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Information geometry and synchronization phase transition in the Kuramoto model
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We discuss how the synchronization in the Kuramoto model can be treated in terms of information geometry.
We argue that the Fisher information is sensitive to synchronization transition; specifically, components of the
Fisher metric diverge at the critical point. Our approach is based on the recently proposed relation between the
Kuramoto model and geodesics in hyperbolic space.
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I. INTRODUCTION

The Kuramoto model is the paradigmatic model for syn-
chronization phenomena in nonlinear systems. Despite its
deceptively simple form, there are still enough white spots,
concerning different aspects of the model. Some of these
aspects turn around the synchronization in systems with com-
plicated topology, which were comprehensively described in
Ref. [1]. Other aspects are mostly focused on the rigorous
description of the Kuramoto model with all-to-all couplings
(complete graph case). It was shown that in the case of identi-
cal oscillators the Kuramoto model exhibits low-dimensional
dynamics. The emergent dimensional reduction occurs due to
existence of integrals of motion, initially discovered by trial
and error in Refs. [2,3]. The investigation of such integrals
of motion was done comprehensively in Ref. [4], where it
was demonstrated that they emerge due to the invariance of
dynamics under the Möbius transformation. The Kuramoto
model dynamics can be represented as the motion on the
Möbius group orbit. Moreover, recently it was noticed that the
corresponding low-dimensional dynamics can be described
in terms of gradient flows on a two-dimensional hyperbolic
manifold [5].

However, the origin of the hyperbolic manifold was not
established. At first glance, this manifold simply inherits sym-
metries of the Möbius group, and there are no special features.
We shall interpret the hyperbolic manifold as being induced
by probability measures, which is usually referred to as a
statistical manifold (see Ref. [6] for a review). In particular,
the AdS2 metric emerges immediately for the shifted Gaus-
sian distribution. In a generic situation the hyperbolic metric
emerges as the Fisher metric on the parameter space. The
Fisher metric is the probabilistic counterpart of the quantum
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metric which is familiar in quantum mechanics, where one
introduces the so-called complex quantum tensor which has
the quantum metric as the real part and the Berry curvature as
the imaginary part [7,8]. It is built from the quantum wave
function depending on some parameter space; however, its
classical analog exists as well.

In this paper we focus on the hyperbolic geometry descrip-
tion of the Kuramoto model and its connection to information
geometry. In particular, we explain the hyperbolic geometry
involved as the geometry of the statistical manifold. We shall
argue that the equation of motion for the Kuramoto model has
the form of gradient flow for the Kullback-Leibler divergence.
The properties of the induced metric or, in other words, the
response of the system to the perturbation of parameters serve
as an indicator of the phase transition [9–12]. In particular, the
diagonal elements of the quantum metric provide a good tool
in the search for critical curves, which has been demonstrated
in several examples [13–17]. We shall demonstrate in a clear-
cut manner that the components of the Fisher information
metric identify in a similar manner the critical curve for the
phase transition in the Kuramoto-Sakaguchi model. Hence the
Fisher information metric yields the proper order parameter
for the synchronization phase transition.

The paper is organized as follows. In Sec. II we recall
the Kuramoto model, focusing on its description in terms of
the Möbius group. The dimensional reduction provides the
description of the model in terms of motion of a point at a
hyperbolic disk. In Sec. III we shall present the key aspects of
the information geometry. In Sec. IV we apply the information
geometry to the Kuramoto and Kuramoto-Sakaguchi models.
We shall treat the coordinates of a point on the disk as the
two parameters which the distribution involved depends on.
It turns out that the Cauchy distribution governs the Ku-
ramoto model while the von Mises distribution is relevant
for the Kuramoto-Sakaguchi model. In both cases we shall
demonstrate that the singularity of the Fisher metric coincides
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with the synchronization transition, adding an example of the
relation between the singularities of the Fisher metric and
the phase transitions. In Sec. V we formulate the results and
the open questions. General comments concerning the rela-
tions between the distributions and the possible role of the
q-Gaussian distributions in the Kuramoto model can be found
in Appendixes A and B.

II. BRIEF REVIEW OF THE KURAMOTO MODEL

The Kuramoto model on a complete graph with identical
oscillators has the following equations of motion:

θ̇i = ω + λ

N

N∑
j=1

sin(θ j − θi ), (1)

where N is the number of oscillators, θi ∈ [0, 2π ), λ > 0 is
the coupling constant, and ω is the oscillator eigenfrequency.
The order parameter (synchronization measure) is defined by

r(t ) = 1

N

N∑
j=1

z j (t ), (2)

where we introduce the complex variable zi(t ) = exp (iθi(t )).
The model exhibits so-called synchronization transition from
a given initial state to a synchronized state with the amplitude
of order parameter |r| → 1, which does not depend on time.
In terms of particles on the unit circle, this means that in the
synchronized state all the particles are concentrated at one
point that moves with a certain average frequency.

The equations of motion become

żi = iωzi + λ

2

(
r − rz2

i

)
. (3)

The evolution of zi = zi(t ) can be represented as the action of
the Möbius transformation,

zi(t ) = M
(
z0

i

)
, z0

i ≡ exp (iθi(t = 0)), (4)

where the parameters of the Möbius transformation depend
on time. Following Ref. [5], this transformation can be
parametrized as follows:

M(z) = ζ
z − w

1 − wz
, (5)

where ζ ∈ C, |ζ | = 1, w ∈ C, and |w| < 1. The time deriva-
tive of the phase is

żi = − ẇζ

1 − |w|2 +
(

ζ̇ ζ + ẇw − ẇw

1 − |w|2
)

zi + ẇζ

1 − |w|2 z2
i .

(6)

Matching the right-hand side of Eq. (6) and the right-hand side
of Eq. (3), we obtain the system of equations

ẇ = −λ

2
(1 − |w|2)ζ r, ζ̇ = iωζ − λ

2
(wr − wrζ 2). (7)

The key feature of these equations is that they are decoupled,

ζ r = ζ
1

N

N∑
j=1

ζ
z0

j − w

1 − wz0
j

= |ζ |2 1

N

N∑
j=1

z0
j − w

1 − wz0
j

= 1

N

N∑
j=1

z0
j − w

1 − wz0
j

; (8)

hence this means that the equation for w does not feel the
variable ζ . This equation is our object of interest, and it was
shown previously [5] that it can be rewritten as the gradient
flow on the hyperbolic disk D = {z : |z| < 1},

ẇ = −λ

2
(1 − |w|2)2 ∂

∂w

⎧⎨
⎩ 1

N

N∑
j=1

ln P
(
w, z0

j

)⎫⎬⎭, (9)

where P = P(w, z0) is the Poisson kernel,

P(w, z0) = 1 − |w|2
|w − z0|2 , z0 ∈ S1, w ∈ D,

S1 = {z : |z| = 1}. (10)

To determine how the Poisson kernel appears, one should
substitute expression (8) into Eq. (7) and perform integration
over w. The authors of Ref. [5] have already noticed that for
|w| �= 1 the fixed point of Eq. (9) coincides with the conformal
barycenter of N points on S1, whose existence and uniqueness
are guaranteed [18]. Also, one should note that the |w| → 1
limit corresponds to the synchronized state.

Using this representation of the Kuramoto model dynam-
ics, we would like to discuss several features of the model
that are devoted to the interconnections between information
geometry and synchronization.

III. INFORMATION GEOMETRY
AND THE KURAMOTO MODEL

A. Basic concepts of information geometry

In this section we discuss the basic concepts of information
geometry and develop an information geometry view of the
Kuramoto model. We mainly focus on the continuum N → ∞
limit of the Kuramoto model.

To begin with, let us provide some essentials from infor-
mation geometry. We follow Ref. [6], where more details can
be found. Let us consider the family of probability density
functions p = p(ξ ; x), where ξ is the vector of parameters
and x is the vector of variables. For all possible values of ξ ,
this family forms the manifold M = {p(ξ ; x)}, which is called
the statistical manifold. To determine how two distributions
p(ξ1; x) and p(ξ2; x) differ from each other, one can consider
the divergence function D[ξ1; ξ2]. It is possible to define dif-
ferent divergence functions, but these functions make sense
only if they are invariant and decomposable [19].

The large class of such divergence functions is called the
standard f -divergences, which can be represented as

D f [p; q] =
∫

dx p(x) f

(
q(x)

p(x)

)
,

f (0) = 1, f (1) = 1, f ′′(1) = 1, (11)
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where f is the convex function. For f (v) = − ln v it is easy
to see that the corresponding f -divergence is nothing more
than Kullback-Leibler divergence. Another important type of
divergence is the so-called α-divergence, which is defined by
(see Refs. [6,19] for details)

fα (v) = 4

1 − α2
[1 − v(1+α)/2], α �= 1. (12)

The important property of the divergence function is that in
the case of two close enough points, ξ1 = ξ + dξ and ξ2 = ξ ,
it has the following Taylor expansion at point ξ :

D[ξ1; ξ2] = 1
2 gi j (ξ )dξidξ j + O(|dξ |3), (13)

where gi j is the metric of manifold M. Any standard f -
divergence gives the same metric gi j , which coincides with
the Fisher metric gF

i j ,

gF
i j =

∫
dx p(x; ξ )

∂ ln p(x; ξ )

∂ξi

∂ ln p(x; ξ )

∂ξ j
. (14)

Strictly speaking, to completely describe the statistical man-
ifold M, we need one more object, which is called the
skewness tensor T F,

T F
i jk =

∫
dx p(x; ξ )

∂ ln p(x; ξ )

∂ξi

∂ ln p(x; ξ )

∂ξ j

∂ ln p(x; ξ )

∂ξk
. (15)

Finally, the statistical manifold is the triplet (M, g, T ). For
a given standard f -divergence, the metric tensor g (obtained
from the Taylor expansion) coincides with gF, whereas the
corresponding skewness tensor is given by T = αT F with
α = 2 f ′′′(1) + 3.

The pair of gF and T F allows us to define so-called α-
connections on the statistical manifold, which are given by


±α
i jk = 
0

i jk − α

2
T F

i jk . (16)

The statistical manifold is called α-flat if the correspond-
ing α-Riemannian curvature tensor vanishes everywhere
with condition Rα

i jkl = R−α
i jkl . Note that in contrast with the

usual Riemannian manifold, the statistical manifold can have
nonzero torsion. It was shown that such α-flat manifolds have
dual affine structure, which gives a dual (via Legendre trans-
formation) coordinate system on the statistical manifold. Such
a manifold is also called a dual flat manifold. For a dual flat
manifold, the metric and skewness tensors are given by

gF
i j = ∂i∂ jψ (ξ ), T F

i jk = ∂i∂ j∂kψ (ξ ), ∂i ≡ ∂

∂ξi
, (17)

where ψ (ξ ) is a convex function. For a dual flat manifold, the
canonical divergence is the so-called the Bregman divergence.

B. Gradient flow on a statistical manifold

For a dual flat manifold, the existence of ψ (ξ ) allows
us to consider the gradient flow with respect to the Fisher
metric [20,21],

dξ

dt
= −(gF )−1∂ξψ (ξ ). (18)

Some examples of gradient flows on statistical manifolds are
discussed in Ref. [20].

The simplest illustrative example of the mentioned gradient
flow corresponds to the Gaussian distribution statistical mani-
fold. It is straightforward to check that the statistical manifold
formed by Gaussian distributions, MG = {p(μ, σ ; x)|μ ∈
R, σ > 0}, is α-flat for α = ±1. One can also generalize this
statement to the exponential distribution family,

p(ξ ; x) = exp [ξigi(x) + h(x) − ψ (ξ )], (19)

which forms a dual flat manifold with canonical coordinate
system ξ and the function ψ = ψ (ξ ). In the case of a Gaussian
distribution, the coordinate system is (ξ1, ξ2) with ξ1 = μ/σ 2,
ξ2 = −1/(2σ 2) and ψ = μ2/(2σ 2) + ln(

√
2πσ ). In the case

of the exponential distributions family the Bregman diver-
gence coincides with the Kullback-Leibler divergence. The
gradient flow for the Gaussian statistical manifold looks like

μ̇ = −μ; σ̇ = −σ 2 + μ2

2σ
. (20)

Note that this system has the conserved integral of motion
H = σ 2/μ − μ, which corresponds to the arc radius.

C. Cauchy distribution

One can show that the family of univariate elliptic distribu-
tions forms α-flat statistical manifolds [22]. However, there is
one orphan distribution in this family: the Cauchy distribution,

pC(γ , β; x) = 1

π

γ

γ 2 + (x − β )2
, γ > 0, β ∈ R, (21)

which can be written in the more-convenient-for-our-goals
McCullagh’s representation [23],

pC(w; x) = Im w

π |x − w|2 , w = β + iγ . (22)

The corresponding Fisher metric looks like

gF
i j = 1

2γ 2

(
1 0
0 1

)
. (23)

It is straightforward to verify that for the Cauchy distribution
the skewness tensor T F vanishes everywhere; so we cannot
find any value of α to obtain a dual flat structure at first glance.

However, we can interpret the Cauchy distribution as a
member of the q-Gaussian family, whose probability density
function is defined as

Nq(β, x) =
√

β

Cq
expq{−βx2}, β > 0, (24)

where Cq is the normalization constant. The Cauchy distribu-
tion can be considered as a q-Gaussian with q = 2, which was
done in Ref. [24] (we discuss some properties of q-Gaussians
in Appendix B),

pC(γ , β; x) = Nq(γ −2, (x − β )2)|q=2. (25)

Using the definition of the q-exponent, it is straightforward
to verify that the distribution function pC(γ , β; x) can be also
represented as

pC(γ , β; x) = expq (ξigi(x) − ψ (ξ ))|q=2, (26)
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where ξ1 = 2πβ/γ , ξ2 = −π/γ , g1(x) = x, and g2(x) = x2

and the potential function ψ (ξ ) is

ψ (ξ ) = −π2

ξ2
− ξ 2

1

4ξ2
− 1. (27)

Next, it was shown that the divergence

DB-T[ξ1; ξ2] =
(∫

dx p(ξ2; x)2

)−1[∫
dx

p(ξ2; x)2

p(ξ1; x)
− 1

]

(28)

is the Bregman divergence, i.e., describes the dual flat
manifold. Such a divergence is called a Bregman-Tsallis di-
vergence. The metric corresponding to the Bregman-Tsallis
divergence does not coincide with the Fisher metric and can
be computed as

gq
i j = ∂2ψ (ξ )

∂ξi∂ξ j
, (29)

where ξ corresponds to the canonical coordinate system on
the dual flat manifold. In the case of Cauchy distributions, we
have

gq
i j = 2π

γ

(
1 0
0 1

)
, (30)

and it is clear that gq and gF
C are related via conformal trans-

formation. The dual coordinates ηi are defined by

ηi = ∂ψ (ξ )

∂ξi
=

(
− ξ1

2ξ2
,

4π2 + ξ 2
1

4ξ 2
2

)
= (β, γ 2 + β2) (31)

with corresponding dual potential

φ(η) = 1 − 2π

√
η2 − η2

1. (32)

The gradient flow (18) for the Cauchy distribution looks like{
ξ̇1 = ξ1

8π2

(
4π2 + ξ 2

1

)
ξ̇2 = ξ2

8π2

(
4π2 − ξ 2

1

) ↔
{

β̇ = −β

γ̇ = β2−γ 2

2γ
.

(33)

Note that these equations are quite similar to the Gaus-
sian case, Eq. (20). Having introduced all relevant concepts
from information geometry, we can turn to the interpreta-
tion of the Kuramoto model in terms of the information
geometry.

IV. FISHER METRIC AS THE ORDER PARAMETER
FOR SYNCHRONIZATION TRANSITION

A. Fisher metric and phase transitions

The quantum tensor is now an effective tool for analysis of
the topological and critical phenomena in complicated many-
body systems. It is defined as

Qi j = 〈∂i�|∂ j�〉 − 〈∂i�|�〉〈�|∂ j�〉, (34)

where the i, j indices correspond to the coordinates in the
parameter space. Its real part is the quantum metric, while its
imaginary part is the Berry curvature [7,8]

Qi j = gi j + iFi j . (35)

The quantum metric can be thought of as a two-point corre-
lator or fidelity whose behavior is expected to quantify the

properties of the system [9–11]. This generic argument can be
made more precise if we focus on the geometry of the metric,
and it was argued [9,10] that the singularity of the metric
or Ricci curvature corresponds to the position of the phase
transition. The kind of classification of induced geometries
attributed to the ground state can be found in Ref. [13]. The
relation between the singularities of the metric and the phase
transitions is not a completely rigorous statement, but there is
a convincing list of examples, say, Refs. [16,17] for the Dicke
and Hubbard models. A review of this subject can be found in
Ref. [14]. The parameters of the Hamiltonian or the momenta
can be used to evaluate the components of the quantum metric.
More recently, it was recognized that the behavior of the
metric near the singular point can distinguish the integrable
or chaotic behavior [15]. The singularities of the different
components of the metric provide information concerning the
criticality in the different directions of the parameter space.

The Fisher information metric is parallel to the quantum
metric in quantum mechanics when the probability substitutes
the squared modulus of the wave function. The probabil-
ity obeys the Fokker-Planck (FP) equation instead of the
Schrödinger one; hence we shall focus below on solutions to
FP equations. The notion of the phase transition in the stochas-
tic problems also requires some care; however, the relation
between the quantum and semiclassical criticalities is seen in
the temperature component of the information metric [25]. It
turns out that the synchronization phase transition provides
another clear-cut example when the behavior of the Fisher
metric yields the identification of the phase transition in the
classical system. In this section we shall demonstrate that the
representation of the Kuramoto model in terms of the distri-
butions does the job. In the pure Kuramoto model we shall see
a kind of classical version of the quantum phase transition at
zero temperature, while in the Kuramoto-Sakaguchi model we
have an effective temperature due to noise.

B. Fisher metric in the Kuramoto model

The authors of Ref. [5] have introduced the hyperbolic de-
scription of the Kuramoto model. We argue that the hyperbolic
space arises as the statistical manifold of wrapped Cauchy
distributions. The normalized version of the Poisson kernel
is given by

pwC(w; z) = 1

2π

1 − |w|2
|w − z|2 , |z| = 1,

∮
|z|=1

dz
pwC(w, z)

iz
= 1, (36)

where wC denotes “wrapped Cauchy.” It is convenient to use
a polar representation, w = reiφ and z = eiθ , which gives

pwC(r, φ; θ ) = 1

2π

1 − r2

1 − 2r cos(θ − φ) + r2
,

0 � r < 1, φ = φ mod 2π. (37)

This is a probability density function (PDF) with two param-
eters, r and φ. All such PDFs form a manifold MwC,

MwC = {pwC(r, φ; θ ) |r ∈ [0, 1), φ = φ mod 2π},
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and the Fisher metric gF
i j is given by (14), which can be

represented in more compact form,

gF
i j = 4

∫ +π

−π

dθ ∂i

√
pwC(r, φ; θ )∂ j

√
pwC(r, φ; θ ).

It is straightforward to compute this integral and obtain com-
ponents of the metric,

gF
rr = 2

(1 − r2)2
; gF

φφ = 2r2

(1 − r2)2
; gF

rφ = gF
φr = 0.

(38)
Hence, reintroducing w = reiφ , we can write

ds2
F = 2(dr2 + r2dφ2)

(1 − r2)2
≡ 2 dw dw

(1 − |w|2)2
, (39)

which coincides with the hyperbolic disk metrics. Also, the
direct computation of (15) shows that T F ≡ 0. This is not
surprising, because the wrapped Cauchy distribution is simply
related to the usual one and the manifold formed by the usual
Cauchy distributions is nothing more than upper half-plane
model of AdS2 space. The wrapped Cauchy distributions also
form AdS2 space but in terms of the Poincaré disk model.
Two such models can be mapped to each other via conformal
transformation.

We also can represent the wrapped Cauchy distribution as a
q-exponent with q = 2, which can be checked in a straightfor-
ward way. Computing the canonical coordinates (ξ1, ξ2) and
then deriving the potential function, we can find the metric
gq

i j . In (w, w) coordinates the metric obtained from the corre-
sponding potential function is given by

gq
i j = 2π

1 − |w|2
(

1 0
0 1

)
→ ds2

q = 4π dw dw

1 − |w|2 ; (40)

so the q-metric again is conformally equivalent to the Fisher
metric.

The wrapped Cauchy distribution plays a crucial role in
the Kuramoto model dynamics since it is invariant under
Möbius group action. Let z be a wrapped random variable
with Cauchy distribution, z ∼ pwC(w; z). Let z′ be the image
of z produced by the Möbius transformation M, z′ = M(z).
It was proven that if z ∼ pwC(w; z), then z′ ∼ pwC(w; z′).
So, wrapped Cauchy distributions are closed with respect to
the action of Möbius transformation. This fact drives us to
conclude that the wrapped Cauchy distribution is a kind of
universal distribution for the Kuramoto model dynamics. Such
an implication resonates with the role of the Ott-Antonsen
(O-A) ansatz [26].

We would like to emphasize that the Fisher information
blows up in the synchronized phase, which corresponds to the
limit |w| → 1. In the Kuramoto-Sakaguchi model the relation
between the singularity of the Fisher metric and the phase
transition will be made more transparent.

C. Fisher metric in the Kuramoto-Sakaguchi model

Consider now the Kuramoto-Sakaguchi model [27], i.e.,
the Kuramoto model with noise,

θ̇i = ωi + λ

N

N∑
j=1

sin(θ j − θi ) + ηi(t ), (41)

FIG. 1. Continuous phase transition in the Sakaguchi-Kuramoto
model.

where ηi = ηi(t ) is a stochastic term with properties
〈ηi(t )〉 = 0, 〈ηi(t )η j (t ′)〉 = 2Dδi jδ(t − t ′), where D > 0 is
the noise amplitude. This model was initially considered by
Sakaguchi, and it was shown that there is a continuous phase
transition for the conventional order parameter r with respect
to the coupling constant λ. The critical coupling could be
obtained by the analysis of the self-consistency equation or
by stability analysis of the incoherent state and is given by

1

λc
= D

2

∫ +∞

−∞

dω g(ω)

ω2 + D2
. (42)

Both methods deal with the Fokker-Planck equation, which
arises in the continuum limit of the Kuramoto-Sakaguchi
model. In the case of identical frequencies, i.e., g(ω) = δ(ω),
the critical coupling becomes λc = 2D. Moreover, in such
a case one could easily find the stationary solution of the
Fokker-Planck equation [28] in the rotating reference frame.
The stationary solution ρ0 reads as

ρ0(θ, ω) = 1

2π I0(λ|r|/D)
exp

{
λ|r|
D

cos (arg r − θ )

}
. (43)

The self-consistency equation for the Kuramoto-Sakaguchi
model is very simple,

|r| = I1(λ|r|/D)

I0(λ|r|/D)
, (44)

where it is straightforward to notice that the nontrivial solution
exists for λ > λc = 2D (see Fig. 1). This equation is similar to
the self-consistency equation that appeared in the XY model
and to the self-consistency equation that appeared in the sta-
tionary Hamiltonian mean field model. This is not a surprise,
because the noise strength D plays the role of temperature.
In the case of nonidentical frequencies, the stationary distri-
bution could be found explicitly [29], but the Fisher metric
can be evaluated only numerically. The described stationary
distribution is nothing more than the von Mises distribution
belonging to the exponential family. In general form, it looks
like

pvM(κ, μ; θ ) = 1

2π I0(κ )
exp {κ cos(θ − μ)},

κ � 0, μ = μ mod 2π. (45)
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FIG. 2. Nonzero components of the Fisher metric for the
Kuramoto-Sakaguchi model as the function of λ/D with λc = 2D.

The computation of the Fisher metric for the von Mises distri-
bution is straightforward,

gF
i j =

(
1 − I1(κ )2

I0(κ )2 − I1(κ )
κI0(κ ) 0

0 κI1(κ )
I0(κ )

)
, (46)

where (i, j) = (κ, μ). Setting κ = λ|r|/D, we obtain the
Fisher metric corresponding to the stationary solution of
the Kuramoto-Sakaguchi model. We can interpret this in a
twofold way: We can set |r| to be a fixed value and then plot
the components of the metric as functions of λ and D, or we
can solve the self-consistency equation (44), find the order
parameter |r| as a function of λ and D, and then consider the
components of the metric tensor as functions of λ and D only.
The second interpretation gives us the following dependen-
cies (Fig. 2): The component gF

11 does not exist for λ < λc,
whereas the component gF

22 is identically zero for λ < λc. The
first interpretation tells us to plot the components of the Fisher
metric as functions of order parameter |r| and λ/D; see Fig. 3.
The transition point coincides with λc = 2D; hence the Fisher
metric provides the order parameter for the synchronization
transition.

D. Kullback-Leibler divergence in the Kuramoto model

After discussion of the Fisher metric, we would like to
notice the following fact: The proposed hyperbolic space de-
scription of the Kuramoto model dynamics coincides with
the gradient flow of the Kullback-Leibler divergence on the
statistical manifold.

FIG. 3. Nonzero components of the Fisher metric for the
Kuramoto-Sakaguchi model as a function of |r| and λ/D with
λc = 2D.

Indeed, in the continuum limit, N → ∞, we deal with the
initial distribution of phases f0 = f0(z), z = eiθ . The gradient
flow in the limit N → ∞ becomes

ẇ = −λ

2
(1 − |w|2)2 ∂

∂w

∮
|z|=1

dz f0(z) ln pwC(w; z)

iz
, (47)

where we rewrite the integral over θ as the contour inte-
gral over the unit circle |z| = 1 in the complex plane. Our
key observation is that the integral on the right-hand side of
Eq. (47) is nothing more than the so-called cross entropy of
two distributions with PDF f0(z) and pwC(w; z),

Scross =
∮

|z|=1

dz f0(z) ln pwC(w; z)

iz
. (48)

This quantity is tightly connected to the well-known
Kullback-Leibler divergence,

SK-L[ f , g] = −
∮

|z|=1
dz

f (z)

iz
ln

g(z)

f (z)
= −S0[ f (z)] − Scross,

(49)

where f = f (z) and g = g(z) are two different PDFs of
wrapped distributions and S0[ f (z)] denotes the entropy of
distribution f (z). We can notice that the gradient with respect
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to w in Eq. (47) has the form

∂SK-L

∂w
= − ∂

∂w

∮
|z|=1

dz f (z) ln g(z)

iz
. (50)

So we conclude that the gradient flow can be expressed in
terms of the Kullback-Leibler divergence,

ẇ = +λ

2
(1 − |w|2)2 ∂SK-L[ f0, pwC]

∂w
, (51)

where f0 = f0(z) is the initial distribution and pwC =
pwC(w; z) is the wrapped Cauchy distribution.

As we have mentioned earlier, the Kullback-Leibler di-
vergence in general does not coincide with the Bregman
divergence. Nevertheless, Eq. (51) clearly says that the Ku-
ramoto model dynamics can be treated as the gradient flow
of the Kullback-Leibler divergence on the statistical manifold
formed by wrapped Cauchy distributions. Therefore, to under-
stand such dynamics, we can compute the Kullback-Leibler
divergence between a given initial distribution f0(z) and the
wrapped Cauchy distribution pwC(w; z). Let us notice that
the uniform distribution pU(z) = (2π )−1 is nothing more than
the wrapped Cauchy distribution with w = 0 and the Dirac-
delta distribution is also the wrapped Cauchy distribution with
w = 1.

If the initial distribution f0(z) is uniform, so that f0(z) =
(2π )−1, the Kullback-Leibler divergence it is easy to compute,
which gives

SK-L[ f0, pwC] = − ln(1 − |w|2). (52)

Substituting this expression into the gradient flow, we find

ẇ = λ

2
(1 − |w|2)w. (53)

The obtained equation is interesting for two reasons. First, it
is similar to the equation that appeared in the Ott-Antonsen
ansatz. Second, it tells us that in the large-N limit the
Kuramoto model with all-to-all couplings and identical fre-
quencies is dual to the single Landau-Stuart oscillator. It is
quite straightforward to obtain the solution w = w(t ), and
then we can see how the Kullback-Leibler divergence evolves
in time. Until the transition moment, the divergence is negligi-
bly small (this is quite clear because an instant distribution on
the unit circle is still similar to uniform f0). At the transition
moment, the Kullback-Leibler divergence starts to grow sig-
nificantly and finally blows up: The final distribution on the
unit circle is drastically different from the uniform distribu-
tion, which corresponds to the complete synchronization.

V. CONCLUSION

In this paper we revised the hyperbolic description of
the Kuramoto model proposed in Ref. [5] relating it to the
statistical manifolds. The key observation of our study is
that the singularity of the Fisher information metric captures
the synchronization transition. Namely, the metrics corre-
sponding to the Kuramoto and Kuramoto-Sakaguchi models
blow up in the synchronized state. Therefore we extend
the list of examples when the phase transitions get iden-
tified via the singularities of the Fisher metric. We have

focused on the information geometry describing the all-to-
all Kuramoto-Sakaguchi model, but it would be interesting
to recognize the information metric for more general graph
architecture such as the star when the exact solution is
available [29].

The presented approach can also be useful for a case with
complicated topology, i.e., when an analytical treatment is
extremely tough. Based on the fact that the Fisher metric has a
singularity at the transition point, it seems possible to extract
an explicit expression for the model parameters, which raises
the synchronized state. Moreover, there is no restriction for
generalizations of the Kuramoto model, which is emphasized
by the described example of a model with noise. This fact
allows us to use the information geometry framework for
generalizations, which include phase lags, external forces, and
so on.

We have noticed that the gradient flow in the Kuramoto
model can be represented as a gradient flow on a statisti-
cal manifold. However, instead of a potential function, one
deals with the Kullback-Leibler divergence. As was empha-
sized, the Kullback-Leibler divergence is not the Bregman
divergence for the (wrapped) Cauchy distribution, and it is
reasonable to represent such flow in terms of the Bregman-
Tsallis divergence. However, the metric obtained via the
potential function of the Bregman-Tsallis divergence does not
coincide with the Fisher metric (it is conformally equivalent,
but different). We leave a closer treatment of the connection
between synchronization and the Bregman-Tsallis divergence
for further research. Next, the discussion of the Cauchy dis-
tribution as a member of the q-exponential family naturally
raises a question concerning wrapped q-exponential distribu-
tions. As far as we know, the properties of such distributions
have not been examined. It seems that this research could be
interesting in the information geometry context.

In this paper the coordinates on the SL(2,R) orbit play
the role of the parameters due to the dimensional reduction
of dynamics. Hence, to some extent, one could be confused
as to why the effective degrees of freedom play the role of
the effective parameters. However, we know of a very precise
example of the same nature: the duality between the inhomo-
geneous spin chains and an integrable many-body system with
long-range interaction of Calogero-Ruijsenaars type which
has been formulated in probabilistic terms in Ref. [30]. In that
case the parameters and inhomogeneities in the spin chains get
identified with the coordinates of the particles in the Calogero
model, which, on the other hand, are the coordinates on the
group orbit. That is, the Fisher metric on the parameters in
the spin chain gets mapped into the clear-cut object on the
Calogero-Ruijsenaars side. We shall discuss this analogy and
relation elsewhere.

The hyperbolic geometry and the large number of degrees
of freedom at its boundary invite a holographic description.
However, in this case there are some subtle points since the
boundary theory is classical and the equations are of the first
order in the time derivatives. Nevertheless, the description in
terms of the conformal barycenter has a lot in common with
the dynamics of a kind of baryonic vertex since the Poisson
kernels are related to the geodesics connecting the points at
the boundary and the bulk. We postpone these issues for a
separate study. A general discussion concerning the relation
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of the probabilistic manifold with holography can be found in
Ref. [31].

Our concluding remark concerns the application of infor-
mation geometry to neuroscience. The idea is not new [6];
however, our findings provide alternative perspectives for this
issue. The Kuramoto model is widely used as the model for
the synchronization of the functional connectomes; hence one
could expect that the properties of the Fisher metric for the
Kuramoto model on more general graphs shall provide an al-
ternative approach for brain rhythm generation. In particular,
it would be very interesting to investigate the synchronization
of the several functional connectomes via the properties of the
Fisher metric and possible dependence of the synchronization
of the several functional connectomes on the architecture of
the structural connectome.
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APPENDIX A: ON MÖBIUS TRANSFORMATION
AND WRAPPED DISTRIBUTIONS

In this Appendix, let us describe some facts concerning
the wrapped distributions which can be obtained from non-

wrapped ones via so-called “compactification.” For a random
variable x ∈ (−∞,+∞) with probability density function
p(x), we introduce the complex variable z = eix and consider
its phase θ = arg z, θ ∈ (−π,+π ], which has wrapped prob-
ability density function pw(θ ). The connection between p(x)
and its wrapped version is the following:

pw(θ ) =
+∞∑

k=−∞
p(θ + 2πk). (A1)

All the common concepts of probability theory work for
wrapped distributions as well.

There are (at least) four common wrapped distributions that
are usually discussed in the context of the Kuramoto model:
the uniform distribution, the wrapped Cauchy distribution,
the von Mises distribution, and the recently appearing Kato-
Jones distribution. The uniform distribution is trivial, and the
wrapped Cauchy distribution is well known. The von Mises
distribution arises in the Sakaguchi-Kuramoto model as the
stationary solution of the corresponding Fokker-Planck equa-
tion. The Kato-Jones distribution was introduced in Ref. [32],
and it is the Möbius-transformed von Mises distribution. This
distribution is invariant under the action of the Möbius group.
The abovementioned list of distributions is easy to extend. For
the sake of completeness, we can also mention cardioid distri-
bution and its Möbius image and wrapped normal distribution
and its Möbius image. The invariance under Möbius group
action is crucial in the Kuramoto model. So here we focus
on the triplet of the wrapped Cauchy distribution, von Mises
distribution, and Kato-Jones distribution. We would like to
establish the interconnections between members of such a
triplet in the information geometry context. First of all, let us
write down the probability density functions for each member
of the triplet,

pwC(r, φ; θ ) = 1

2π

1 − r2

1 − 2r cos(θ − φ) + r2
, 0 � r < 1, φ = φ mod 2π, (A2)

pvM(κ, μ; θ ) = 1

2π I0(κ )
exp {κ cos(θ − μ)}, κ � 0, μ = μ mod 2π, (A3)

pK-J(κ, r, ν, μ; θ ) = 1

2π I0(κ )

1 − r2

1 − 2r cos(θ − μ − ν) + r2
exp

{
κ cos(μ + θ ) + κr2 cos(μ + 2ν − θ ) − 2rκ cos ν

1 − 2r cos(θ − μ − ν) + r2

}
,

κ � 0, 0 � r < 1, μ = μ mod 2π, ν = ν mod 2π. (A4)

From these expressions it is straightforward to see the
following facts: The wrapped Cauchy and von Mises distri-
butions form two-dimensional statistical manifolds, the von
Mises distribution belongs to the exponential family, and the
Kato-Jones distribution forms a four-dimensional statistical
manifold. The wrapped Cauchy distribution can be derived
from the Kato-Jones distribution by setting κ → 0, whereas
the von Mises distribution can be derived by setting r → 0.
Therefore we can treat the statistical manifolds corresponding
to the wrapped Cauchy distribution and to the von Mises
distribution as the submanifolds of the Kato-Jones statisti-
cal manifold. Wrapped distributions pwC and pK-J belong to
Möbius-invariant statistical manifold MM, whereas pvM does

not. However, from pK-J one can obtain pvM and pwC taking an
appropriate limit, r → 0 and κ → 0, respectively (see Fig. 4).

APPENDIX B: ON q-GAUSSIAN DISTRIBUTIONS
IN THE KURAMOTO MODEL

The Kuramoto model shares some similarities with the
famous Hamiltonian mean field (HMF) model [33,34], which
describes N interacting particles on S1 via a cosine potential
with all-to-all couplings,

HHMF =
N∑

i=1

p2
i

2m
+ λ

2N

∑
i< j

cos(θ j − θi ), (B1)
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FIG. 4. Kuramoto-model-related statistical manifolds. One can
obtain pK-J via Möbius transformation M and then reduce MK-J to the
wrapped Cauchy submanifold MwC and the von Mises submanifold
MvM. Both pK-J and pwC belong to the Möbius-invariant submanifold
MM, whereas pvM does not.

where λ is the coupling constant. This model is prototypical
for the study of systems with long-range interactions (LRIs).
In the HMF model, LRIs are caused by all-to-all couplings.
The effects of LRIs in the HMF model are quite well known:
It was shown that LRIs cause a violent relaxation phenomenon
and the existence of quasistationary states [35]. It is worth
mentioning that the quantum version of the HMF model also
exhibits such phenomena. One quite interesting consequence
of LRIs is the appearance of so-called Tsallis q-statistics [36].
Due to the presence of LRIs, the entropy of a system becomes
nonextensive. Tsallis and co-workers developed the appropri-
ate machinery to describe this nonextensivity [37]. Roughly
speaking, the parameter q measures the nonextensivity in
a system. The q-statistics deals with so-called q-Gaussian
distributions (see Ref. [37] for a detailed discussion). Such
q-Gaussian distributions differ from the usual Gaussian dis-
tribution for q �= 1: They have heavier tails (see Fig. 5), and
in the limit q → 1 one restores the usual Gaussian distribu-
tion. Next, the authors of Ref. [38] presented a method to
capture correlations between degrees of freedom based on
q-statistics. Despite the fact that there are no mathematically
rigorous derivations of q-statistics for a system with LRIs,
such a method allows one to verify (at least numerically)
that q-statistics takes place. For instance, it was shown that
q-statistics appears in the HMF model [39,40].

FIG. 5. q-Gaussians.

Based on the idea that the HMF model and Kuramoto
model are related to each other, the authors of Ref. [41]
examined fingerprints of q-statistics in the Kuramoto model.
The key observation was the following. From the phases θi(t )
one should construct the so-called central limit theorem (CLT)
variable yi (see Ref. [38] for details),

yi = 1√
M

M∑
k=1

θi(kδ), (B2)

where δ > 0 is the predefined time interval. In the Kuramoto
model it was demonstrated that for λ < λc the variables
yi obey a q-Gaussian distribution with q ≈ 1.7, i.e., q-CLT
appears. The authors considered the case of nonidentical fre-
quencies and focused on the case of a uniform distribution and
the case of a Gaussian distribution. In the case of λ > λc the
variables yi were fitted by the usual Gaussian distribution.

Having briefly discussed the q-Gaussians, we would like to
draw attention to the fact that q-Gaussian distributions have al-
ready appeared in the context of the Kuramoto model. Indeed,
the continuum limit of the Kuramoto model can be described
in the Ott-Antonsen framework [26]. In the case of identical
oscillators, the distribution function for the continuum limit
can be explicitly obtained. This distribution function is noth-
ing more than the normalized Poisson kernel, i.e., the wrapped
Cauchy distribution. Of course, parameters of the distribution
depend on time and initial conditions. As we have shown,
the usual Cauchy distribution belongs to the q-exponential
family with q = 2, so the wrapped Cauchy distribution also
inherits properties of the q-exponential family (wrapped and
nonwrapped versions of the Cauchy distribution are related to
each other via conformal transformation).
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