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Complexity and transition to chaos in coupled Adler-type oscillators
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Coupled nonlinear oscillators are ubiquitous in dynamical studies. A wealth of behaviors have been found
mostly for globally coupled systems. From a complexity perspective, less studied have been systems with
local coupling, which is the subject of this contribution. The phase approximation is used, as weak coupling
is assumed. In particular, the so-called needle region, in parameter space, for Adler-type oscillators with nearest
neighbors coupling is carefully characterized. The reason for this emphasis is that, in the border of this region to
the surrounding chaotic one, computation enhancement at the edge of chaos has been reported. The present study
shows that different behaviors within the needle region can be found and a smooth change of dynamics could
be identified. Entropic measures further emphasize the region’s heterogeneous nature with interesting features,
as seen in the spatiotemporal diagrams. The occurrence of wave-like patterns in the spatiotemporal diagrams
points to nontrivial correlations in both dimensions. The wave patterns change as the control parameters change
without exiting the needle region. Spatial correlation is only achieved locally at the onset of chaos, with different
clusters of oscillators behaving coherently while disordered boundaries appear between them.
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I. INTRODUCTION

Coupled nonlinear oscillators under weak coupling condi-
tions have been studied, at least since the pioneering works
of Winfree [1]. In his approach, the oscillator phase is the
relevant parameter in the dynamics instead of the oscillator
amplitude. Earlier studies by Adler [2] of locking occurrence
in feedback circuits lead to an equation for a type of nonlinear
oscillators (since then known as Adler-type oscillators) with
phase equation

dθ

dt
= −γ sin θ + �ω, (1)

where θ is the oscillator phase, γ a control parameter, and
�ω = ω0 − ω1 is the difference between the natural fre-
quency of the oscillator and the imposed frequency on the
circuit. Adler’s work has been generalized to systems of
coupled nonlinear oscillators that describe a wide range of
phenomena in diverse fields ranging from physics to chem-
istry, biology, and neurobiology, among others [1,3–6]. When
the system of nonlinear oscillators has a weak global coupling
between the oscillators described by a harmonic signal, it is
known as the Kuramoto model [3]. This type of system has
been used to study synchronization [7].
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Recently, a system of locally coupled nonlinear Adler-type
oscillators has been proposed as a toy model that exhibits
different chaotic, regular, and complex behaviors depending
on the control parameters [8]. The local coupling is realized,
taking the oscillators as a ring with nearest-neighbor interac-
tion described by an interaction parameter. The phase diagram
of the system, depending on two control parameters, has been
reported [8,9]. The most striking fact of the phase diagram
is the emergence of a rich set of behaviors that reminds of
those found in cellular automata. In the phase diagram, several
distinctive regions have been identified [9].

(1) One region exhibits near-zero entropy which has been
called the absorbing region.

(2) A second region has chaotic behavior showing disor-
dered states and high sensitivity to initial conditions with no
spatiotemporal correlations.

(3) A region termed wedge shows entropy values above
zero but not as high as the chaotic region with spatiotemporal
diagrams exhibiting long-range spatial and temporal correla-
tions.

(4) A fourth region, termed the needle region, is identified
with intermediate values of disorder, sensibility to initial con-
ditions, and striking spatiotemporal patterns.

Additional to this rich set of behaviors, further work on the
system has unveiled a transition to a chaotic regime, where, it
was reported, the system of oscillators allows an enhancement
of computation at the edge of chaos [10]. Dynamical systems
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can be viewed as computational devices capable of storage,
transmission, and production of information [11]. The hy-
pothesis of computation enhancement near the edge of chaos
(EOC) states that, in the transition towards a chaotic regime,
some dynamical systems exhibit augmented capabilities as a
computational device [12–16].

In this contribution, we study the needle region, where
EOC has been found, while the system moves towards the
chaotic region. The paper is organized as follows. The math-
ematical model is formally introduced in Sec. II and some
previous results are summarized. Section III introduces the
entropic measures used to characterize the system behavior.
Section IV presents the main results, followed by Sec. V of
discussion and, finally, the conclusions.

II. NEAREST NEIGHBOR COUPLED
ADLER-TYPE OSCILLATORS

A simple model for ensembles of active elements is to
consider N oscillators of Adler-type, arranged in a ring cou-
pled with the nearest neighbors oscillators and governed by a
system of equations given by

dθi

dt
= ω + γ cos θi + (−1)ik[cos θi−1 + cos θi+1]. (2)

θi is the phase of each oscillator, which varies with time; ω

describes the natural frequency of the oscillators when no
feedback and coupling are present. The control parameters
are γ , which determines the strength of the self-feedback,
and k, giving the coupling strength. The alternating sign for
the coupling term is meant to balance the feedback avoiding
drifts in the oscillator behaviors due to a bias in the chain.
All control parameters are taken as nonnegative without loss
of generality. The observable magnitude is considered to be
sin θi, called the activity [17].

In vector form, Eq. (2) can be written as

θ̇ = ωIN + γ cos[θ ] + kCcos[θ ], (3)

where θ̇ is the vector of θ̇i, IN is the N components’ identity
vector, cos[θ ] is an N vector with components cos θi, C is a
N × N with zero main diagonal, skew-symmetric, tridiagonal
matrix with alternating ±1 along the super and subdiagonals.

For k = 0, no coupling exists. The system behaves as inde-
pendent, pure Adler oscillators

dθ

dt
= ω + γ cos θ, (4)

where a positive value of cos θ implies a faster phase velocity.
The opposite, the slowing of the phase velocity, occurs when
cos θ < 0 and the right-hand side of Eq. (4) is still positive.
In such a case, the oscillator is going through a bottleneck. If
γ � ω, when cos θ = −ω/γ the phase is locked, dθ/dt = 0.
Phase locking will happen for two values of θ ; one is stable
and the other unstable. When γ < ω, no phase locking can
happen, but the system behaving periodically still shows in-
tervals of θ where bottleneck slowing of the phase velocity
happens. In this interval, the system will spend most of its
time within a period.

For k �= 0, the coupling term relates the phase speed of an
oscillator with its neighbors. The phase velocity of oscillator

i increases if the self-feedback and the coupling terms are
positive due to the strengthening contribution of neighbors.
If the two terms are negative, but the right-hand side of the
Eq. (2) is still positive, the oscillator i is in a bottleneck. If the
right-hand side is negative, the phase velocity reverses sign
and its absolute value increases with an increasing absolute
value of the self-feedback and coupling term. If cos θi−1 and
cos θi+1 have different signs, they have competing effects over
the phase velocity.

The coupling has alternating signs, being positive (nega-
tive) for even (odd) numbered oscillators, so taking N as an
even number guarantees balance in the sign of the interaction
for the entire system. The reader is referred to [8,9] for further
details.

The analysis of the existence and stability equilibrium
points has been thoroughly made by Alonso [8]. A sum-
mary follows. Making θ̇ = 0 and solving the linear system
of Eq. (3), the equilibrium points are given by

cos θ∗
2i+1 = a = −ω

γ + 2k

γ 2 + 4k2
,

(5)

cos θ∗
2i = b = −ω

γ − 2k

γ 2 + 4k2
,

from which equilibria exist if and only if

ω � γ 2 + k2

γ + 2k
. (6)

From there, when |a| < 1, there are 2N possible equilibrium
points, equally split between odd and even oscillators. For
|a| = 1, θ2i−1 = ±π , the odd components are identical and
there are 2N/2 equilibria. The bifurcation curve is given by the
equality in Eq. (6).

Each of the equilibria undergoes a saddle-node bifurcation
yielding a pair of equilibria, with the smooth field induced
by Eq. (3) restrained to the direction that joins each pair of
equilibria.

Stability has been studied numerically and only one point
was found to be stable. It corresponds to all values of θi

positive. The probability of another point being stable was
smaller than 10−6. The behavior of the largest eigenvalue of
the corresponding family of Jacobians was discussed in [8]
and we refer the reader there for further details. The conclu-
sion is that the presence of equilibria alone, as discussed, may
not be sufficient to explain the observed complex behavior
within the region with no fixed points. Therefore, the occur-
ring bottlenecks near bifurcation may also play a role in the
overall dynamics.

Chaotic regimes can be in time or the spatial coordinate
(oscillators index) [18]; this was studied by Estevez et al. [9]
for the system given by Eq. (3). Low values of spatial entropy
density can only accommodate low values of the temporal
entropy density. In the needle region (see Fig. 1), temporal
entropy density is near zero. A plot of temporal entropy den-
sity versus spatial entropy density (see Fig. 4 in [9]) shows the
distribution of points below the diagonal of equality between
both measures, temporal and spatial, of disorder.

The system can be rescaled in terms of k by changing the
time units. From now on, it will be taken as k = 1 in Eq. (2)
without loss of generality. The parameters (ω, γ ) will be taken
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FIG. 1. A schematic diagram of phases in parameter space (mod-
ified from Ref. [9]). Four regions are identified by the entropic
magnitudes. The absorbing region has zero entropy density, while the
chaotic region has a value near 1. For the wedge region, the entropy
density is higher than the absorbing region but still lower than 1/2.
Low values of h characterize the needle region (see Table I). The
diagram is for the system behavior after all transient behavior has
died out, as explained in [9].

as real numbers varying continuously. A schematic of the
parameter space diagram (drawn as a function of ω and γ )
shows different regions (Fig. 1), which will be explained after
we introduce the entropic magnitudes.

III. DATA PROCESSING AND ENTROPIC MAGNITUDES

In the results that follow, the system of differential
equations given by Eq. (2) is solved numerically using a
Runge-Kutta method of order 4, as implemented in the GNU
Scientific Library [19]. To discover any discrepancy in the
stability of the numerical solutions, comparisons were made
for several instances of the problem, with the solution found
by using Wolfram’s MATHEMATICA [20] numerical differential
equation solver. No discrepancy was found. Simulations were
performed over N = 5 × 103 oscillators. To test the depen-
dence of the result on the system size, for specific values
of (ω, γ ), N was taken as 2 × 105, observing no change in

TABLE I. Entropic measures in the different regions of the pa-
rameter space. h stands for the entropy density, while E measures
the effective complexity measure. The results are the average over the
last step of 100 runs of different random initial conditions. d is the
information distance given by Eq. (11) between a system evolving
from an initial condition and the perturbed system with the same
initial condition with only one oscillator phase changed. The results
are the average of performing such calculations for the last steps for
20 different pairs of initial conditions.

Region h E d

Absorbing ∼0 ∼2.4 0
Wedge ∼0.14 ∼6 ∼0
Chaotic ∼1 ∼0 ∼0.9
Needle ∼0 ∼4 ∼0

the calculated values. Averaging over 100 runs of different
random initial conditions was performed.

The system was left to evolve for t = N steps. The short-
range coupling imposes at least N/2 times steps to reach the
rest of the chain from a signal originating at any oscillator. N
proved to be a suitable number of steps to kill all possible tran-
sient behavior. Activity sin θi values were binarized, taking
the mean value as a threshold. In such a way, the binarization
procedure does not guarantee the same number of 1s or 0s.
After binarization, the spatial configuration of the oscillators
will be described by a string s of length N .

Shannon entropy rate h will be used to measure
information production. Consider a bi-infinite sequence
S(t ) = . . . s(t )

−2s(t )
−1s(t )

0 s(t )
1 s(t )

2 . . ., where s(t )
i is the binary symbol

observed in the cell i at time step t . The entropy density can
be considered the amount of new information in the obser-
vation of cell si, conditional on the state of all previous cells
s j , j < i [21]:

h = H (si|, . . . , si−1), (7)

where H (X |Y ) denotes the Shannon conditional entropy of
random variable X given variable Y [22].

Entropy density can be written in terms of the block
entropy

h = lim
L→∞

HS (L)

L
. (8)

HS (L) is the the block entropy of length L of the bi-infinite
string S given by

HS (L) = −
∑

SL

p(SL ) log p(SL ). (9)

The sum goes over all binary sequences SL of length L, and
p(SL ) is the probability of observing one particular string SL

in the bi-infinite string S.
For, the necessarily finite data the entropy rate has to be

estimated [23,24]. We will be using the Lempel-Ziv factoriza-
tion [25] procedure to estimate the entropy density. The details
of the implementation can be found elsewhere [26].

Effective complexity measure E [27], also known as excess
entropy [21], measures the correlation at different scales in a
process and is related to the intrinsic memory of a system. For
a bi-infinite string, the effective measure complexity measures
the mutual information between two infinite halves of the
sequence [21,27],

E (S) = I[. . . , s−1 : s0, s1, . . .], (10)

I[X : Y ] = H[X ] + H[Y ] − H[X,Y ] is the mutual informa-
tion between X and Y [22] and is a measure of the amount
of information one variable carries regarding the other. E is
related to pattern production and context preservation and
was interpreted as the intrinsic redundancy of the source
or apparent memory [21]. Effective measure complexity is
estimated through Lempel-Ziv factorization using a random
shuffle procedure [28], as explained in [10].

Information distance d (s, p) comes from algorithmic ran-
domness [29]. Consider the shortest algorithm s∗ capable of
producing the string s; the length K (s) = |s∗| of this pro-
gram is called the Kolmogorov randomness of the string.
Accordingly, K (s|p∗), known as Kolmogorov conditional
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randomness, is the length of the shortest program able to
reproduce s if the program p∗, reproducing the string p, is
given. The information distance is defined by [30]

d (s, p) = max{K (s|p∗), K (p|s∗)}
max{K (s), K (p)} . (11)

The distance d (s, p) measures how “hard” it is to reproduce
one of the strings if the algorithm for producing the other
string is known: two sequences that can be derived one from
the other by a small-sized algorithm will result in a small
d (s, p). We estimate d (s, p) as explained in [26], as

d (s, p) = h(sp) − min{h(s), h(p)}
max{h(s), h(p)} . (12)

Two initial conditions, which are identical except for one
randomly selected site si, are chosen. Each initial condition is
left to evolve, and after a sufficient number of time steps, the
information distance between both systems is calculated using
Eq. (12). In this way, d measures the system’s sensitivity to a
minimum perturbation of the initial state. The results are the
average of performing such calculations for 20 different pairs
of initial conditions.

Finally, following the probability ρ of one symbol (e.g., 1s)
in the string, as it evolves in time, will be useful to account for
the production (erasure) processes in the dynamics.

To calculate all the described magnitudes, the last steps
were used to avoid the influence of the transient region and
the mean value reported is taken for a number of different
initial conditions. The standard deviation shows no significant
spread of values.

IV. ANALYSIS OF THE NEEDLE REGION

Several distinct regions exist in the coupled oscillators’
control parameter space (Fig. 1). Table I summarizes the char-
acteristics of each region (a detailed discussion can be found
in [9]). The focus will be on the needle region, with low h,
surrounded by the connected chaotic region with high h.

The are several ways to determine the exact location of the
boundary to the chaotic region in a dynamical system [18,31].
In Estevez et al. [10], the entropic magnitudes described in the
previous section were used. At the boundary, E drops to zero,
while h has a step increase. Sensibility to perturbations, given
by d , also has a jump in values. That any of these magnitudes
can identify a well-localized boundary can be verified in Fig. 2
by the sharp contrast between regions.

Figure 2 contains maps of a small region of the control
space using the different entropic magnitudes. There are no
significant changes in the symbol probability (∼ 0.5) between
the needle and the chaotic region, implying that any change
in the entropic variables does not come at the expense of
symbol erasure. The value of ρ ∼ 1/2 also points to the mean
being near the median and hence the distribution of sin θ close
to symmetric. Entropy density is high in the chaotic region
while near zero, from almost side to side of the needle region
except near the left border. At the left border, a transition area
is found with entropy density above zero but well below the
chaotic regime values. d shows that, as expected, the chaotic
behavior is characterized by high sensitivity to the initial con-
dition. However, in the needle region, the information distance

is not zero and fluctuates from zero to a value of 0.4 in a
stripe pattern with constant γ values. The effective measure
complexity further emphasizes that the needle region is far
from homogeneous; wavy patterns can be seen. At the right
boundary of the needle region, E has a maximum (shown
as a narrow red area) parallel to the boundary before it falls
abruptly as it enters the chaotic regime.

To better understand the behavior in the needle region,
spatiotemporal maps, starting with a random initial condition,
at different points were computed along a line and are shown
in Fig. 3. Point 1 is still in the chaotic regime. No long-range,
spatial, or temporal patterns are present in the spatiotem-
poral map. Points 2 to 14 are all within the needle region.
In all cases, the initial random condition does not survive,
and patterns emerge after a few time steps for the spatial
arrangement of oscillators. The spatial organization does not
come at the expense of the erasure of symbols as already
described.

Furthermore, two correlated phenomena emerge, one in the
spatial arrangement and the other in the temporal evolution.
Spatial patterns are produced and evolve for a certain amount
of time and then seem to disappear, and the behavior repeats
itself in time. There is a characteristic wave-like image of the
spatiotemporal maps. The difference between the spatiotem-
poral maps at different points is mainly the spatial wavelength
and frequency of the pattern production and evolution. Both
are correlated; the shorter the spatial wavelength, the higher
the frequency. As the points are taken for increasing ω and
γ values, another cyclic behavior is observed when com-
paring the spatiotemporal map: spatial wavelength increases
and time-frequency decreases and, at a certain point, spatial
wavelength starts to decrease while frequency increases. This
behavior is not periodic.

One cycle is shown in Fig. 4, where the evolution of the
wavelength and frequency in the spatiotemporal patterns, as
the system moves with increasing ω and γ values, can be
seen. The wavy nature of the spatiotemporal maps is clear.
One must not get caught in the wrong interpretation and
must consider that time increases as the configurations move
downwards in the vertical axis.

Consider any of the spatiotemporal maps. For clarity, con-
sider as an example point 8 in Fig. 4 (ω = 1.990, γ = 1.125);
there is a regular background, and over the background, per-
turbations seem to appear at certain moments in time at certain
individual oscillators. From there, the perturbation travels spa-
tially, perturbing their neighborhood and eventually shrinking
and disappearing. The collision of two perturbations happens
at the point of the extinction of the perturbation, where the
oscillator returns to the background behavior. These wavy pat-
terns indicate the spatial and temporal transfer of information
among the oscillators within a time window. The difference
between the points in Fig. 4 is the frequency with which
this local structure emerges and how long they evolve before
disappearing. As control parameters move from point 1 to
point 8, the wavelength increases, and from there (point 9 to
14) starts to decrease. In the temporal axis, the increase in
spatial wavelength is correlated with fewer initial perturbation
events, but they live longer. In no case does a single local
pattern last long enough to overtake the entire configuration
of oscillators.

044212-4



COMPLEXITY AND TRANSITION TO CHAOS IN COUPLED … PHYSICAL REVIEW E 107, 044212 (2023)

ne
ed

le

ch
ao

tic

ch
ao

tic

FIG. 2. Entropic magnitudes over a fraction of the needle region as a function of the control parameters (ω, γ ). Calculations were
performed with the last configurations, for 100 different initial conditions, to avoid any transient behavior influence at each point, and average
values are reported. The symbol density ρ shows small variations between the needle region and its chaotic surroundings, around 1/2. Entropy
density h is almost zero within the needle region and near the lower boundary to the chaotic region. Correspondingly, effective measure
complexity E exhibits higher but inhomogeneous values at the needle region. A red strip at the lower boundary evidence a surge in E at the
lower boundary. The information distance d is maximum in the chaotic region but above zero within the needle where a stripe pattern can be
seen.

As shown in Fig. 5(a), for the chaotic point, the entropy
density is constant, while it falls for the two other points. In
the needle region point [curve 1 in black in Fig. 5(a)], after
6000 time steps, the system seems to have gone through the
transient behavior and settled into a stationary regime where
both h and E do not show further variation. In contrast, the
point at the boundary [curve 2 in red in Fig. 5(a)] does not
show constant values of h or E even at 10 000 time steps. For
the boundary region, at 10 000 time steps, the value of h is
around 0.30, 2.14 times the value for the needle region. The
effective measure complexity increases to around 7.12, which
is more or less half the value for the needle region.

The distance matrix between the oscillators was calcu-
lated for the same three points. The matrix consists of the
informational distance d from the time series between every
two oscillators in the system. d was estimated after dropping
the first 3000 steps to cancel the influence of the tran-
sient region. The corresponding dendrogram was computed

from the distance matrix and shown in Fig. 5(b). The den-
drogram tree has two branches for all points, one for the
even and one for the odd oscillators. In the chaotic re-
gion, point 3, the dendrogram tree is shallow, showing that
each oscillator behaves mostly independently of the others
with large similarity distances (∼0.8) between them. Well
within the needle region, point 1, the distance relational
tree is much more complicated, with different levels and
branches. Local clusters of oscillators with similar behavior,
as seen by d , can be identified. Within a class of oscilla-
tors, odd or even, the distance between oscillators is never
larger than 0.35 showing a nearly global collective behav-
ior of the oscillators, corroborating the visual picture given
by Fig. 4. The dendrogram of the system at the onset of
chaos, point 2, shows a similar multilevel tree with a com-
plicated hierarchy of branches; local clusters can also be
identified, yet, compared with the needle interior, a larger
distance between clusters that can go up to 0.67, can bee seen
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FIG. 3. Spatiotemporal maps along a center line in the needle region. The left upper diagram shows the points from where the spatiotem-
poral maps were calculated. In the spatiotemporal maps, time is on the vertical scale, and the oscillator’s values are displayed horizontally in
consecutive order. Point 1 is in the chaotic region. All other points are within the needle region. The spatiotemporal maps show that, in the
needle region, global correlations of the oscillators are attained.

between some clusters, showing that global coupling is not
achieved.

In Fig. 6, the entropic measures along a line of constant
γ = 1.2 are shown that goes through the entire width of
the needle region. As ω increases, the system goes from the
chaotic region into the needle. A sudden drop of entropy

density (upper plot of Fig. 6) marks the transition, the effective
measure complexity has a jump at the same transition, but
no peak can be seen. The sensitivity to initial conditions,
monitored by d , drops in the needle region to values below the
chaotic regime but has an irregular behavior within the needle
region for increasing values of ω. A transition region in the left

FIG. 4. Closer look into the spatiotemporal maps along a center line within the needle region. The left plot shows the points from where the
spatiotemporal maps were calculated. Right: The spatiotemporal maps. Time is on the vertical scale and the oscillator’s values are displayed
horizontally in consecutive order.
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FIG. 5. (a) Entropy density h and effective measure complexity E for three points (average of 100 different initial conditions) (1) (ω, γ ) =
(1.990, 1.125) (black) within the needle region; (2) (ω, γ ) = (2.225, 1.206) (red) at the lower boundary of the needle region (onset of chaos);
and (3) (ω, γ ) = (2.500, 1.206) (blue) in the chaotic region. (b) Dendrogram from the distance matrix at the same points as in (a). The distance
matrix d is computed from the time series between every two oscillators in the system. d was estimated after dropping the first 3000 steps to
cancel the influence of the transient region.

boundary is seen as irregular variations of h, consistent with
the map shown in Fig. 2. At the right boundary, when h jumps
to higher values, E has a surge. This surge has been taken

FIG. 6. Entropic measures along a line of constant γ = 1.2
crossing the entire width of the needle region. The enhancement of
computation at the right boundary can be seen as a surge in effective
measure complexity (lower black plot) with a peak where the entropy
density (upper plot) jumps towards maximum value. d (lower red
plot) also has a jump with a peak, showing a transition to a chaotic
regime.

before as evidence of enhancement of computation at the edge
of chaos [10]. This behavior is absent on the left boundary.

Figure 7 is the spatiotemporal map of a point in the right
boundary (ω = 2.225, γ = 1.206) where E has a peak. The
map has not been binarized, so gray levels correspond to
activity values sin θ , where the black color is for 0. The
map shows complex features with areas showing a wave-like
solid pattern. The waves start at a local feature that emerges
(straight down red arrow at the lower right points to one of
such features) and spatially propagates in both directions with
time. Two such propagating features can collide and annihilate
(the straight, up, yellow arrow at the lower right points to
one of such collisions). Features in the wave-like region can
propagate at different speeds and last for different time lapses,
as can be seen in the upper left, red, and yellow diagonal
arrows of the same Fig. 7. The boundaries between the wavy
regions seem incoherent. They can be both a source or a
sink of propagating features that travel into or from the wave
regions (right lower rectangle). The spatiotemporal map for
this boundary region shows a width larger than one oscillator
that propagates and splits with time.

V. DISCUSSION

The left boundary of the needle region is close to a straight
line parallel to the right boundary for ω values larger than
2.33. For lower values of ω, the slope of the upper boundary
is larger than that of the lower boundary. A straight line drawn
for the middle of the needle region has a slope of 0.869, which
implies that, as ω increases, the ratio γ /ω decreases. For a
decoupled Adler equation, the region γ < ω has no stable
point and θ is periodic with period T = 2π/

√
ω2 − γ 2. For

such a decoupled oscillator, for increasing ω values, T →
2π/ω, the self-feedback gets weaker, which can be readily
seen looking at Eq. (1) and ignoring the third term on the right
side.
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FIG. 7. Spatiotemporal map with random initial condition of a
point at the lower boundary of the needle region at the onset of
chaos (ω = 2.225, γ = 1.206). The values of the plot have not been
binarized. Gray levels correspond to values of the activity sin θ ,
where black corresponds to 0. Time is on the vertical scale and spatial
arrangement is along the horizontal scale. The red arrow points down
to an emerging feature that propagates in both directions. The up,
yellow arrow shows the collision of two features. The red rectangle
shows a boundary region separating two wave regions where coher-
ence is lost. On the left side, the diagonal arrows show two features
traveling at different speeds and lasting different time lapses. The left
red arrow points to a slower translation speed, while the yellow one
points to a faster translation speed, yet the first lasts longer than the
second.

The needle region lies, except for its apex, outside the
equilibrium zone of the oscillator [8], and locking of the
phases is not possible; the phases of all oscillators continue to
change with time. Within the entire needle region, structuring,
as measured by the effective measure complexity happens,
pointing to correlations between the oscillators beyond the
short range of the interaction. In the coupled oscillator system,
as ω and γ increase, the coupling gets weaker with regard

to the self-feedback and the natural frequency. However, in
the studied region, the coupling is still a significant factor for
the system. As a result, the periodic behavior of the isolated
oscillators is perturbed by the feedback from the neighboring
oscillators. These competing factors determine the behavior
of each oscillator and the system.

The spatiotemporal diagrams within the needle region
show wave-type patterns. Large coherent areas are found with
vertical boundaries between them. Coherence is almost pre-
served for the entire range of oscillators, which is verified by
the dendrograms of Figs. 5(b1). The drop in entropy density as
a function of time is a sign of irreversibility and information
is lost almost immediately from the initial condition. On the
other hand, the increase of effective measure complexity mea-
sures the highly structured nature of the spatial configurations
after the initial transient. Transmission of information across
the entire arrangement of oscillators is a system feature. The
almost periodic behavior of the system points to the storage of
information in the timescale. The emergence of new features
is limited to events that repeat in time. The difference with
other points within the same region is the spatial wavelength
and time frequency, which govern the patterns’ recurrence.
For some (ω, γ ) values, there is almost no evolution or a
slow one for others. After the transient, short, initial stage,
the spatiotemporal map shows no high complexity and is far
from chaotic.

What is the difference with the critical region at the right
boundary as the system moves towards the chaotic regime
with increasing ω? At the onset of chaos, the spatiotemporal
map shows a wave-like pattern again. However, the wave
patterns are now disrupted by the boundaries of several os-
cillators that seem not coherent with their neighbors. As a
result, spatial coherence is lost (Fig. 7). The transmission of
information across all oscillators seems to become unfeasible.
In this critical region, local clusters of oscillators that behave
coherently are found, which are isolated from other blocks
of coherent oscillators by incoherent nonconstant boundaries,
a picture consistent with the corresponding dendrogram of
Fig. 5(b2). The boundaries are seen to move as the system
evolves and new boundaries can emerge from existing ones.
When a boundary splits in two, a new coherent region of wave
pattern emerges. When two incoherent boundaries collide,
a coherent wave region disappears. The h plot versus time
shows that there is also a loss of information from the initial
random configuration in this onset of chaos, but smaller than
in the needle region. The spatiotemporal map further shows
that not all initial information is lost as boundaries emerge
from the initial configuration and persist in time.

On the other hand, the effective measure complexity is
consistent with the qualitative picture; structuring occurs but
not to the level of the needle region, and some randomness
is kept in the configurations. In the evolution of the spatial
configurations, there is a competing effect between memory
preservation (given by E ) and information production (given
by h). All these features point to a complex map of compet-
ing patterns where information storage happens for a finite
interval of time steps. The transmission of information occurs
within blocks of oscillators and not through the entire arrange-
ment and emergence of new regions, a characteristic feature of
the system.
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One may wonder if such rich behavior at the onset of chaos
may allow for complex computations given the appropriate
initial conditions.

VI. CONCLUSION

Coupled nonlinear oscillators were used extensively to
model various complex systems, including brain functioning.
It is common to assume that coupling goes beyond local links
and all-to-all topology and small-world topology have been
studied. There is an idea that local couplings are too simple
to give rise to complex behavior emerging from the collective
correlation between a large-enough number of units.

Adler-type locally coupled oscillators were a toy model
introduced by Alonso [8] that showed complex behavior in
some areas of the phase diagram despite their very simple
coupling. This should not have come as a surprise as elemen-
tary cellular automata already have given enough evidence of
complex behavior emerging from nearest neighbor couplings
of simple units.

Of the two regions with possible complex behavior, the
so-called needle region has been the focus of this contribution.
It was already reported that, in the lower boundary of the nee-
dle, a jump of the different entropy magnitudes could signal
enhanced computational capabilities at the onset of chaos. In
this contribution it was shown that, within the needle region,
a rich set of behaviors can be identified and global coupling
of the oscillator sets in after a transient period. This coupling

is not the usually reported phase locking and cannot be seen
by simple distance measures such as the Hamming field. It is
a coupling revealed as a correlation in the pattern-producing
ability of one oscillator compared to the other. That is, two
correlated oscillators mean that each produces similar sets of
temporal patterns.

A further finding is that the needle region is not homoge-
neous. The different spatiotemporal maps point out that the
differences are in the spatial wavelength and time frequency
of the recurrence of wave-like patterns seen as almost coherent
across the whole arrangement of oscillators.

At the onset of chaos, the system exhibits local coupling
seen in the spatiotemporal maps and verified by the distance
dendrogram. This coexistence of local communities that are
weakly coupled to other local communities is a hallmark of
enhanced computational capabilities. The intermediate values
of entropy density and effective measure complexity for this
region, a known feature for complex, capable information pro-
cessing systems, further emphasize this improved capability.

To conclude with a comment, the fact that such a simple
system can give rise to such rich sets of behavior could point
to the idea that one could expect even more richness in more
realistic sophisticated models.
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