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In this work, we proposed a chevron-beam-based nonlinearity-tunable elastic metamaterial capable of tuning
the nonlinear parameters. Instead of enhancing or suppressing nonlinear phenomena or slightly tuning nonlin-
earities, the proposed metamaterial directly tunes its nonlinear parameters, allowing much broader manipulation
of nonlinear phenomena. Based on the underlying physics, we discovered that the nonlinear parameters of the
chevron-beam-based metamaterial are determined by the initial angle. To identify the change in the nonlinear
parameters according to the initial angle, we derived an analytical model of the proposed metamaterial to
calculate the nonlinear parameters. Based on the analytical model, the actual chevron-beam-based metamaterial
is designed. We show that the proposed metamaterial enables nonlinear parameter control and harmonic tuning
by numerical methods.
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I. INTRODUCTION

Material properties are one of the most significant factors
dominating wave propagation. However, the material proper-
ties of conventional materials span only a specific and limited
range. Due to this issue, previous wave techniques have
suffered from various limitations, providing huge technical
barriers in engineering applications. Recently, metamaterials
allowing abnormal or extreme material properties by artificial
unit cell have attracted much attention since they can break
through the limitations. For representative instances, metama-
terials with negative effective properties including negative
density [1–9], negative stiffness [2–10], and negative Pois-
son’s ratio [10–13] have been successfully presented. These
abnormal or extreme properties of metamaterials have enabled
various new wave physics, such as band gap that prevents
wave propagation [14,15], negative refraction [16–18], and
extremely high transmission [19–20].

As metamaterials have provided various breakthroughs in
linear wave systems, there have been several recent attempts
to apply metamaterials in nonlinear systems. For instance,
metamaterials that enable amplification of nonlinear phe-
nomena by extreme effective properties [21], and band gap
tuning by amplitude-dependent characteristics of nonlinear
phenomena [22–24] were studied. Despite previous attempts,
however, there is still a limitation that metamaterials’ perfor-
mance is based on given nonlinear parameters. There have
been several frontier studies to tune nonlinear parameters by
imposing prestress [25–27], but the tuning was achieved by
biasing the given nonlinear curve, not by tuning the curve
directly. Thus, if metamaterial is based on second order non-
linearity, previous studies may enhance or suppress the related
nonlinear effects, but they cannot do anything with the third
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nonlinear effects, such as the generation of third harmonic
waves. If tailoring nonlinear material properties is enabled
with metamaterial, a new field in nonlinear wave physics
will be opened allowing various advances in nonlinear wave
applications.

In this paper, we propose a nonlinear elastic metamaterial
which can directly control the nonlinear parameters. To con-
trol the nonlinear parameter, the chevron-beam-based unit cell
is introduced. A chevron beam is a structure in which two
beams are inclined with constant angle as shown in Fig. 1. In
fact, there are several studies which utilized chevron beams
due to their capability of buckling [28–30]. However, in this
study, we focused on the other characteristic besides buckling;
we utilized the unique characteristic of nonreciprocity. When
force is exerted along the direction parallel to the symmetric
axis, the amount of deformations is different for compression
or elongation cases. Here, as a main factor to provide nonlin-
earity, we used chevron beam’s unique characteristic that the
deformation mode changes between longitudinal and bending
deformation according to the initial angle, the angle between
the inclined beam and the axis perpendicular to the symmetric
line. When a force parallel to the axis of symmetry is ap-
plied to center of the chevron beam, the involved deformation
modes under the exerted force change for different initial an-
gles. For instance, if the initial angle is 0 degrees, the inclined
beams exhibit bending motions, but if the initial angle is 90
degrees, they will mainly show longitudinal motions. Thus,
the resulting deformation becomes different for various initial
angles. As a result, the effect of the initial angle, combined
with the nonlinearity due to the angle change during deforma-
tion, provides tunability of the force-displacement profile, one
of the most important nonlinear properties. Therefore, if the
relationship between the nonlinear parameter and the initial
angle can be figured out, tuning of the nonlinear parameter
becomes possible.
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FIG. 1. Overview of the nonlinearity-tunable elastic metamaterial.

As a first part of the paper, we theoretically studied the rela-
tionship between the nonlinear parameter and the initial angle
of the chevron beam. To this end, we considered an equiva-
lent mass-spring system of the chevron beam and derived the
nonlinear force-displacement relationship with consideration
of the angle change. From the derived force-displacement
relation, the nonlinear parameter according to the initial angle
is analyzed. After that, the theoretical approach is expanded to
take the continuum nature into the consideration. By applying
the Euler-Bernoulli beam theory to the chevron beam, the
spring coefficients in the equivalent mass-spring system are
analytically calculated so that the continuum effect is con-
sidered. Surprisingly, not only the nonlinear parameters but
also the nonlinear order of the force-displacement relation are
tunable with the initial angle, as shown in Fig. 1. Such high
tunability has never been studied or reported previously.

Based on the theoretical investigations, we designed an
actual nonlinearity-tunable metamaterial that can control the
nonlinear parameters by the initial angle, as shown in Fig. 1.
The accuracy of the analytical model and the performance
of the nonlinearity-tunable metamaterial are validated by nu-
merical methods. In addition, as application and validation
of nonlinearity-tunable metamaterial, the well-known har-
monic generation is considered. The harmonic generation, one
of the most widely applied nonlinear phenomena in practi-
cal applications such as nonlinear nondestructive evaluation
(NDE), means waves having doubled or tripled frequen-
cies are formed according to the nonlinear parameters. We
demonstrate sophisticated harmonic tuning that can domi-
nantly generate the harmonics of the desired order, as shown
in Fig. 1. Considering that subharmonic or harmonic wave
generation is one of the most frequently used application of
nonlinear wave, the nonlinearity tailoring of the proposed
metamaterial clearly show the broad possibility of the current
research.

The remainder of this paper is organized as follows. First,
the background theory of nonlinearity-tunable metamaterial

FIG. 2. Equivalent mass-spring system of chevron beam for (a)
initial state, (b) equilibrium state.

is introduced. In the background theory, the analytical models
for nonlinear parameter calculation and harmonics tuning are
derived. Second, derived analytical models are numerically
validated using the ideal nonlinearity-tunable metamaterial.
Third, the feasible nonlinearity-tunable metamaterial capable
of nonlinear parameter control and harmonic tuning with a
single structure is introduced. Herein, the nonlinearity-tunable
metamaterial’s design method, band structure, nonlinear pa-
rameter control, and harmonic tuning are included. Finally,
the conclusions are presented.

II. BACKGROUND THEORY

A. Analytical model for nonlinear parameter calculation

1. Analytical model based on equivalent mass-spring system

As a first step to the nonlinear parameter tuning, theoret-
ical investigations to calculate the nonlinear parameters of a
chevron beam are carried out with the equivalent mass-spring
system shown in Fig. 2. Figure 2(a) shows the initial state
where the beams are aligned along the initial angle, while
Fig. 2(b) shows the equilibrium state after the force is applied.
In the equivalent mass-spring system, one may wonder why
two types of springs, the obliqued springs k1, k2, and the
vertical spring k3, are considered. To understand why the
two types are considered, it should be remembered that the
inclined beams in the chevron beam have two major defor-
mation modes, the longitudinal and bending modes (Note that
the shear deformation mode is ignored since the beams are
very thin so that the shear deformation mode is negligible
compared to other modes). As the angle of the inclined beams
changes due to the deformation, the longitudinal mode is sig-
nificantly altered since the direction of force and deformation
change. Thus, the longitudinal modes are expressed by the
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obliqued springs which are also largely affected by the angle
change. On the other hand, the bending mode is not highly
affected by the angle change since the force and deformation
directions are unaltered during deformation. Thus, the bend-
ing mode has both nonlinear and linear terms, and should
be expressed by both the obliqued and vertical springs. As
a result, the obliqued springs k1 are introduced to consider
the longitudinal modes, while the obliqued springs k2 and the
vertical spring k3 are introduced to consider the nonlinear and
linear effect of the bending modes, respectively.

From Fig. 2, the force equilibrium equation is derived.
Since our goal is to analytically calculate the force-
displacement relationship of the chevron beam, the density of
the beams is ignored so that the inertia terms are set to be zero.
With the assumption, the force equilibrium equation at the tip
of the spring is desired as below.

Fz = 2[k1(L′ − L) sin(θ + �θ ) + k2(L′ − L) cos(θ + �θ )]

+ k3w. (1)

In Eq. (1), θ , �θ , L, L′, w, and Fz denote initial angle,
change in initial angle, initial length of the beam, length of
the beam in equilibrium state, z-directional displacement, and
z-directional force, respectively. With Pythagorean theorem,
L′ can be expressed in terms of θ , L, and w as

L′ =
√

(L cos θ )2 + (L sin θ + w)2. (2)

Accordingly, sin(θ + �θ ) and cos(θ + �θ ) can be ex-
pressed as

sin (θ + �θ ) = L sin θ + w√
(L cos θ )2 + (L sin θ + w)2

, (3)

cos (θ + �θ ) = L cos θ√
(L cos θ )2 + (L sin θ + w)2

. (4)

Substituting Eqs. (2)–(4) into Eq. (1), Eq. (1) can be rewrit-
ten as

Fz = 2

[
k1

L sin θ + w√
(L cos θ )2 + (L sin θ + w)2

+ k2
L cos θ√

(L cos θ )2 + (L sin θ + w)2

]

× [
√

(L cos θ )2 + (L sin θ + w)2 − L] + k3w. (5)

However, Eq. (5) is too complicated to derive the ex-
act solution. Thus, it is more convenient to express the
nonlinear equation as a series of various orders by Taylor
expansion as

Fz = 0 + [(2sin2θ )k1 + (2 cos θ sin θ )k2 + k3] × w

+ 1

2!

[{
6 sin θ (1 − sin2θ )

L

}
k1

+
{

2 cos θ (1 − 3sin2θ )

L

}
k2

]
× w2

+ 1

3!

[{
6(1 − 5sin2θ )(1 − sin2θ )

L2

}
k1

+
{

6 cos θ sin θ (5sin2θ − 3)

L2

}
k2

]
× w3 + · · · . (6)

In this work, we are not focusing on highly nonlinear
systems such as the granular crystals, the higher-order terms
(higher than w3) can be ignored. Also, it is much more pre-
ferred to express the nonlinearity in the form of stress-strain
relation rather than force-displacement relation. From the one-
dimensional elasticity, the following equations can be applied:

Fz = A0σ, (7a)

w = L0ε. (7b)

In Eq. (7), A0, σ , L0, and ε denote area where the force
is applied, stress, z-directional initial length of the structure,
and strain, respectively. Substituting Eqs. (7a) and (7b) into
Eq. (6) yields the following stress-strain relation as

σ = 1

A0
L0[(2sin2θ )k1 + (2 cos θ sin θ )k2 + k3] × ε

+ 1

A0

L2
0

L
[3 sin θ (1 − sin2θ )k1

+ cos θ (1 − 3sin2θ )k2] × ε2

+ 1

A0

L3
0

L2
[(1 − 5sin2θ )(1 − sin2θ )k1

+ cos θ sin θ (5sin2θ − 3)k2] × ε3 + · · · . (8)

From Eq. (8), it can be found that the spring coefficient k3

only appears in ε term, the linear term. This is obvious since
the spring k3 is vertically installed so that is unaffected by the
angle change during deformation, as explained earlier. Also,
Eq. (8) shows that the coefficient of each order is not same, for
instance, the ε2 and ε3 terms are not same as each other. Thus,
it is possible to tailor the system’s nonlinearity by adjusting
the initial angle of θ, indicating that the desired tunability of
nonlinear parameter is indeed possible.

2. Euler-Bernoulli beam theory for chevron beam

Although the equivalent spring system in Fig. 2 clearly
showed the possibility of the nonlinear parameter tuning, it
cannot be extended to actual metamaterial design unless the
relationship between the actual design and the spring coeffi-
cients k1, k2, and k3 is revealed. To this end, the half span of a
typical chevron beam is considered with the reaction forces,
as shown in Fig. 3. Using geometric symmetry, force and
moment equilibrium equations can be expressed as∑

Fx = R0x − RL cos θ + F

2
sin θ = 0, (9a)

∑
Fz = −R0z + RL sin θ + F

2
cos θ = 0, (9b)∑

M = M0 − ML + R0xw(L) + R0zL = 0, (9c)

where F is the vertical load applied to the chevron beam, R0x

and R0z are the reaction forces acting at the anchor of the
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FIG. 3. Continuum structure of chevron beam.

chevron beam, RL is the reaction force replacing the action
of the missing half, M0 is the moment at the anchor of the
chevron beam, and ML is the moment at the center of the
chevron beam. Eq. (9) can be rewritten as follows:

R0x = RL cos θ − F

2
sin θ, (10a)

R0z = RL sin θ + F

2
cos θ, (10b)

M0 = ML − R0xw(L) − R0zL. (10c)

Applying beam-column theory [31], differential equations
for u(x) and w(x) can be expressed as

EA
∂u

∂x
= −R0x, (11)

EI
∂2w

∂x2
= −R0xw − R0zx − M0, (12)

where E, A, and I denote Young’s modulus, cross-sectional
area, and area moment of inertia, respectively. Equations (11)
and (12) require five boundary conditions because Eqs. (11)
and (12) are first- and second-order differential equations, re-
spectively, and R0x and M0 are unknowns. Another unknown,
R0z, can be solved by Eqs. (10a) and (10b). Five boundary
conditions for the chevron beam shown in Fig. 3 are as fol-
lows:

w(0) = 0, (13a)

∂w(0)

∂x
= 0, (13b)

∂w(L)

∂x
= 0, (13c)

u(0) = 0, (13d)

u(L) = w(L) tan θ. (13e)

Using the boundary conditions, Eqs. (10)–(12) are rear-
ranged as the following two equations (please see the detailed
process in Appendix A):

w(x) =
[

tan θ + F

2R0x cos θ

]⎡
⎢⎣ sin

(√R0x
EI x

)
√

EI
R0x

+
[
cos

(√R0x
EI L

) − 1
][

cos
(√R0x

EI x
) − 1

]
√

R0x
EI sin

(√R0x
EI L

) − x

⎤
⎥⎦, (14)

1
tan θ

R2
0xL

EA

√
R0x
EI sin

(√R0x
EI L

)
L
√

R0x
EI sin

(√R0x
EI L

) + 2
[
cos

(√R0x
EI L

) − 1
]

= R0x tan θ + F

2 cos θ
. (15)

Equation (14) is the force-displacement relation of the
chevron beam. The right-hand side terms of Eq. (14) are con-
stants, except for F, θ , and R0x. Since F and θ are input values,
if R0x can be expressed by F and θ , the force-displacement
relation of the chevron beam can be solved. In fact, by using
Eq. (15), reaction force R0x can be calculated with F and
θ . However, Eq. (15) is too complicated to be analytically
solved, so Eq. (15) is programmed in MATLAB and numerically
solved for various input values of initial angle θ and vertical
load F. After that, by substituting the numerically calculated
reaction force R0x into Eq. (14), the force-displacement rela-
tion of the chevron beam is solved.

Based on the Eqs. (14) and (15), the spring coefficients k1,
k2, and k3 of actual metamaterial are calculated as follows.
First, for various values of θ , Eqs. (14) and (15) are calculated
to achieve the force-displacement relationship for various θ .
Accordingly, by using the well-known curve-fitting, the plot
of Young’s modulus versus the initial angle θ is achievable,
which is obviously same as the linear term in Eq. (8). Thus,
by substituting values of this plot into linear term in Eq. (8),
spring coefficients k1, k2, and k3 in Eq. (8) can be calculated.
In the linear term of Eq. (8), the only unknowns are spring
coefficients k1, k2, and k3, so the spring coefficients can be
calculated by Young’s modulus for three angles of the plot.

It should be noted that, in Eqs. (14) and (15), the nonlinear
effect due to the angle change is not considered, because it has
been already considered in the mass-spring system in Eq. (8).
Of course, calculating the spring coefficients with nonlinear
effect would provide a much accurate result. However, it is
extremely complicated to consider the nonlinear effect with
the continuum structure because the direction of axial loading
and the point where moment is induced change as the angle
changes. Moreover, in the current metamaterial, we are focus-
ing on the small nonlinearity case where both the angle change
and deformation are not very large. In such a case, it was
shown that the change of initial angle does not significantly
alter the spring coefficients so that the current Euler-Bernoulli
beam approach is still valid [32].

B. Harmonic tuning

From the previous investigations, we showed that the
chevron-beam-based metamaterial can tune the nonlinear
parameters. However, in the viewpoint of the numerical
validation, nonlinear parameters are hard to be accurately
evaluated from wave simulations. Therefore, the harmonic
generation, one of the most well-known nonlinear phenom-
ena, is considered as a validation of the proposed nonlinear
parameter tuning. Especially, we focused on the wave prop-
agation in a nonlinear medium with second- and third-order
nonlinearities because the effect of higher-order nonlinearities
is generally weak enough to be neglected. The wave equation
for a nonlinear medium with second- and third-order nonlin-

044208-4



CHEVRON-BEAM-BASED NONLINEARITY-TUNABLE … PHYSICAL REVIEW E 107, 044208 (2023)

earities is as follows [33]:

ρ
∂2u

∂t2
− E

∂2u

∂x2
= β2E

(
∂u

∂x

)(
∂2u

∂x2

)
+ β3E

(
∂u

∂x

)2(
∂2u

∂x2

)
.

(16)
In Eq. (16), ρ, E , u, β2, and β3 denote the density,

Young’s modulus, displacement, second-order nonlinear pa-
rameter, and third-order nonlinear parameter, respectively. To
obtain the solution, we assume that the fundamental wave of
frequency ω and amplitude U0 is incident from x = 0. This
boundary condition can be written as follows:

u(0, t ) = U0 cos (ωt ). (17)

By using the perturbation method and the above boundary
condition, Eq. (16) can be solved as follows [33]:

u(x, t ) = U0 cos (kx − ωt ) + β2U 2
0 ρω2

8E
x cos 2(kx − ωt )

− β3U 3
0 ρ

3
2 ω3

8E
3
2

x sin (kx − ωt )

+ β3U 3
0 ρ

3
2 ω3

24E
3
2

x sin 3(kx − ωt ). (18)

Equation (18) shows that frequency components corre-
sponding to two and three times of the fundamental frequency
ω are generated when a wave propagates in a nonlinear
medium with second- and third-order nonlinearities. Since the
generated waves are clearly distinguishable because their fre-
quencies are different, the amount of the harmonic generation
is well evaluated from wave simulation so that it can be used
to validate whether the nonlinear parameters are well-tuned.

As shown in Eq. (8), the metamaterial has various non-
linear terms so that various harmonic waves are generated.
In the nonlinear medium, nonlinear phenomena occur con-
tinuously as waves propagate. Therefore, once the harmonic
waves are generated, the nonlinear interactions between the
existing harmonic waves and incident wave take place, gen-
erating extra harmonic waves. Among these extra harmonic
waves, since the amplitude becomes smaller as the nonlinear
order gets higher, we will mainly focus on the extra harmonic

generation due to the frequency conversion between incident
wave and second harmonic wave, which have the largest
amplitudes. From the frequency conversion, waves having
frequency corresponding to the sum and difference of two
existing frequencies are newly generated. Focusing on the
frequency conversion between incident wave and second har-
monic wave whose frequencies are ω and 2ω, the frequency
converted waves are summarized as (please see the detailed
process in Appendix B).

Frequency-up conversion (3ω):

uup(x, t ) = −β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2

× cos 3(kx − ωt ). (19)

Frequency-down conversion (ω):

udown(x, t ) = −β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2

× cos (kx − ωt ). (20)

As a result, substituting Eqs. (19) and (20) into Eq. (18)
yields the analytic equation for waves propagating inside a
nonlinear media as

u(x, t ) = U0 cos (kx − ωt ) + β2U 2
0 ρω2

8E
x cos 2(kx − ωt )

− β3U 3
0 ρ

3
2 ω3

8E
3
2

x sin (kx − ωt )

+ β3U 3
0 ρ

3
2 ω3

24E
3
2

x sin 3(kx − ωt )

− β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2
cos (kx − ωt )

− β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2
cos 3(kx− ωt ).

(21)

From Eq. (21), the amplitudes for various frequency com-
ponents can be obtained as follows.

Fundamental wave (ω):

Uω =

√√√√[
U0 − β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2

]2

+
[

β3U 3
0 ρ

3
2 ω3

8E
3
2

x

]2

. (22)

Second harmonic (2ω):

U2ω = β2U 2
0 ρω2

8E
x. (23)

Third harmonic (3ω):

U3ω =

√√√√[
β3U 3

0 ρ
3
2 ω3

24E
3
2

x

]2

+
[
β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2

]2

. (24)

Finally, the tunability of the metamaterial’s nonlinear pa-
rameter is validated as follows. First, from the metamaterial
design, the equivalent spring coefficients k1, k2, and k3 are

evaluated, as explained in the previous section. After that, the
nonlinear parameters are calculated from Eq. (8). Finally, the
amplitudes of the harmonic waves are analytically predicted
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from Eqs. (22)–(24). After the analytic prediction, the numer-
ical simulation with the same metamaterial design is carried
out and the results are compared with the predicted values.

III. IDEAL NONLINEARITY-TUNABLE METAMATERIAL

In this section, the chevron-beam-based metamaterial is
actually designed and its tunability performance is validated.
In actual metamaterial, there is unavoidable difference from
the continuum model used in Euler-Bernoulli beam theory for
chevron beam because the fixed and roller boundary condi-
tions cannot be strictly applied. Due to this difference, it is
hard to validate the theoretical approach shown in the pre-
vious section unless the continuum metamaterial is specially
designed. Here, before considering any feasible metamaterial,
we will introduce the ideal metamaterial in which various
special conditions are introduced to minimize the difference
so that the numerical validation is possible.

There are several considerations in the design of the ideal
nonlinearity-tunable metamaterial. First, the chevron beams
of the ideal nonlinearity-tunable metamaterial should be de-
signed to be as similar to the analytical model as possible. In
the analytical model, a fixed boundary condition is applied to
the anchor of the chevron beam, and the roller condition is
imposed to the other end. However, if the fixed boundary con-
dition is applied to the anchor of the chevron beam in the ideal
nonlinearity-tunable metamaterial, waves cannot propagate.
Conversely, if no boundary conditions are given, the magni-
tude of the moment acting at the anchor of the chevron beam
deviates from the analytical model, and spring coefficients,
k1 ∼ k3, cannot be calculated accurately. Therefore, in the
ideal nonlinearity-tunable metamaterial, a specific boundary
condition that suppresses any motion in the direction perpen-
dicular to the boundary is applied to the anchor and the other
end of the chevron beam so that the beams act almost same
as in the theoretical approach. In addition, the geometric vari-
ables other than the initial angle should be almost constant for
various initial angles. Of course, in the continuum metamate-
rial, there is unavoidable change of length, height, and other
geometric variables if the initial angle changes. Nevertheless,
these undesired changes are minimized since we focus on the
nonlinear parameter change due to the initial angle change
only. As a result, the ideal nonlinearity-tunable metamaterial
is designed in Fig. 4. Note that although the chevron beam
part is colored in red for convenience, all structure is based on
a same material of aluminum, whose material parameters are
density ρ = 2700 (kg/m3), Young’s modulus E = 70 (GPa),
and Poisson’s ratio υ = 0.32. For all simulation, the commer-
cial program COMSOL is used.

First, to check whether the nonlinear parameters are indeed
tunable, the static tensile test is numerically carried out. The
tensile test imposes static force and measures the deformation
so that the metamaterial’s force-displacement relationship is
evaluated. The simulation setting is shown in Fig. 5(a). From
the evaluated force-displacement relationship, the curve fitting
is carried out to measure the Young’s modulus E and non-
linear parameters β2, β3 for various initial angles. After that,
numerically calculated E, β2, and β3 are compared with the
analytically predicted values (the analytic process to predict
the parameters was explained in the previous section).

FIG. 4. Detailed geometries and sizes of ideal nonlinearity-
tunable metamaterial: (a) top view, (b) front view.

Figures 5(b)–5(d) plot the numerically and analytically
calculated parameters. As shown in Fig. 5(b)–5(d), analyt-
ical and numerical results show similar trends. Also, from
Figs. 5(c) and 5(d), it is clearly shown that the metamaterial’s
nonlinear parameters are indeed tunable with the initial angle.
However, in Figs. 5(b)–5(d), there are non-negligible differ-

FIG. 5. (a) Numerical simulation settings of tensile test for the
ideal nonlinearity-tunable metamaterial. Analytical and numerical
results for the (b) Young’s modulus, (c) second nonlinear parameter,
and (d) third nonlinear parameter, respectively.
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FIG. 6. (a) Numerical simulation settings of the band structure
calculation. Band structures of ideal nonlinearity-tunable metamate-
rial for (b) θ = 0 degrees, (c) θ = 30 degrees. The red and blue lines
indicate longitudinal and shear wave modes, respectively.

ences between the analytic and numerical results due to the
deformation of the structure other than the chevron beam. In
the analytic model, only the chevron beam is assumed to be
deformed. However, in the continuum model, non-negligible
deformation occurs at the mass parts because they are not
rigid bodies. These inevitable deformations in the continuum
models lead to significant differences between analytic and
numerical results.

In addition, the nonlinear parameter tuning is checked by
the harmonic generation. Before the wave simulation, how-
ever, it should be checked whether the metamaterials have
band gap for any harmonics. As shown in previous stud-
ies [21], metamaterial’s band gap suppresses any nonlinear
effects including the harmonic generation. Thus, the meta-
material’s band gap should be calculated first, and based on
the band structure, the wave simulation is carried out with the
frequency ω whose second and third harmonics, 2ω and 3ω,
do not belong to any band gap frequencies. Figure 6(a) shows
the simulation setting to calculate the band structure. Here,
we adopted the well-known approach of imposing the Floquet
boundary condition and carrying out eigenfrequency analysis
for various wave vectors. The Floquet condition is only valid
for linear system, but with the small nonlinear system as in the
current research, it is still acceptable. For more details about
the validation of using the Floquet condition in the nonlinear
system, see Appendix C.

Figures 6(b) and 6(c) plot the band structure for the
metamaterial with initial angle of θ = 0 degrees and θ =
30 degrees, respectively. As shown in Fig. 5(b), the Young’s
modulus increases as the initial angle increases. In other

FIG. 7. (a) Numerical simulation settings of transient analysis for
the ideal nonlinearity-tunable metamaterial. Analytical and numeri-
cal results for the amplitudes of (b) second harmonic and (c) third
harmonic, respectively.

words, the metamaterial with θ = 0 degrees has the lowest
band gap frequency. For the metamaterial with θ = 0 degrees,
the band gap of longitudinal wave starts from 391.8 Hz.
Therefore, we choose the initial actuation frequency to be 100
Hz so that the band gap or slow wave phenomenon around the
band gap do not affect the harmonic generation.

Figure 7(a) is the numerical simulation setting to validate
the nonlinear tunability of the metamaterial with harmonics.
As shown in Fig. 7(a), ten units of the ideal nonlinearity-
tunable metamaterial are arranged. At the left end of the
metamaterial layer, the longitudinal wave is actuated by im-
posing the displacement condition as a sine function with the
frequency of 100 Hz. Since various frequencies are involved,
the transient wave simulation instead of the general time har-
monic simulations are carried out. After the simulation, the
transmitted wave is measured at the boundary between the
ninth unit cell and the tenth unit cell. To suppress any re-
flected wave, a pseudoperfectly matched layer (pseudo-PML)
is imposed to the right end of the ideal nonlinearity-tunable
metamaterial. Since the general PML is only available for
time harmonic case, it is not suitable for the current time-
transient simulation where various frequency components are
generated. Thus, we impose the pseudo-PML by attaching
the same metamaterials whose properties and shape are same
but having damping value that gradually increases so that
the waves are dissipated without any reflections. Finally, the
measured data is postprocessed by Fourier transformation to
clearly see the amplitude of each harmonic waves.

The amplitudes of second and third harmonics, corre-
sponding to 200 and 300 Hz waves, are plotted in Figs. 7(b)
and 7(c). Both the numerically and analytically calculated
results are plotted; the process to analytically calculate each
amplitude is given in the previous section. As shown in
Figs. 7(b) and 7(c), the analytic and numerical results show
similar trends, clearly showing the harmonic tunability of
the ideal nonlinearity-tunable metamaterial. Note that the dif-
ferences observed in Figs. 7(b) and 7(c) are mainly due to
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FIG. 8. Detailed geometries and sizes of feasible nonlinearity-
tunable metamaterial: (a) top view, (b) front view.

the limitation of the perturbation method. In the perturbation
method, the small nonlinearity assumption is used so that the
higher-order perturbation terms are ignored. However, such
an assumption inevitably generates errors unless infinite-order
perturbations are performed. Since in general only the first-
order perturbation is considered, the error inevitably occurs as
shown in Fig. 7.

IV. FEASIBLE NONLINEARITY-TUNABLE
METAMATERIAL

Although the ideal metamaterial clearly validated the per-
formance of the nonlinear parameter tunability, the boundary
conditions are somewhat unrealistic so that it is almost im-
possible to actually realize it. Thus, we repeat the numerical
validation for metamaterial without such boundary conditions
to show that our nonlinearity-tunable metamaterial is feasible.
Figure 8 shows the feasible nonlinearity-tunable metamate-
rial. Again, note that the chevron beams are plotted in red
color for better illustration, but all metamaterials are made of
same material, aluminum.

It is worth emphasizing several design issues of the fea-
sible metamaterial. Unlike in the ideal case where specific
condition is applied to the anchor of the chevron beam, fea-
sible metamaterials cannot utilize such an unrealistic method.
Therefore, in order to mimic the boundary condition of the
analytical model, the chevron beam’s stiffness should be de-
signed as soft as possible compared to the other parts so that
most of the deformation occurs in the chevron beam. How-
ever, if the difference in stiffness is too large, wave speed is
too slowed down so that the transient analysis becomes almost
impossible. In addition, slow wave speed yields low band
gap formation, which makes the harmonic wave simulation
extremely hard. Thus, the thickness of the chevron beam in
Fig. 8 is properly chosen to avoid the issues related to the
slow wave. In addition, the other parts which act as a mass

FIG. 9. (a) Numerical simulation settings of tensile test for the
feasible nonlinearity-tunable metamaterial. Analytical and numerical
results for (b) Young’s modulus, (c) second nonlinear parameter, and
(d) third nonlinear parameter, respectively.

is designed in an arc form so that its stiffness becomes high
without using too heavy mass.

Based on the feasible metamaterial, the nonlinearity tun-
ability is numerically validated. First, as in the ideal case, the
tensile test is numerically carried out to check the nonlinear
parameters. Figure 9(a) shows the numerical setting of the ten-
sile test. While the numerical process is same as the ideal case,
the analytic prediction is different. Since the feasible metama-
terial has no specific boundary condition, its stiffness cannot
be analytically calculated via the Euler-Bernoulli beam theory
because the spring and mass are not clearly distinguishable
in the feasible metamaterial and not only the chevron beams
but also other parts are involved in the deformation. Thus,
from the numerically measured Young’s modulus, the spring
coefficients k1, k2, and k3 are evaluated by curve fitting. The
calculated values are as follows: k1 = 7.67 × 106 N/m, k2 =
1.83 × 10−5 N/m, and k3 = 5.38 × 105 N/m. After that, the
nonlinear parameters β2 and β3 are analytically predicted with
the evaluated spring coefficients. Figures 9(c) and 9(d) plot
the numerically and analytically predicted nonlinear param-
eters. Again, the numerical results and the analytic results
are in good agreement and the nonlinear parameters of the
feasible nonlinearity-tunable metamaterial are determined by
the initial angle. In other words, it is clearly validated that the
feasible nonlinearity-tunable metamaterial can control nonlin-
ear parameters by the initial angle with a single structure. It
is worth noting that the nonlinear parameter in aluminum is
around 5–10 for unfatigued aluminum and 14–17 for fatigued
aluminum [34]. From the difference in the nonlinear parame-
ter between unfatigued and fatigued aluminum, the nonlinear
NDE applications check whether the sample is fatigued or not.
On the other hand, Figs. 9(c)–9(d) show that the proposed
metamaterial has a wide nonlinearity tunable range from 0 to
17.64, which means that the nonlinear parameters achievable
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FIG. 10. (a) Numerical simulation settings of the band structure
calculation. Band structures of feasible nonlinearity-tunable meta-
material for (b) θ = 0 degrees, (c) θ = 30 degrees. The red and blue
lines indicate longitudinal and shear branches, respectively.

with the current metamaterial are sufficiently large and signif-
icantly broad in the viewpoint of actual applications.

Finally, the transient analyses are carried out to check the
harmonic generation. Before the transient analyses, the band
structure of the feasible metamaterial should be calculated to
avoid any effect due to the band gap. Figure 10 shows the
simulation setting and the band structure at θ = 0 degrees
and θ = 30 degrees. From the band structures shown in
Figs. 10(b) and 10(c), it was shown that the frequency below
392 Hz is always pass band for any initial angles. Thus, the
actuation frequency is chosen as 100 Hz so that second and
third harmonics, 200 and 300 Hz, are not affected by the band
gap.

Figure 11(a) shows the simulation setting for the harmonic
generation. The simulation procedures are all same, except
that the incident amplitude is increased to 5 mm to more
clearly see nonlinear effects. Figures 11(b) and 11(c) plot
the amplitude of the second and third harmonics at the point
between ninth and tenth unit cell. As shown in Figs. 11(b)
and 11(c), the analytical and numerical results show similar
trends, clearly showing the harmonic tunability of the feasible
nonlinearity-tunable metamaterial. Note that as in the case
shown with Fig. 7, there are inevitable errors between the ana-
lytic and numerical results due to the limit of the perturbation
method.

Before the conclusion, several meaningful cases of the
nonlinearity-tunable metamaterials are explained. First, since
k2 is almost zero value, the nonlinear parameter β2 becomes
almost zero at initial angle of θ = 0 degrees as shown in

FIG. 11. (a) Numerical simulation settings of transient analysis
for the feasible nonlinearity-tunable metamaterial. Analytical and
numerical results for the amplitudes of (b) second harmonic and (c)
third harmonic, respectively.

Eq. (8). Thus, from the theory, the second harmonic gener-
ation of the metamaterial with θ = 0 degrees becomes much
smaller than the third harmonic generation. On the other hand,
according to the theory, the nonlinear parameter β3 becomes
zero and the third harmonic generation disappears at θ =
26.57 degrees. Furthermore, it is also possible to make the
second and third harmonic waves equal at θ = 0.5 degrees,
and maximize both harmonic waves at θ = 7 degrees. Fig-
ures 12(a)–12(d) show the numerical simulation results of
meaningful cases at θ = 0 degrees, θ = 26.57 degrees, θ =
0.5 degrees, and θ = 7 degrees, respectively. As can be seen
in Figs. 12(a) and 12(b), the second harmonic becomes ex-

FIG. 12. Frequency domain data for the second and third har-
monics with the initial angle of (a) 0 degrees, (b) 26.57 degrees, (c)
0.5 degrees, (d) 7 degrees.
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tremely small at θ = 0 degrees, while the third harmonic
almost disappears at θ = 26.57 degrees, as predicted from the
theory. In addition, Figs. 12(c) and 12(d) show the case when
the amplitudes of second and third harmonic waves become
equal at θ = 0.5 degrees, and maximized at θ = 7 degrees.
These results show that the nonlinearity-tunable metamaterial
not only can enhance or weaken nonlinear effects but also
can tailor whether the material’s nonlinearity is governed
by second or third order nonlinearities. With the currently
existing nonlinear materials, it is impossible to tailor the ma-
terial’s nonlinear order, indicating that our metamaterial has
extremely high tunability and may open a different field to
nonlinear-wave-based devices.

V. CONCLUSIONS

In this work, we proposed a chevron-beam-based
nonlinearity-tunable metamaterial capable of nonlinear pa-
rameter control and harmonic tuning with a single structure.
Based on the equivalent mass-spring system and Euler-
Bernoulli theory for chevron beam, we derived the analytical
model that can calculate nonlinear parameters according to
the initial angle. In addition, we investigated nonlinear phe-
nomena affecting the amplitude of harmonics and derived the
analytical model for harmonic tuning. The analytical model
for nonlinear parameter calculation and harmonic tuning were
numerically validated by using an ideal nonlinearity-tunable
metamaterial. Based on the analytical models, the feasible
nonlinearity-tunable metamaterial was designed. Using the
feasible nonlinearity-tunable metamaterial, we successfully
demonstrated the nonlinear parameter control and the har-
monic tuning.

In the current research, the experimental results were not
included due to the issue of plastic deformation and material
nonlinearity caused by the machining process. During the
machining process, various microcracks are formed inside the
metamaterial samples so that undesired plastic deformation
or material nonlinearity takes place. However, if any new
metamaterial geometry is introduced with the fillets or other
well-known stress-relieving structures, we believe that our
idea of nonlinearity tunable metamaterial can provide actual
tuning of nonlinearity itself. Considering that nonlinear wave
phenomena originate from nonlinear parameters, the results
presented herein would be useful for sophisticated control of
the nonlinear elastic wave phenomena.
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APPENDIX A: EULER-BERNIULLI BEAM THEORY FOR
CHEVRON BEAM

In Appendix A, the detailed derivation process of the Euler-
Bernoulli beam theory for a chevron beam is explained. As
mentioned in Sec. II, force and moment equilibrium equa-

tions, differential equations, and boundary conditions for a
typical chevron beam are as follows.

Force and moment equilibrium equations:

R0x = RL cos θ − F

2
sin θ, (A1)

R0z = RL sin θ + F

2
cos θ, (A2)

M0 = ML − R0xw(L) − R0zL. (A3)

Differential equations for u(x) and w(x):

EA
∂u

∂x
= −R0x, (A4)

EI
∂2w

∂x2
= −R0xw − R0zx − M0, (A5)

Boundary conditions:

w(0) = 0, (A6)

∂w(0)

∂x
= 0, (A7)

∂w(L)

∂x
= 0, (A8)

u(0) = 0, (A9)

u(L) = w(L) tan θ. (A10)

Integrating Eq. (A1) along L yields

u(L) − u(0) = −R0xL

EA
. (A11)

Substituting Eqs. (A9) and (A10) into Eq. (A11) yields

w(L) = − 1

tan θ

R0xL

EA
. (A12)

Solving the second-order Eq. (A5) yields

w(x) = −R0z

R0x
x − M0

R0x
+ K1 cos

(√
R0x

EI
x

)

+ K2 sin

(√
R0x

EI
x

)
. (A13)

Substituting x = 0 and Eq. (A6) into Eq. (A13), coefficient
k1 can be obtained as follows:

K1 = M0

R0x
. (A14)

Differentiating Eq. (A13) yields

∂

∂x
[w(x)] = −R0z

R0x
− K1

√
R0x

EI
sin

(√
R0x

EI
x

)

+ K2

√
R0x

EI
cos

(√
R0x

EI
x

)
. (A15)

Substituting x = 0 and Eq. (A7) into Eq. (A15), coefficient
K2 can be obtained as follows:

K2 =
√

EI

R0x

R0z

R0x
. (A16)
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Substituting Eq. (A14) and Eq. (A16) into Eq. (A13) yields

w(x) = −R0z

R0x
x − M0

R0x
+ M0

R0x
cos

(√
R0x

EI
x

)

+
√

EI

R0x

R0z

R0x
sin

(√
R0x

EI
x

)
. (A17)

Differentiating Eq. (A17) yields

∂w(x)

∂x
= −R0z

R0x
−

√
R0x

EI

M0

R0x
sin

(√
R0x

EI
x

)

+ R0z

R0x
cos

(√
R0x

EI
x

)
. (A18)

Substituting x = L and Eq. (A8) into Eq. (A18), yields

0 = −R0z

R0x
−

√
R0x

EI

M0

R0x
sin

(√
R0x

EI
L

)
+ R0z

R0x
cos

(√
R0x

EI
L

)
.

(A19)
Equation (A19) can be rearranged as

M0 =
R0z

[
cos

(√R0x
EI L

) − 1
]

√
R0x
EI sin

(√R0x
EI L

) . (A20)

Substituting Eq. (A20) into Eq. (A17), yields

w(x) = −R0z

R0x
x + R0z

R0x

[
cos

(√R0x
EI L

)− 1
][

cos
(√R0x

EI x
)− 1

]
√

R0x
EI sin

(√R0x
EI L

) +
√

EI

R0x

R0z

R0x
sin

(√
R0x

EI
x

)
. (A21)

Equation (A21) can be rearranged as

w(x) = R0z

R0x

⎡
⎢⎣ sin

(√R0x
EI x

)
√

EI
R0x

+
[
cos

(√R0x
EI L

) − 1
][

cos
(√R0x

EI x
) − 1

]
√

R0x
EI sin

(√R0x
EI L

) − x

⎤
⎥⎦. (A22)

From Eqs. (A1) and (A2), relation between R0x and R0z can be obtained as follows:

R0z

R0x
= tan θ + F

2R0x cos θ
. (A23)

Substituting Eq. (A23) into Eq. (A22), yields

w(x) =
[

tan θ + F

2R0x cos θ

]⎡
⎢⎣ sin

(√R0x
EI x

)
√

EI
R0x

+
[
cos

(√R0x
EI L

) − 1
][

cos
(√R0x

EI x
) − 1

]
√

R0x
EI sin

(√R0x
EI L

) − x

⎤
⎥⎦. (A24)

Equation (A24) is the force-displacement relation of the
chevron beam. The right-hand side terms of Eq. (A24) are
constants, except for F, θ , and R0x. Since F and θ are
input values, if R0x can be expressed by F and θ , the force-
displacement relation of the chevron beam can be solved.
Reaction force R0x, corresponding to input values F and θ ,
can be obtained with the following derivation process.

Substituting x = L and Eq. (A12) into Eq. (A17), yields

− 1

tan θ

R0xL

EA
= −R0z

R0x
L − M0

R0x
+ M0

R0x
cos

(√
R0x

EI
L

)

+
√

EI

R0x

R0z

R0x
sin

(√
R0x

EI
L

)
. (A25)

Equation (A25) can be rearranged as

M0 =
R0z

[
L −

√
EI
R0x

sin
(√R0x

EI L
)] − 1

tan θ

R2
0xL

EA

cos
(√R0x

EI L
) − 1

. (A26)

Subtracting Eq. (A26) from Eq. (A20) yields

R0z
[
L −

√
EI
R0x

sin
(√R0x

EI L
)] − 1

tan θ

R2
0xL

EA

cos
(√R0x

EI L
) − 1

=
R0z

[
cos

(√R0x
EI L

) − 1
]

√
R0x
EI sin

(√R0x
EI L

) . (A27)

Equation (A27) can be rearranged as

R0z =
1

tan θ

R2
0xL

EA

√
R0x
EI sin

(√R0x
EI L

)
L
√

R0x
EI sin

(√R0x
EI L

) + 2
[
cos

(√R0x
EI L

) − 1
] . (A28)

Substituting Eq. (A28) into Eq. (A2) yields

1
tan θ

R2
0xL

EA

√
R0x
EI sin

(√R0x
EI L

)
L
√

R0x
EI sin

(√R0x
EI L

) + 2
[
cos

(√R0x
EI L

) − 1
]

= RL sin θ + F

2
cos θ. (A29)
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Equation (A1) can be rearranged as

RL = R0x

cos θ
+ F

2
tan θ. (A30)

Substituting Eq. (A30) into Eq. (A29) yields

1
tan θ

R2
0xL

EA

√
R0x
EI sin

(√R0x
EI L

)
L
√

R0x
EI sin

(√R0x
EI L

) + 2
[
cos

(√R0x
EI L

) − 1
]

= R0x tan θ + F

2 cos θ
. (A31)

Using Eq. (A31), reaction force R0x, corresponding to input
values F and θ , can be calculated.

APPENDIX B: SECONDARY NONLINEAR PHENOMENA

To consider the secondary nonlinear phenomena, we
assume that the fundamental wave and the nonlinear fre-
quency component propagate simultaneously in the nonlinear
medium. Here, as a nonlinear frequency component, a second
harmonic is considered, whose amplitude is large enough
to cause secondary nonlinear phenomena. Also, secondary
nonlinear phenomena generated by third-order nonlinearity
are very small compared to second-order nonlinearity so the
wave equation including only the second-order nonlinearity is
considered for secondary nonlinear phenomena. The second-
order nonlinear wave equation is as follows:

ρ
∂2u

∂t2
− E

∂2u

∂x2
= β2E

(
∂u

∂x

)(
∂2u

∂x2

)
. (B1)

In Eq. (B1), ρ, E , u, and β2 denote the density, Young’s
modulus, displacement, and second-order nonlinear parame-
ter, respectively. Next, we derive the solution for secondary
nonlinear phenomena. To obtain the solution for secondary
nonlinear phenomena, we assume that the fundamental wave
of frequency ω and amplitude U0 and second harmonic of
frequency 2ω and amplitude U1 are actuated from x = 0. This
can be written as the boundary condition as follows:

u(0, t ) = U0 cos (−ωt ) + U1 cos (−2ωt ). (B2)

With this boundary condition, derived solution for Eq. (B1)
by perturbation method is as follows [21]:

u(x, t ) = U0 cos (kx − ωt ) + U1 cos 2(kx − ωt )

+ β2U 2
0 ρω2

8E
x cos 2(kx − ωt )

+ β2U 2
1 ρ(2ω)2

8E
x cos 4(kx − ωt )

− β2U0U1ρ(ω)(2ω)

4E
x cos 3(kx − ωt )

− β2U0U1ρ(ω)(2ω)

4E
x cos (kx − ωt ). (B3)

Since the entire equation is complex, we classified the
amplitude of each term according to frequency, except the
fundamental wave.

Second harmonic 1 (2ω):

Uh1 = β2U 2
0 ρω2

8E
x. (B4)

Second harmonic 2 (4ω):

Uh2 = β2U 2
1 ρ(2ω)2

8E
x. (B5)

Frequency-up conversion (3ω):

Uup = −β2U0U1ρ(ω)(2ω)

4E
x. (B6)

Frequency-down conversion (ω):

Udown = −β2U0U1ρ(ω)(2ω)

4E
x. (B7)

Herein, Eq. (B4) is a second harmonic generated by a
fundamental wave, not secondary nonlinear phenomena so
that has already been considered in Eq. (18). Also, considering
that the amplitude of the second harmonic (U1) is quite smaller
than the fundamental wave (U0), the effect of the Eq. (B5) is
very small compared to other secondary nonlinear phenomena
so it is negligible. Therefore, only the Eqs. (B6) and (B7),
corresponding to frequency conversion, are considered sec-
ondary nonlinear phenomena whose amplitudes are sufficient
to affect the harmonic tuning.

Analyzing the frequency conversion, Eqs. (B6) and (B7)
both include the amplitude of the second harmonic (U1). How-
ever, in reality, U1 is not the boundary condition actuated from
x = 0, but the amplitude of the second harmonic which is
generated continuously as the wave propagates in a nonlinear
medium. Therefore, the frequency conversion terms including
U1 should be recalculated. Considering the characteristics of
nonlinear phenomena which are generated continuously ac-
cording to the propagation distance of waves, Eqs. (B6) and
(B7) can be rewritten as integral expressions as follows:

Frequency-up conversion (3ω):

Uup =
∫ x

0
−β2U0U1ρ(ω)(2ω)

4E
dx. (B8)

Frequency-down conversion (ω):

Udown =
∫ x

0
−β2U0U1ρ(ω)(2ω)

4E
dx. (B9)

As shown in Eq. (18), the amplitude of the second har-
monic corresponding to U1 is as follows:

U1 = β2U 2
0 ρω2

8E
x. (B10)

Substituting Eq. (B10) into Eqs. (B8) and (B9), the ampli-
tude of the frequency-up and -down conversion are obtained
as follows:

Frequency-up conversion (3ω):

Uup = −β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2
. (B11)

Frequency-down conversion (ω):

Udown = −β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2
. (B12)
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FIG. 13. (a) Numerical simulation settings to calculate wave
dispersion curve for the nonlinear system, and plot of the wave
dispersion curve calculated with the nonlinear simulation in (a)
(black dots) and the general linear simulation (red line) for (b)
θ = 0 degrees, (c) θ = 30 degrees.

Therefore, the frequency components generated by fre-
quency conversion are expressed as follows:

frequency-up conversion (3ω):

uup(x, t ) = −β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2

× cos 3(kx − ωt ). (B13)

frequency-down conversion (ω):

udown(x, t ) = −β2ρ

4E
(U0)

(
β2U 2

0 ρω2

8E

)
(ω)(2ω)

x2

2

× cos (kx − ωt ). (B14)

APPENDIX C: BAND STRUCTURE CONSIDERING
GEOMETRIC NONLINEARITY

In the manuscript, the Floquet theory is adopted to cal-
culate the band structure of the proposed metamaterials.
However, since the Floquet theory is only valid in the linear
case, there is an error if the Floquet theory is applied to the
nonlinear system. Thus, it is essential to check whether the
error is negligible or not. To this end, we newly carried out
numerical nonlinear wave simulations to calculate the band
structure for the nonlinear system. The detailed process is
as follows: First, ten unit cells of the proposed metamaterial
are arranged as shown in Fig. 13(a). Second, a displacement
condition is imposed to the left end to actuate the longitudinal
wave with the amplitude of 5 mm. Also, the low reflected
boundary condition, consisting of a pseudo perfectly matched
layer (pseudo-PML), is imposed to the right end to prevent
reflected waves (more details about the pseudo-PML are de-
scribed in Sec. III). Third, displacements are measured at the

eighth unit cell and the ninth unit cell of the metamaterial.
Finally, the band structure is calculated by using the measured
phase difference between the eighth unit cell and the ninth
unit cell. Note that the simulation is a nonlinear simulation
and thus the band structure is calculated for nonlinear system
without using Floquet theory.

Figures 13(b) and 13(c) plot the band structure calculated
by the aforementioned nonlinear simulation (in the black dots)
and well-known linear simulation with the Floquet periodicity
(in the red lines). As can be seen in Figs. 13(b) and 13(c), the
calculated band structures are almost the same for both cases,
indicating that the error occurred due to the Floquet theory
is almost negligible. With this result, the use of the Floquet
theory in the paper can be justified.

APPENDIX D: HIGHER ORDER HARMONICS OF THE
FEASIBLE NONLINEARITY-TUNABLE METAMATERIAL

In the manuscript, we focused on nonlinear wave phe-
nomena based on second- and third-order nonlinearities, but
there also exist various higher harmonic waves due to the
nonlinear nature. For instance, in the wave simulation in the
manuscript with 100 Hz wave excitation, there are not only
the waves with 200 and 300 Hz but also other waves such as
the waves with 400 and 500 Hz. However, in the proposed
metamaterials, the generation of 400 and 500 Hz waves is
sometimes suppressed due to the bandgap of the metamaterial,
as can be seen in Fig. 10, the proposed metamaterial may have
a bandgap from 391.8 Hz so that both the 400 and 500 Hz
waves are largely suppressed. In addition, the effect of higher-
order nonlinear wave phenomena is relatively smaller than
lower-order nonlinear wave phenomena at low frequencies
and small amplitudes. In this study, since low frequency (100
Hz) and small amplitude (0.005 m) are used, the magnitude of
the higher-order harmonics becomes much smaller than that
of the second and third harmonics.

To clearly show the issues related to the higher harmonics,
the numerical results with the transient simulation for har-
monic generation in Fig. 12 is replotted to additionally cover
higher frequency range. Figure 14 is the replotted frequency
domain results. In Figs. 14(a)–14(c), the generation of 400
and 500 Hz waves are hard to see due to the bandgap effect
or very small nonlinear effect. However, in Fig. 14(d), where
the second-order nonlinear parameter has the maximum value,
various peaks at 400 and 500 Hz are clearly seen, indicating
that higher harmonics are generated. Nevertheless, the amount
of the higher harmonics is not very large compared to the
second and third harmonics.

As a result, we focused on the second and third harmonic
waves in our simulation. Note that it is same in practical appli-
cations such as the directional acoustic speaker or nonlinear
NDE; only the second or third harmonic waves are mainly
considered while there exist other higher harmonics.

APPENDIX E: FORWARD AND BACKWARD EXCITATION

Since the unit cell has asymmetric configuration along the
wave propagation direction, the unit cell would have the well-
known Willis coupling and nonreciprocity could be found.
To check the possible nonreciprocity, the transmittance and
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FIG. 14. Frequency domain data for harmonics up to fifth or-
der with the initial angle of (a) 0 degrees, (b) 26.57 degrees,
(c) 0.5 degrees, (d) 7 degrees.

reflectance of the metamaterial is measured for forward and
backward excitation. The corresponding simulation setup is
shown in Fig. 15(a). As shown in Fig. 15(a), ten unit cells
of the proposed metamaterial are arranged. On both sides of
the metamaterial, two plates, each with the same thickness
and material as the metamaterial, are placed. The PML is
imposed to the ends of the two plates to prevent reflected
waves. For forward and backward excitation, the longitudinal
wave is actuated with the amplitude of 0.005 m and 100 Hz
at the interface between the plate and the PML. To measure
transmitted and reflected waves, displacements are measured
at four points on both plates. Note that the main goal of the
simulation is to check the possible nonreciprocal behavior, so
nonlinear effects were not considered at all.

The numerical results in Figs. 15(b)–15(e) show the am-
plitudes and phases of both transmitted and reflected waves.

FIG. 15. (a) Numerical simulation settings to check the nonre-
ciprocity. Numerical results for forward and backward excitation of
(b) amplitudes and (c) phases of transmitted wave, (d) amplitudes
and (e) phases of reflected wave, respectively.

Figures 15(b) and 15(d) demonstrate that the amplitudes of
transmittance and reflectance are the same for both forward
and backward excitation, which is obvious since the system
is a linear system. In addition, Figs 15(c) and 15(e) show that
the phase shifts are also same for both forward and backward
excitation, indicating that the Willis coupling is almost negli-
gible.

[1] S. Yao, X. Zhou, and G. Hu, New J. Phys. 10, 043020 (2008).
[2] J. Li and C. Chan, Phys. Rev. E 70, 055602(R) (2004).
[3] Y. Ding, Z. Liu, C. Qiu and J. Shi., Phys. Rev. Lett. 99, 093904

(2007).
[4] X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, Appl. Phys.

Lett. 98, 251907 (2011).
[5] Y. Wu, Y. Lai, and Z. Q. Zhang, Phys. Rev. Lett. 107, 105506

(2011).
[6] X. Zhou, X. Liu, and G. Hu, Theor. Appl. Mech. Lett. 2, 041001

(2012).
[7] J. H. Oh, Y. E. Kwon, H. J. Lee, and Y. Y. Kim, Sci. Rep. 6,

23630 (2016).
[8] J. H. Oh, H. M. Seung, and Y. Y. Kim, Appl. Phys. Lett. 108,

093501 (2016).
[9] Y. Chen, G. Hu, and G. Huang, J. Mech. Phys. Solids 105, 179

(2017).

[10] T. A. Hewage, K. L. Alderson, A. Alderson, and F. Scarpa, Adv.
Mater. 28, 10323 (2016).

[11] S. Babaee, J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K.
Bertoldi, Adv. Mater. 25, 5044 (2013).

[12] K. Bertoldi, V. Vitelli, J. Christensen, and M. Van Hecke, Nat.
Rev. Mater. 2, 1 (2017).

[13] H. Wang, Y. Zhang, W. Lin, and Q. H. Qin, Comput. Mater. Sci.
171, 109232 (2020).

[14] J. H. Oh and B. Assouar, Sci. Rep. 6, 33410 (2016).
[15] H. W. Park, H. M. Seung, M. Kim, W. Choi, and J. H. Oh, Phys.

Rev. Appl. 15, 024008 (2021).
[16] V. E. Gusev and O. B. Wright, New J. Phys. 16, 123053 (2014).
[17] R. Zhu, X. Liu, G. Hu, C. Sun, and G. Huang, Nat. Commun. 5,

5510 (2014).
[18] H. W. Park and J. H. Oh, Sci. Rep. 9, 13973 (2019).
[19] X. Zhou and G. Hu, Appl. Phys. Lett. 98, 263510 (2011).

044208-14

https://doi.org/10.1088/1367-2630/10/4/043020
https://doi.org/10.1103/PhysRevE.70.055602
https://doi.org/10.1103/PhysRevLett.99.093904
https://doi.org/10.1063/1.3597651
https://doi.org/10.1103/PhysRevLett.107.105506
https://doi.org/10.1063/2.1204101
https://doi.org/10.1038/srep23630
https://doi.org/10.1063/1.4943095
https://doi.org/10.1016/j.jmps.2017.05.009
https://doi.org/10.1002/adma.201603959
https://doi.org/10.1002/adma.201301986
https://doi.org/10.1038/natrevmats.2017.66
https://doi.org/10.1016/j.commatsci.2019.109232
https://doi.org/10.1038/srep33410
https://doi.org/10.1103/PhysRevApplied.15.024008
https://doi.org/10.1088/1367-2630/16/12/123053
https://doi.org/10.1038/ncomms6510
https://doi.org/10.1038/s41598-019-50146-8
https://doi.org/10.1063/1.3607277


CHEVRON-BEAM-BASED NONLINEARITY-TUNABLE … PHYSICAL REVIEW E 107, 044208 (2023)

[20] H. Lee, J. H. Oh, H. M. Seung, S. H. Cho, and Y. Y. Kim, Sci.
Rep. 6, 24026 (2016).

[21] G. J. Jeon and J. H. Oh, Phys. Rev. E 103, 012212 (2021).
[22] R. Khajehtourian and M. I. Hussein, AIP Adv. 4, 124308

(2014).
[23] M. H. Bae and J. H. Oh, J. Mech. Phys. Solids 139, 103930

(2020).
[24] M. H. Bae and J. H. Oh, Mech. Syst. Signal Process. 170,

108832 (2022).
[25] C. Chong, M. A. Porter, P. G. Kevrekidis, and C. Daraio,

J. Phys.: Condens. Matter 29, 413003 (2017).
[26] A. Amendola, A. Krushynska, C. Daraio, N. M. Pugno, and F.

Fraternali, Int. J. Solids Struct. 155, 47 (2018).
[27] M. Miniaci, M. Mazzotti, A. Amendola, and F. Fraternali, Int.

J. Solids Struct. 216, 156 (2021).

[28] M. F. Berwind, A. Kamas, and C. Eberl, Adv. Eng. Mater. 20,
1800771 (2018).

[29] J. Hua, H. Lei, C. F. Gao, X. Guo, and D. Fang, Extreme Mech.
Lett. 35, 100640 (2020).

[30] T. Chen, M. Pauly, and P. M. Reis, Nature (London) 589, 386
(2021).

[31] G. J. Simitses, An Introduction to Elastic Stability of Structures
(Prentice-Hall, Englewood Cliffs, NJ, 1976).

[32] E. T. Enikov, S. S. Kedar, and K. V. Lazarov,
J. Microelectromech. Syst. 14, 788 (2005).

[33] J. J. Rushchitsky, Nonlinear Elastic Waves in Materi-
als (Springer International Publishing, Heidelberg, 2014),
p. 164.

[34] W. T. Yost and J. H. Cantrell, in IEEE 1992 Ultrasonics Sympo-
sium Proceedings, Tucson, AZ, USA, Vol. 2 (1992), pp. 947–955.

044208-15

https://doi.org/10.1038/srep24026
https://doi.org/10.1103/PhysRevE.103.012212
https://doi.org/10.1063/1.4905051
https://doi.org/10.1016/j.jmps.2020.103930
https://doi.org/10.1016/j.ymssp.2022.108832
https://doi.org/10.1088/1361-648X/aa7672
https://doi.org/10.1016/j.ijsolstr.2018.07.002
https://doi.org/10.1016/j.ijsolstr.2020.12.011
https://doi.org/10.1002/adem.201800771
https://doi.org/10.1016/j.eml.2020.100640
https://doi.org/10.1038/s41586-020-03123-5
https://doi.org/10.1109/JMEMS.2005.845449

