x (J ) + p2

z + 2Uo

+
∑∞

�=0

(
U�(J ) sin

[
(2� + 1)

16

3
� − 2πz

]

+ U�(J ) sin

[
(2� + 1)

16

3
� + 2πz

])
, (9)

where U�(Jx ) = 4πUo
K(k) csch[(2� + 1)π

2
K(k′ )
K(k) ]. Equation (9)

shows, explicitly, the resonance structure that governs the
dynamics for the energy region −20 � E � 0.

Walker-Ford Hamiltonians

We can now write a Walker-Ford-type Hamiltonian [22,24]
for each resonance and examine its impact on the dynamics.
The two Hamiltonians that result from the �th term in the
series expansion in Eq. (9) can be written

H±
� = E0

x (Jx ) + p2
z + 2Uo

+ U�(Jx ) sin

[
(2� + 1)

16

3
�±2πz

]
. (10)

The resonance condition is(
(2� + 1)

16

3
�̇±2π ż

a

)
≈

(
(2� + 1)

16

3

∂Ex

∂Jx
±2π pz

ma

)
� U�(Jx ). (11)

The location of the resonances as a function of Jx and pz

are plotted in Fig. 3 [22,25,26], which shows the Arnold
Web of resonances that contribute to the dynamics for

FIG. 4. (a) A plot of total energy E−
0 for the Walker-Ford Hamil-

tonian (� = 0) with I = 6.7. The dark regions have energy E−
0 < 0.

(b) A trajectory with E−
0 = −1.22. (c) A plot of total energy E−

0

for the Walker-Ford Hamiltonian (� = 0) with I = 30.15. The dark
regions have energy E−

0 < 0. (d) A trajectory with E−
0 = −5.99.

−20 � Etot � 0. Only the terms for � = 0 and � = 1 con-
tribute resonance lines in this energy regime, and these
resonance lines do not overlap. This shows that the particle
dynamics for −20 � Etot � 0 is predominantly integrable.

Systems whose dynamics is governed by the Hamiltonian
in Eq. (10) have a second constant of the motion, I±

� =
2πJx∓(2� + 1) 16

3 pz, since one can show that dI±
�

dt = 0. We can
now write the “resonance” Hamiltonian in the form

H−
� = E0

x (Jx ) + 1

(2� + 1)2

(
3

16
I±
� − 3π

8
Jx

)2

+ U�(Jx ) sin[θ ] = E±
� , (12)

where θ = (2� + 1) 16
3 �∓ 2πz

a . Equation (12) is the Walker-
Ford Hamiltonian. In Fig. 4(a), we plot the total energy E−

0
for the Walker-Ford Hamiltonian for the case � = 0 and with
constant of the motion I−

0 = 6.7. In Fig. 4(c), we plot the
total energy E−

0 for the Walker-Ford Hamiltonian for the case
with constant of the motion I−

0 = 30.16. The action variable
Jx ranges over the interval 0 < Jx � 7 in Fig. 4(d). Since
the action variable is quantized in units of Planck’s constant
h [23], we expect that the quantized dynamics can support six
to eight quantum states for energies Etot < 0. As we shall see
below, it supports six quantum states.

In Fig. 5, we show strobe plots for the exact classical
dynamics for E < 0. The particle dynamics is dominated by
KAM (Kolmogorov-Arnold-Moser) tori [27–29] for energies
well below the saddle at E = 0. Closer to the saddle the effect
of higher order resonance begins to be felt [22].
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FIG. 5. Surfaces of section (px versus x plotted each time z = 0
for pz > 0) for energies (a) E = −15, (b) E = −10, and (c) E = −5.

B. Classical dynamics for Etot � 0

For energies 0 < Etot < ∞, the classical particle dynamics
is governed by a lattice composed of a periodic array of a triple
Gaussian scattering systems. The triple Gaussian scattering
system is a soft version of the classic triple hard-disk scat-
tering system [19,20]. The scattering dynamics of three hard
disks is chaotic (a K-flow) at all energies. The soft version
of the triple hard-disk potential has been studied in detail in
Refs. [16,21], and it has been shown that there is an energy
interval below the potential peak where the motion is com-
pletely chaotic. Similar behavior was observed in Ref. [16]
for a honeycomb lattice composed of Gaussian peaks.

As we show in more detail in Fig. 6, there is a large energy
interval (20 < E < 100) for which the particle dynamics in
the honeycomb optical lattice is a K-flow. Above energies
E > 100, resonance structures begin to emerge in the classical
phase space. As was shown in Ref. [16], these structures can
begin to support fairly long-lived, high-energy, quasibound

FIG. 6. Surfaces of section (px versus x plotted each time z = 0
for pz > 0) for energies (a) E = 0, (b) E = +20, and (c) E = +80,
and (d) E = +120.

quantum states for particles confined to the honeycomb op-
tical lattice.

IV. QUANTUM DYNAMICS OF THE HONEYCOMB
OPTICAL LATTICE

The unit cell of the quantum honeycomb lattice is shown
in Fig. 7. The quantum unit cell is larger than the classical
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FIG. 7. The unit cell for the quantum dynamics is enclosed by
the dark dotted lines.

unit cell because in honeycomb materials, such as graphene,
the electrons attached to the carbon atoms that form the po-
tential wells for the electrons have different spin and bonding
orientations [10].

The primitive vectors for the graphene lattice, in dimen-
sionless units, are a1 =

√
3

2 êx + 1
2 êz and a2 =

√
3

2 êx − 1
2 êz.

The unit cell has an area of 	 =
√

3
2 . The reciprocal lattice

vectors b1 and b2 are defined b1 = 2π√
3
êx + 2π êz and b2 =

2π√
3
êx − 2π êz (see Fig. 8).
The νth energy eigenstate of the unit cell has the form

uν (r) = 1√
	

∞∑
n1,n2=−∞

An1,n2 (ν)ei(n1b1+n2b2 )·r. (13)

A Bloch state, with wave vector k, can be written

ψν,k(r) = eik·ruν,k(r). (14)

Note that uν,k(r) = uν,k(r + R), where R is some combina-
tion of the lattice vectors a1 and a2. The Bloch states then
take the form

ψν,k(r) = 1√
	

eik·r
∞∑

n1,n2=−∞
An1,n2 (ν, k)ei(n1+n2 ) 2π√

3
xei(n1−n2 )2πz.

(15)
The energy bands are given by the eigenvalue equation

Ĥ (0)ψν,k(r) = E0
ν (k)ψν,k(r). (16)

FIG. 8. (a) The primitive vectors a1 and a2. (b) The reciprocal
lattice vectors b1 and b2.

FIG. 9. The energy bands for energies E < 0. (a) For the lower-
energy bands −12.4269�E � −12.4266 (b) For the higher-energy
bands −5.238 � E � −5.252.

The high-symmetry points of the honeycomb lattice,
�, K, M, are given by K = 2

3 b1 + 1
3 b2, � = 0, and M =

1
2 b1 + 1

2 b2. The lattice vectors directed along the lines be-
tween the high-symmetry lines of the lattice often play a
special role. For example, the wave vector which is directed
from the � point to the K point is k�,K = k( 2π√

3
êx + 2π

3 êy),
where 0� k � 1 varies the length of the vector from k�,K = 0
to k�,K = ( 2π√

3
êx + 2π

3 êy).

Band structure along the symmetry lines

In Fig. 9, we plot the energy bands for the honeycomb opti-
cal lattice for energies −20 < E < 0. There are six bands for
E < 0. The lowest two bands (for energies −12.4269�E �
−12.4266) are exactly what is expected in honeycomb-type
lattices. These lowest-energy bands become degenerate at the
K-points (the Dirac points). There are four bands at higher en-
ergy (for energies −5.238�E � −5.252), two of which are
completely flat. These higher-energy bands also have Dirac
points.

In Figs. 10 and 11, we plot the energy bands for the
honeycomb optical lattice for energies Etot > 0. For all the
cases shown, the bands have Dirac points. The signatures of
chaos, which appear as avoided crossings between the bands,
begin to become evident for energies Etot > 13.5, but become
common for energies above Etot = 24. The apparent repulsion
(avoided crossings) between different bands is a signature of
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FIG. 10. The energy bands for energies 0 < E < 12. The bands occur for energy intervals (a) 0.55 < E < 0.85, (b) 1.60 < E < 1.90,
(c) 5.4 < E < 6.6, (d) 7.0 < E < 9.0, (e) 9.0 < E < 9.16, and (f) 10.8 < E < 11.2. In all cases, the bands have a Dirac point.

underlying chaos and causes mixing of the probability distri-
butions associated with the various Bloch states involved in
the avoided crossings [30,31].

V. CONCLUSIONS

Optical lattices provide a means to explore a number of
quantum phenomena that cannot be easily explored in con-
densed matter systems. Their geometry is easily changed and
controlled. They can accommodate both ultracold boson and
fermion alkali gases. The honeycomb optical lattice is partic-
ularly interesting because of the profusion of Dirac points in
the energy band structure. Ultracold atoms confined to optical
lattices can act as analog quantum simulators because it is
possible to track individual atoms [1,2]. They provide a means
to study mechanisms for thermalization of isolated quantum
systems, and to study the influence of the spatial structure of
the lattice on the thermalization process.

APPENDIX A: OPTICAL LATTICE EFFECTIVE
HAMILTONIAN

The Hamiltonian for the alkali atoms in dipole interac-
tion with a y-polarized electric field can be written H =

Hatom + Hint, where

Hatom = h̄ωat|e〉〈e| + 1

2m

(
p2

x + p2
z

)
(|e〉〈e| + |g〉〈g|), (A1)

and

Hint = −dEy(x, z, t )(|e〉〈g| + |g〉〈e|). (A2)

Here h̄ωat is the spacing of the two atomic energy levels, px

(pz) is the atomic momentum operator in the x (z) direction,
and d ≡ 〈e|d̂y|g〉 = 〈g|d̂y|e〉 is the field-induced dipole matrix
element coupling the ground state |g〉 to the excited state
|e〉 [17,18]. We consider an electric field that has the form

Ey(x, z, t ) = Eo[cos(ωLt ) + cos(kLU + ωLt )

+ cos(kLV + ωLt )], (A3)

where U = (z + x√
3

) and V = (z − x√
3

). We can now rewrite
this in the form

Ey(x, z, t ) = E (x, z)e+iωLt + E∗(x, z)e−iωLt . (A4)

A time-dependent unitary transformation of the
Schrödinger equation, given by U = exp[iωL|e〉〈e|t], and
H → U H U† + ih̄ ∂U

∂t U†, transforms the Hamiltonian to the
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FIG. 11. The energy bands for energies 12 < E < 40. The bands occur for energy intervals (a) 13.2 < E < 16.3, (b) 16.7 < E < 20.0,
(c) 20.0 < E < 23.8, and (d) 23.8 < E < 33. In all cases the bands have at least one Dirac point.

rotating frame of the laser and gives

H = h̄�|e〉〈e| +
(
p2

x + p2
z

)
2m

(|e〉〈e| + |g〉〈g|)
− d[E (x, z, t )|e〉〈g| + E�(x, z, t )|g〉〈e|], (A5)

where � = ωat − ωL is the detuning of the reference radiation
frequency from the atomic transition, and we have neglected
rapidly oscillating terms containing e±iωLt .

Writing an arbitrary state |ψ〉 = ψg(x, t )|g〉 + ψe(x, t )|e〉,
the Schrödinger equation can be written

ih̄
∂ψg

∂t
= − h̄2

2m

(
∂2

∂x2
+ ∂2

∂z2

)
ψg − dE�(x, z, t )ψe, (A6)

ih̄
∂ψe

∂t
= −dE (x, z, t )ψg +

[
h̄� − h̄2

2m

(
∂2

∂x2
+ ∂2

∂z2

)]
ψe.

(A7)

Adiabatic elimination of the excited state is performed by
assuming that the detuning of the laser � is large enough
to allow us to neglect the time and space derivatives of the
excited state. Thus, atoms prepared in the ground state will
remain there and we are left with an effective Hamiltonian for
their evolution:

ih̄
∂ψg

∂t
= Heff ψg; Heff = p2

x

2m
+ p2

z

2m
− d2|E (x, z, t )|2

h̄�
,

(A8)

where

|E (x, z, t )|2 = 3

4
E2

o + E2
o

2
cos[kLU ] + E2

o

2
cos[kLV ]

+ E2
o

2
cos[kL(U − V )]. (A9)

APPENDIX B: NUMBERS FOR ULTRACOLD
CESIUM ATOMS

A series of past experiments [32–35] studied the behavior
of cesium atoms in an optical lattice with one space dimen-
sion. Cesium atoms have a (field-induced) dipole moment
d = 2.2 × 10−29 cm and an atomic transition frequency ωat =
5 × 108 Hz [32]. The laser wavelength was λL = 8.52 ×
10−5 cm [32], so the wave vector was kL = 2π

λL
= 7.37 ×

104 rad/cm. The laser frequency was ωL = kLc = 2.2 ×
1015 rad/s.

When the cesium atoms interact with the laser field that
forms the honeycomb optical lattice, there is a recoil and
the atoms change momentum in the z direction by the dis-
crete amount �pz = 2h̄kL, and in the x direction by �px =
2h̄kL/

√
3. The atomic energies change by the recoil energy

h̄ωR = h̄2k2
L

2m = 1.4 × 10−23 erg in the z direction, and by 1
3 h̄ωR

in the x direction.
The depth of the honeycomb potential well can be changed

by changing the strength of the electric field Eo and inten-
sity of the radiation. In these experiments d2|Eo|2

2h̄�
= (5.14 ×

10−24 erg) α, where α is a dimensionless parameter (of order
one) that can be varied by changing the intensity of the radi-
ation field. Thus, the dimensionless interaction strength Uo is
Uo = d2|Eo|2

2h̄�
2m

h̄2k2
L

= (5.14×10−24erg) α

1.4×10−23erg = 0.367α.
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