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Four-compartment epidemic model with retarded transition rates
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We study an epidemic model for a constant population by taking into account four compartments of the
individuals characterizing their states of health. Each individual is in one of the following compartments:
susceptible S; incubated, i.e., infected yet not infectious, C; infected and infectious I; and recovered, i.e.,
immune, R. An infection is visible only when an individual is in state I . Upon infection, an individual performs
the transition pathway S → C → I → R → S, remaining in compartments C, I , and R for a certain random
waiting time tC , tI , and tR, respectively. The waiting times for each compartment are independent and drawn from
specific probability density functions (PDFs) introducing memory into the model. The first part of the paper is
devoted to the macroscopic S-C-I-R-S model. We derive memory evolution equations involving convolutions
(time derivatives of general fractional type). We consider several cases. The memoryless case is represented by
exponentially distributed waiting times. Cases of long waiting times with fat-tailed waiting-time distributions are
considered as well where the S-C-I-R-S evolution equations take the form of time-fractional ordinary differential
equations. We obtain formulas for the endemic equilibrium and a condition of its existence for cases when the
waiting-time PDFs have existing means. We analyze the stability of healthy and endemic equilibria and derive
conditions for which the endemic state becomes oscillatory (Hopf) unstable. In the second part, we implement
a simple multiple-random-walker approach (microscopic model of Brownian motion of Z independent walkers)
with random S-C-I-R-S waiting times in computer simulations. Infections occur with a certain probability by
collisions of walkers in compartments I and S. We compare the endemic states predicted in the macroscopic
model with the numerical results of the simulations and find accordance of high accuracy. We conclude that a
simple random-walker approach offers an appropriate microscopic description for the macroscopic model. The
S-C-I-R-S–type models open a wide field of applications allowing the identification of pertinent parameters
governing the phenomenology of epidemic dynamics such as extinction, convergence to a stable endemic
equilibrium, or persistent oscillatory behavior.
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I. INTRODUCTION

The origin of modern epidemic modeling started with
the seminal work of Kermack and McKendrick almost a
century ago [1]. They introduced the so-called susceptible-
infected-recovered (SIR) model, where SIR stands for three
compartments characterizing the states of health of an in-
dividual, namely, S denotes susceptible, I infected, and R
recovered. The classical SIR model and various generaliza-
tions are able to capture some of the features of epidemic
spreading of infectious diseases as observed in influenza,
measles, mumps, and rubella. In the meantime, a huge burst
of compartment models and generalizations of the SIR model
have been introduced [2,3].

While the interest in mathematical modeling of epidemic
spreading was growing continuously, it is unsurprising that the
emergence of the COVID pandemic has launched an enhanced
interest and urgent need in advanced epidemic modeling [4].
Many models consider a set of nonlinear ordinary differential
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equations (ODEs) for the time evolution of the compartment
populations where a new direction is about to emerge by
combining these models with approaches inspired by network
science [5–11] and fractional dynamics [12–16].

It has turned out that in many cases epidemics includ-
ing COVID exhibit quasiperiodic patterns and spontaneous
new outbreaks even after longer times of inactivity. Persistent
oscillatory characteristics in epidemic dynamics had already
been pointed out a long time ago in the work of Soper [17]. In-
deed, a major drawback of classical SIR-type models without
memory effects lies in their incapacity to capture (persistent)
oscillatory behavior.

The present paper aims to tackle this issue and is a gener-
alization of recent works [10,11]. Reference [11] introduced
a SIRS compartment model which takes into account a ran-
dom duration of immunity (recovered) R allowing a delayed
transition R → S. What is found is that this model is able
to capture persistent oscillatory behavior in the number of
infected individuals. This feature appears as oscillatory Hopf
instability of the endemic state. In the first part of our paper
we extend this model to four compartments as relevant states
of health in order to capture a larger variety of epidemics. We
consider the four following compartments: S, susceptible; C,
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infected but not yet infectious (in the incubation phase); I ,
infected and infectious (ill); and R, recovered and immune.
We assume random sojourn times (waiting times) tC , tI , and
tR an individual once infected spends in each of the com-
partments C, I , and R. The sojourn time tC in compartment
C is interpreted as incubation time, i.e., the delay between
infection and the outbreak of the disease. The sojourn time tI
is the duration of the disease (infected and infectious state)
and tR indicates the immunity period after recovery. It ap-
pears natural to assume that these variables are not fixed
constants but individually fluctuating random variables drawn
by specific distributions. With these assumptions, we derive
the S-C-I-R-S evolution equations where we focus on several
pertinent situations of waiting times with existing and nonex-
isting mean. For waiting-time probability density functions
(PDFs) with an existing mean, we derive explicit formulas for
the endemic equilibrium and analyze its stability.

In the second part of the paper we combine our S-C-I-R-S
model with a multiple-random-walker approach which is im-
plemented in computer simulations. We present a case study
and give numerical evidence that a simple random-walk ap-
proach (Brownian motion) offers an appropriate description
of the S-C-I-R-S dynamics with memory.

Indeed, the uncertainty in the available data (for instance,
the number of infected individuals) in many real-world epi-
demics is a major problem which strongly affects their
predictability. Therefore, stochastic approaches which include
hypotheses on randomness of the involved quantities, for
instance, on the allowed steps in a random walk of the in-
dividuals or in the model parameters (such as waiting times
in the compartments or considering the transition rates as
random variables), offer powerful modeling tools dealing
in a natural way with the lack of available information. A
stochastic approach with random transition rates has been
presented in a recent work of Faranda et al. [18] to model
the second wave of COVID. In that model the epidemic
dynamics was described in the framework of a stochastic
susceptible-exposed-infected-recovered compartment model
with classical types of evolution equations where the tran-
sition rates are random variables drawn from a Gaussian
distribution. In that work the compartment R accounts for the
recovered (immune) and dead individuals where immunity
is never-ending (infinite immunity time). Hence there is no
transition back to the susceptible state. The compartment E
(exposed) corresponds to infected but not infectious individ-
uals. As a consequence of the infinite immunity time, the
endemic state is stable and (in contrast to our S-C-I-R-S
model) no persistent oscillations in the number of infections
occur in their model. We discuss cases of infinite waiting
times in the compartments in our model as a limiting case
of infinite immunity duration (see Sec. II E) where a stable
endemic state with a constant population of individuals in
compartment R in the limit of large times occurs, consistent
with their result [18].

II. FOUR-COMPARTMENT MODEL

A. Basic notions

We consider a constant (time-independent) total popula-
tion of Z = ZS + ZC + ZI + ZR individuals (random walkers)

where ZS (t ), ZC (t ), ZI (t ), and ZR(t ) indicate their numbers
in the compartments S, C, I , and R at time t . Assuming a
constant total population means that we focus here on the
large class of epidemics for which the mortality as well as
natural birth and death processes can be neglected, at least on
relevant timescales of the epidemic dynamics, for instance,
during the occurrence of infection waves. More precisely,
we assume that the waiting times tC,I,R are small compared
to the expected lifetimes of the individuals. We consider
here a continuous-time model for Z � 1 walkers with the
compartment population fractions s(t ) = ZS (t )

Z , c(t ) = ZC (t )
Z ,

j(t ) = ZI (t )
Z , and r(t ) = ZR (t )

Z . We allow for each walker the
following transition pathway: S → C → I → R → S. Intu-
itively, we infer that allowing for persistent oscillatory and
(quasi)periodic behavior, it is necessary to have a closed
(cyclic) pathway S → · · · → S of transitions in a constant
(time-independent) total population as assumed in our model.
However, this is no longer true in models where the total pop-
ulation is allowed to vary, such as considered in the article of
Manfredi and Salinelli [19]. They demonstrated in that work
that sustained oscillations may occur when being induced in
an exponentially growing total population. We assume that
tC, tI , tR � 0 are mutually independent random waiting times
an individual spends (after infection) in the compartments C,
I , and R drawn from specific PDFs, which we denote by the
kernels KC (t ), KI (t ), and KR(t ), respectively. These kernels
have to be causal functions1 with, for instance,

Prob(tC ∈ [τ, τ + dτ ]) = KC (τ )dτ, tC > 0,

which indicates the probability that the incubation time tC ∈
[τ, τ + dτ ], which is clearly nonzero only for τ � 0 as tC �
0. In other words, given a walker has entered compartment
C at τ = 0, then KC (τ )dτ indicates the probability that this
walker leaves compartment C during the infinitesimal inter-
val [τ, τ + dτ ] (by a transition C → I). We introduce the
infection rate A(t ) = A( j(t ), s(t ), t ) � 0 (number of infec-
tions per walker and unit time or entry rate to the incubated
compartment C at time t having units of s−1). We point out
that A(t ) is not a known given function of time t but rather an
implicit nonlinear function of s(t ) and j(t ), namely, A(t ) =
A(s(t ), j(t )). This quantity contains macroscopic information
on the instantaneous number of collisions of individuals in
the reactive compartments S and I and needs to be specified
by model assumptions. It is important to point out that A(t )
does not depend on the fractions c(t ) and r(t ) of the invisible
compartments C and R.

We assume here the most simple nonlinear form A(t ) =
β j(t )s(t ), where β > 0 is a constant independent of time
where β−1 introduces a characteristic timescale. In addition,
β is also a macroscopic measure for the infection probabil-
ity in a collision of an S and an I walker. The microscopic
picture which we will invoke subsequently and implement
in computer simulations indeed is that the infection rate is
driven by random collisions between infected and susceptible
independent random walkers.

1A function g(t ) is called causal if g(t ) = 0 for t < 0, i.e., nonzero
only for t � 0.
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With these simple assumptions, we can establish model
equations governing the time evolution of the fractions s(t ),
c(t ), j(t ), and r(t ). We consider the dynamics starting at time
t = 0 with an initial condition s(0) = 1 − j0 and j(0) = j0
(many healthy and a few infected walkers) and no incubated or
recovered walkers c(0) = r(0) = 0. Our (S-C-I-R-S)- model
evolution equations have the general structure

d

dt
s(t ) = −A(t ) + (A � KC � KI � KR)(t ), (1a)

d

dt
c(t ) = A(t ) − (A � KC )(t ), (1b)

d

dt
j(t ) = (A � KC )(t ) − (A � KC � KI )(t ), (1c)

d

dt
r(t ) = (A � KC � KI )(t ) − (A � KC � KI � KR)(t ). (1d)

The sum of these rates is vanishing due to s(t ) + c(t ) + j(t ) +
r(t ) = 1. In order for an epidemic to start, it is necessary that
the globally healthy state becomes unstable when the initial
state is close to the healthy state with j0 ∼ 1

Z → 0+, i.e.,
where, for instance, only one infected walker is present at
t = 0 (among a large population Z). We analyze the stability
of the healthy state subsequently in detail. In (1) we have
employed the notation

(K � f )(t ) =
∫ t

0
K (t − τ ) f (τ )dτ, t � 0 (2)

for convolutions of causal functions K (t ) and f (t ). Be aware
that convolutions commute and are associative, which can be
seen by the representation (t � 0) of the multiple convolution

(K1 � K2 � · · · � Kn)(t ) =:
∫ ∞

−∞
. . .

∫ ∞

−∞
dτ1 · · · dτn

× δ(t − τ1 − · · · − τn)

× K1(τ1) · · · Kn(τn), (3)

where δ(· · · ) indicates the Dirac δ function and (3) is nonzero
only for t � 0 [causality of the Ki(τ )]. We introduce the
Laplace transform of our kernels, which we define as

K̂ (λ) =
∫ ∞

0
e−λt K (t )dt,

where λ indicates the Laplace variable and K̂ (λ)|λ=0 = 1
indicates that the kernels are normalized PDFs. A further ob-
servation is worth mentioning. Any (multiple) convolution of
PDFs gives again a PDF. This can be easily seen by integrat-
ing (3) over time to yield one. Therefore, the kernels KC (t ),
(KC � KI )(t ), and (KC � KI � KR)(t ) which appear in (1) all are
(normalized and causal) PDFs representing the densities of the
random variables tC , tC + tI , and tC + tI + tR, respectively. We
can see in (1) that for each compartment where an individual
remains for a random duration, an additional convolution oc-
curs describing the delayed transition out of the compartment.
These delayed transitions introduce memory into the rates of
individuals leaving the compartments. We will give a careful
account of this issue later [subsequent representation (11)].

The interpretation of (1) is as follows. In Eq. (1a) A(t )
is the rate of infections (transitions S → C) at time t . The
second term (A � KC � KI � KR)(t ) is the rate of individuals

losing their immunity (R → S) having undergone the full
pathway of S-C-I-R-S transitions. In Eq. (1b) A(t ) reappears
as the entry rate to state C. The convolution (A � KC )(t ) is
the rate of delayed transition C → I of individuals that fall
ill at time t . This rate reappears in Eq. (1d) as the entry
rate into compartment I . Then (A � KC � KI )(t ) is the rate
of recovery I → R reoccurring in (1d) as the entry rate into
compartment R. Finally, (A � KC � KI � KR)(t ) in (1d) is the
rate of individuals losing their immunity (transition R → S)
and reappears in (1a) as the entry rate into S. Let us consider
for a moment (1b) more closely:

d

dt
c(t ) = A(t ) −

∫ t

0
KC (t − τ )A(τ )dτ. (4)

For our convenience we introduce the survival probability
�C,I,R(t ) for individuals in compartments C, I , and R (also
called persistence probability or survival function) (see, e.g.,
[14]),

�C,I,R(t ) = Prob(tC,I,R > t )

=
∫ ∞

t
KC,I,R(τ )dτ = 1 −

∫ t

0
KC,I,R(τ )dτ, (5)

indicating the probability that an individual which is entering
compartments C, I , and R, respectively, at t ′ = 0 at time t ′ = t
still is (survives) in this compartment. Equation (5) captures
all realizations with tC,I,R > t where d

dt �C,I,R(t ) = −KC,I,R(t ).
We observe in this relation the initial condition �C,I,R(0) =
1 as a consequence of the normalization of the waiting-time
PDFs and tells us that an individual is, with probability one,
in a compartment at the instant when entering it. Further we
have �C,I,R(t → ∞) → 0+, i.e., an individual survives only
a finite time in compartments C, I , and R to enter eventually
the susceptible state S. We hence can integrate (4) and rewrite
it as

c(t ) =
∫ t

0
�C (t − τ )A(τ )dτ = (�C � A)(t ), (6)

where the initial condition c(0) = 0 is assumed. We can also
verify this relation by its Laplace transform [Eq. (9b)] and
directly by differentiating this expression with respect to t
and using the initial condition �C (0) = 1. We interpret (6) as
follows: A(τ )dτ is the fraction of walkers entering C during
[τ, τ + dτ ] and �C (t − τ ) is the (survival) probability that
this fraction still is in C after a delay of tC = t − τ , i.e., at
time instant t where this expression sums up over the com-
plete history of entries into C from 0 to time t . With these
considerations, we can rewrite our S-C-I-R-S equations (1) in
the equivalent integral forms

s(t ) = 1 − c(t ) − j(t ) − r(t ),

c(t ) = (�C � A)(t ),

j(t ) = j0 + (A � KC � �I )(t ),

r(t ) = (A � KC � KI � �R)(t ) (7)

for t � 0, where the initial conditions s(0) = 1 − j0, c(0) =
0, j(0) = j0, and r(0) = 0 are assumed.
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B. Memoryless case: Exponentially distributed waiting times

It is worth considering exponential waiting-time kernels
KC,I,R(t ) = ξC,I,Re−tξC,I,R (ξ−1

C,I,R = 〈tC,I,R〉) where the survival
functions are also exponentials �C,I,R(t ) = e−tξC,I,R and thus
KC,I,R(t ) = ξC,I,R�C,I,R(t ). Substituting this into (1) and ac-
counting for (7) takes us to the particular simple form without
memory

d

dt
s(t ) = −A(t ) + ξRr(t ),

d

dt
c(t ) = A(t ) − ξCc(t ),

d

dt
j(t ) = ξCc(t ) − ξI [ j(t ) − j0],

d

dt
r(t ) = ξI [ j(t ) − j0] − ξRr(t ) (8)

for t � 0. Indeed, exponential densities stand out by the mem-
oryless feature and the Markov property (see, e.g., [20–27]
for details), thus the transition rates in (8) depend only on
the instantaneous state s(t ), c(t ), j(t ), and r(t ) but not on
the history of the evolution. Setting the transition rates on the
left-hand side to zero yields straightforwardly the endemic
state which we derive subsequently [Eqs. (21) and (22)] for
arbitrary waiting-time kernels with existing means.

C. Arbitrary waiting-time distributions with memory

To explore the general cases with memory, consider now
the equivalent representations (7) and (1) in the Laplace space

ŝ(λ) = 1 − j0
λ

− Â(λ)
1 − K̂C (λ)K̂I (λ)K̂R(λ)

λ
, (9a)

ĉ(λ) = Â(λ)
1 − K̂C (λ)

λ
, (9b)

ĵ(λ) = j0
λ

+ Â(λ)K̂C (λ)
1 − K̂I (λ)

λ
, (9c)

r̂(λ) = Â(λ)K̂C (λ)K̂I (λ)
1 − K̂R(λ)

λ
, (9d)

where all Laplace transforms (LTs) depend on Â(λ) of the

(unknown) infection rate and �̂C,I,R(λ) = 1−K̂C,I,R (λ)
λ

are the
LTs of the survival probabilities. We further have that

ŝ(λ) + ĉ(λ) + ĵ(λ) + r̂(λ) = 1

λ
=

∫ ∞

0
e−λt dt

as we deal with a constant population. We observe that in
Eq. (9a) the term 1−K̂C (λ)K̂I (λ)K̂R(λ)

λ
is the LT of the survival

probability Prob(tC + tR + tI > t ) [due to the PDF (Kc � KI �

KR)(t ) of the random variable tC + tI + tR], corresponding to
individuals surviving in one of the compartments C, I , or R
at time t . To shed more light on how the memory comes into
play, we introduce a memory operator (for our convenience
we employ here a slightly modified definition2 as in [14,28])

M̂(λ) = K̂ (λ)

�̂(λ)
= λ

K̂ (λ)

1 − K̂ (λ)
= λL̂(λ). (10)

2We suppress here subscripts C, I , and R.

Then reading K̂ (λ) = M(λ)�̂(λ) as convolutions in the time
domain, we can rewrite our S-C-I-R-S equations (1) (in
the Caputo sense) of general (fractional) derivatives (see
[15,16,29] and Appendix A) as

d

dt
s(t ) = −A(t ) +

∫ t

0
LR(t − τ )

d

dτ
r(τ )dτ,

d

dt
c(t ) = A(t ) −

∫ t

0
LC (t − τ )

d

dτ
c(τ )dτ,

d

dt
j(t ) =

∫ t

0
LC (t − τ )

d

dτ
c(τ )dτ

−
∫ t

0
LI (t − τ )

d

dτ
j(τ )dτ,

d

dt
r(t ) =

∫ t

0
LI (t − τ )

d

dτ
j(τ )dτ

−
∫ t

0
LR(t − τ )

d

dτ
r(τ )dτ. (11)

These equations show that the transition rates at time t have
a complete memory of their previous values. Alternatively,
we can write (11) in the Riemann-Liouville manner of gen-
eral fractional derivatives (see Appendix A). For exponential
waiting-time PDFs Kexp(t ) = ξe−ξ t we have M̂exp(λ) = ξ ;
thus Mexp(t ) = ξδ(t ) (i.e., is null for t > 0 indicating lack of
memory) and we easily recover above memoryless S-C-I-R-S
equations (8).

D. Long waiting times: Time fractional case

The representation (11) is especially useful when we deal
with fat-tailed waiting-time PDFs without existing means
such as the Mittag-Leffler waiting-time PDF (MLPDF) (see
[30] and references therein for explicit formulas). The
MLPDF is a fractional generalization of the exponential PDF
and has the LT [14,28] (and many others)

K̃β (λ) = ξ

ξ + λβ
, β ∈ (0, 1), ξ > 0, (12)

where, due to the fat tail, the mean waiting time
− d

dλ
K̃β (λ)|λ=0 → ∞ does not exist as β ∈ (0, 1) (occurrence

of extremely long waiting times). For β = 1 Eq. (12) retrieves
the LT of the exponential density. Expanding the LT for λ

small K̃β (λ) ∼ 1 − λβ

ξ
, Laplace inversion shows that MLPDF

has a fat power-law tail Kβ (t ) ∼ β

	(1−β )
t−β−1

ξ
(t → ∞) corre-

sponding to a long memory. For the Mittag-Leffler case we
have for (10)

L̂β (λ) = ξλ−β, (13)

where λ−β corresponds to the Riemann-Liouville fractional
integral of degree β and M̂β (λ) = ξλ1−β the Riemann-
Liouville (RL) fractional derivative of order 1 − β. Denoting
by Dν

t the RL fractional derivative, it is sufficient to consider
the range μ ∈ (0, 1) defined by [30]

Dμ
t f (t ) = d

dt

∫ t

0

(t − τ )−μ

	(1 − μ)
f (τ )dτ, μ ∈ (0, 1) (14)
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having LT λμ f̂ (λ) and with the definition of the Caputo frac-
tional derivative

dμ

dtμ
f (t ) =

∫ t

0

(t − τ )−μ

	(1 − μ)

d

dτ
f (τ )dτ

= Dμ
t f (t ) − f (0)

t−μ

	(1 − μ)
, μ ∈ (0, 1) (15)

with LT λμ f̂ (λ) − f (0)λμ−1. Consult Appendix A and [29]
for the connections with general (fractional) derivatives. In the
limit μ → 1− both Caputo and RL fractional derivatives con-
verge to the first-order standard derivative where t−μ

	(1−μ) →
δ(t ). Using the feature

dμ

dtμ
[ f (t ) − f (0)] = dμ

dtμ
f (t ) = Dμ

t [ f (t ) − f (0)], (16)

we can then write (11) when all waiting times tC,I,R are drawn
from MLPDFs in terms of Caputo fractional derivatives as

d

dt
s(t ) = −A(t ) + ξR

d1−β

dt1−β
r(t ),

d

dt
c(t ) = A(t ) − ξC

d1−β

dt1−β
c(t ),

d

dt
j(t ) = ξC

d1−β

dt1−β
c(t ) − ξI

d1−β

dt1−β
j(t ),

d

dt
r(t ) = ξI

d1−β

dt1−β
j(t ) − ξR

d1−β

dt1−β
r(t ), (17)

retrieving for β = 1 the equations (8) of exponential waiting-
time PDFs [see (15) and (16)]. Indeed, the time-fractional
case with fat-tailed waiting-time distributions is of utmost
importance, deserving further thorough investigation (see
Appendix B for a brief account).

E. Endemic equilibrium for waiting-time PDFs
with existing mean

Here we confine ourselves to waiting-time PDFs with ex-
isting means. The endemic state is defined as the long-time
limit of the evolution. That is, we seek a stationary (constant
solution) [s(t ), c(t ), j(t ), r(t )] → [Se,Ce, Je, Re] and A(t ) →
Ae = βJeSe, which also is the asymptotic solution for t → ∞
if the endemic state is stable. This solution can be obtained
from Eqs. (9) in the limit of small λ, where these equa-
tions then take [with ŝ(λ) → Se/λ, etc.] the form

Se = 1 − j0 − lim
λ→0

Â(λ)[1 − KC (λ)KI (λ)K̂R(λ)],

Ce = lim
λ→0

Â(λ)[1 − K̂C (λ)],

Je = j0 + lim
λ→0

Â(λ)K̂C (λ)[1 − K̂I (λ)],

Re = lim
λ→0

Â(λ)K̂C (λ)K̂I (λ)[1 − K̂R(λ)], (18)

with

Â(λ) ≈ Ae

λ
+ A0 + A1λ + · · · ,

which has to be considered for λ → 0 where the lowest order
in λ determines the endemic equilibrium. Now with

K̂ (λ) =
∫ ∞

0
e−λτ K (τ )dτ

≈
∫ ∞

0
(1 − λτ )K (τ )dτ + o(λ) = 1 − λ〈τ 〉 + o(λ),

(19)

where the angular brackets denote mean values and o(λ)
stands for the Landau symbol. Thus we have

K̂C,I,R(λ) = 1 − λ〈tC,I,R〉 + o(λ) (20)

and K̂C (λ)K̂I (λ)K̂R(λ) = 1 − λ〈tC + tI + tR〉 + o(λ) =
1 − λ〈T 〉 + o(λ) and as stated previously we assume that
the means exist. Therefore,

lim
λ→0

�̂C,I,R(λ) = lim
λ→0

1 − K̂C,I,R(λ)

λ

= − d

dλ
K̂C,I,R(λ)

∣∣∣∣
λ=0

= 〈tC,I,R〉.

Then we get straightforwardly, for the lowest orders in λ, the
endemic equilibrium of

Se = 1 − j0 − Ae〈T 〉,
Ce = Ae〈tC〉,
Je = j0 + Ae〈tI〉,
Re = Ae〈tR〉, (21)

and with our assumption Ae = βJeSe we arrive at

Se(Je) = 1 − j0
1 + β〈 T 〉Je

,

Ce(Je) = (1 − j0)β〈tC〉Je

1 + β〈T 〉Je
,

Je = j0 + β〈tI〉Je
1 − j0

1 + β〈T 〉Je
,

Re(Je) = (1 − j0)β〈tR〉Je

1 + β〈T 〉Je
. (22)

Consider now the third relation in (22), which is an implicit
equation for Je leading to

J2
e − 2aJe − b = 0, (23)

where we have introduced

a = j0
2

+ β〈tI〉(1 − j0) − 1

2β〈T 〉
= 〈tR + tC〉 j0

2〈T 〉 + R0 − 1

2β〈T 〉 , R0 = β〈tI〉

b = j0
β〈T 〉 . (24)

The quantity R0 = β〈tI〉 can be interpreted as the basic repro-
duction number and is a crucial (control) parameter; we will
return to this interpretation subsequently. Equation (23) has
the roots

(Je)1,2 = a ±
√

a2 + b. (25)
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Clearly the endemic equilibrium exists only for those roots
with Je ∈ [0, 1], with the full endemic state then determined
by (22). For b = 0 ( j0 = 0) one root is zero, corresponding
to the healthy state Se = 1. The second root is Je( j0 = 0) =
2a = R0−1

β〈T 〉 ∈ [0, 1) for R0 = β〈tI〉 > 1, which therefore is the
condition of the existence of an endemic state for j0 = 0. In
Appendix B we show for waiting-time PDFs with existing
means that R0 > 1 also is the condition that the healthy state
is unstable and thus an epidemic can start to spread. We also
show there that the healthy state is always unstable if KI (t )
has a fat tail (i.e., infinite mean). Indeed, for 〈tI〉 → ∞ (β,
〈tC〉, and 〈tR〉 kept finite) we have R0 → ∞ and thus Je( j0 =
0) ∼ 〈tI〉/〈T 〉 → 1 and for β → ∞ (〈tI〉, 〈tC〉, and 〈tR〉 finite)
we get Je( j0 = 0) → 〈tI〉/〈T 〉.

Consider now j0 > 0 and R0 > 1. Then we have a < 1 as
〈tR+tC〉 j0

2T < 1
2 , R0−1

2β〈T 〉 < 1
2 , and b < 1 and thus the only positive

root is

(Je)1 = a +
√

a2 + b, (26)

whereas the other (Je)2 = a − √
a2 + b < 0. The endemic

state exists if (Je)1 � 1. As a and b are monotonically increas-
ing functions of j0 let us check the root for the maximum value
j0 = 1 where a( j0 = 1) = 1

2 − 1
2βT = 1

2 (1 − ε) and b( j0 =
1) = 1

β〈T 〉 = ε. Then we get

Je( j0)| j0=1 = 1

2
[1 − ε +

√
(1 − ε)2 + 4ε]

= 1 − ε +
√

(1 + ε)2

2
= 1, (27)

i.e., the initial and endemic states coincide j0 = Je(1) = 1,
where we infer that j = 1 (for R0 > 1) should be a stable
endemic state. From the monotonicity of Je( j0) [see (24)] we
can see that

R0 − 1

β〈T 〉 � Je( j0) � Je( j0)| j0=1 = 1,

i.e., in the entire range j0 ∈ [0, 1] the endemic value is given
by the positive root (26) together with (24). This behavior is
shown in Fig. 1, where we draw Je versus j0 for different val-
ues of R0 > 1. One can see that Je is monotonically increasing
with R0 when 〈tR〉, 〈tC〉, and j0 are kept constant.

We focus now on initial conditions s0 = 1− and j0 = 0+
(healthy state). The endemic equilibrium (22) then is written

Se = 1

R0
,

Ce = R0 − 1

R0

〈tC〉
〈T 〉 ,

Je = R0 − 1

R0

〈tI〉
〈T 〉 ,

Re = R0 − 1

R0

〈tR〉
〈T 〉 , (28)

for 〈T 〉 = 〈tC + tI + tR〉 and R0 = β〈tI〉, and exists solely for
R0 > 1, depending only on R0 and the mean waiting times
〈tC,I,R〉. We may consider the following limiting cases.

Case 1. Here 〈tR〉 → ∞ (infinitely long immunity) and
〈tC〉, 〈tI〉, and β are kept constant.

FIG. 1. Endemic value Je( j0, R0) vs j0 from Eq. (26) with (24)
for different values of R0 > 1; for all curves we have set 〈tC〉 =
〈tR〉 = 5 and 〈tI〉 = 20.

Then we have 〈tR〉
〈T 〉 → 1 and 〈tC〉

〈T 〉 ,
〈tI 〉
〈T 〉 → 0 and hence Se =

1
R0

remains unchanged; thus Ce, Je → 0 and Re → R0−1
R0

with
Se + Re = 1, which corresponds to a fully healthy population
(susceptible or immune) with Ce + Je → 0, i.e., the disease in
the long-time limit dies out.

Case 2. In the same way, the limits 〈tI〉 → ∞ (long illness
time) and long incubation time 〈tC〉 → ∞ are straightforward,
where the endemic values of respective compartments with
infinite waiting times tend to R0−1

R0
with unchanged Se = 1

R0
.

This corresponds to the fact that the individuals remain even-
tually trapped in the respective compartments (C or I) with
infinite waiting times and thus the cyclic transition pathway
S → · · · → S is suppressed. We infer that in the limiting
cases 1 and 2 the endemic states are stable, similar to the
class of classical SIR models, and do not exhibit oscillatory
instabilities.

III. δ-DISTRIBUTED WAITING TIMES

An instructive case consists in the deterministic limit when
the sojourn times in the compartments for all walkers are
constant. Then the waiting-time PDFs are Dirac δ functions

KC,I,R(t ) = δ(t − tC,I,R) (29)

with LTs K̂C,I,R(λ) = e−λtC,I,R . Recall now the convolution of
two δ kernels

δ(t − t1) � δ(t − t2) = δ(t − t1 − t2),

which yields a new δ kernel with a shifted peak at t1 + t2. With
this observation we have (KC � KI )(t ) = δ(t − tC − tI ) and
(KC � KI � KR)(t ) = δ(t − tC − tI − tR). Then the S-C-I-R-S
equations (1) read

d

dt
s(t ) = −A(t ) + A(t − tC − tI − tR),

d

dt
c(t ) = A(t ) − A(t − tC ),
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d

dt
j(t ) = A(t − tC ) − A(t − tC − tI ),

d

dt
r(t ) = A(t − tC − tI ) − A(t − tC − tI − tR). (30)

Note that A(t ) = A( j(t ), s(t )) is causal, i.e., all functions
with negative time arguments are vanishing. For t < tC the
infected individuals accumulate in the compartment C and
for t � tC some start to leave compartment C to enter I
with the delayed rate A(t − tC ). Then for t � tC + tI the first
individuals are healed, starting transitions I → R with rate
A(t − tC − tI ). Finally, for t � tC + tI + tR transitions R → S
occur due to individuals losing their immunity. From these
observations we can infer that

c(t ) =
∫ t

0
A(τ )dτ − �(t − tC )

∫ t−tC

0
A(τ )dτ,

j(t ) = j0 + �(t − tC )
∫ t−tC

0
A(τ )dτ − �(t − tC − tI )

×
∫ t−tC−tI

0
A(τ )dτ,

r(t ) = �(t − tC − tI )
∫ t−tC−tI

0
A(τ )dτ − �(t − tC − tI − tR)

×
∫ t−tC−tI −tR

0
A(τ )dτ, (31)

where �(τ ) denotes the Heaviside unit step function defined
as �(τ ) = 1 for τ � 0 and �(τ ) = 0 for τ < 0. We can see
for sharp waiting times the Heaviside functions switch on
and off the respective transitions between compartments. It
is worth mentioning that (31) is consistent with (7) when we
take into account the survival probabilities

�C,I,R(t ) =
∫ ∞

t
δ(τ − tC,I,R)dτ

= �(tC,I,R − t ) = 1 − �(t − tC,I,R), (32)

i.e., �C,I,R(t ) = 1 for t < tC,I,R (survival in C, I , and R, re-
spectively) and �C,I,R(t ) = 0 for t > tC,I,R (death, having left
C, I , and R, respectively). From Eqs. (31) we find the endemic
equilibrium of Se, Ce, Je, and Re representing a stationary
solution of (30). Plugging the stationary value Ae = βJeSe

into (31), we rearrive at Eqs. (22) with tC,I,R = 〈tC,I,R〉 for
Dirac δ distributions.

Stability analysis of endemic and healthy states

Here we investigate the stability of the endemic equi-
librium for healthy initial conditions s0 = 1 ( j0 = 0) for
δ-distributed waiting times. To this end we set

s(t ) = Se + ueμt ,

c(t ) = Ce + veμt ,

j(t ) = Je + weμt ,

r(t ) = Re + xeμt , (33)

where u, v, w, and x are small time-independent constants.
Clearly, at least one of these equations is redundant as s +
c + j + r = 1. Then it follows that A(t ) ≈ Ae + A0(u,w)eμt ,

where we take into account only the linear orders in u, v, w,
and x. Therefore, Ae = βJeSe and A0(u,w) = β(uJe + wSe).
Plugging this into (30) leads to the system of equations

A0(u,w)(1 − e−μT ) + μu = 0,

A0(u,w)(1 − e−μtC ) − μv = 0,

A0(u,w)e−μtC (1 − e−μtI ) − μw = 0,

A0(u,w)e−μ(tC+tI )(1 − e−μtR ) − xμ = 0. (34)

We can eliminate v = A0(u,w) 1−e−μtC

μ
and x =

A0(u,w)e−μ(tC+tI ) 1−e−μtR

μ
, which are uniquely determined

by u and w. Therefore, the solvability condition is determined
uniquely by the first and third equation for s and j containing
only the coefficients u and w. The complete determinant of
the system (34) leads to∥∥∥∥∥∥

βJe(1 − e−μT ) + μ βSe(1 − e−μT )

βJee−μtC (1 − e−μtI ) βSee−μtC (1 − e−μtI ) − μ

∥∥∥∥∥∥μ2 = 0.

(35)

We have μ = 0 as a threefold eigenvalue and with one
nonzero eigenvalue μ1 determined by

μ = βSee−μtC (1 − e−μtI ) − βJe(1 − e−μT ) (36)

and hence μ1 = μ1(β, j0, tC, tI , tR). However, we will see that
we can reduce the set of pertinent parameters. For the outbreak
of an epidemic, it is necessary that the healthy (initial) state
s0 = 1 becomes unstable. To explore this issue we consider
s(t ) = s0 + ueμt and j(t ) = j0 + weμt with s0 = 1 and j0 =
0. Then we get the solvability condition by replacing in (35)
Je → j0 = 0 and Se → s0 = 1 in the form

μ̃ = R0e−μ̃t1 [1 − e−μ̃) = g(μ̃, R0), (37)

where we introduce

μ̃ = tIμ, t1 = tC
tI

, t2 = T

tI
= 1 + t1 + tR

tI
. (38)

The healthy state becomes unstable if there is a positive solu-
tion μ̃0 > 0 of this equation. Clearly there is a positive root
only if d

dμ̃
g(μ̃, R0)|μ̃=0 = R0 > 1; otherwise the healthy state

is stable. This justifies our interpretation of R0 as the basic
reproduction number where the healthy state is unstable for
R0 > 1 and thus the epidemic starts to spread.

It is instructive to connect this interpretation with the com-
mon definition of R0. The (dimensionless) basic reproduction
number R0 is defined as the expected number of infections
caused by one infectious individual in a healthy (suscepti-
ble) population. We get this information when we multiply
Eq. (1b) with the total number of individuals Z , where ZA(t )
then indicates the number of new infections per time unit.
Considering this quantity at t = 0 for the initial condition
j0 = 1

Z and s0 = 1 − j0 [initial condition of one infected
individual ZI (0) = j0Z = 1 in a healthy, i.e., susceptible, pop-
ulation ZS (0) = s0Z = Z − 1] takes us to

dZc(t )

dt

∣∣∣∣
t=0

= Zβs(t ) j(t )|t=0 = β

Z
ZS (t )ZI (t )

∣∣∣∣
t=0

= β
Z − 1

Z
→ β, Z � 1,
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FIG. 2. Plot of g(μ̃, R0) = R0e−μ̃t1 (1 − e−μ̃) for different values
of R0. For R0 = 0.9 (lower curve) the healthy state is stable. For the
other curves R0 > 1 the healthy state is unstable. In all plots t1 =
tC/tI = 0.5.

which is the number of new infections per time unit at t =
0. Assuming this rate is constant during the average period
of infection 〈tI〉 (given this mean exists) yields the average
number of new infections caused by the first infected walker
during the period tI of his infection (in a susceptible popu-
lation) as R0 = β〈tI〉. This is indeed the exact result of our
model as we show in Appendix B. We demonstrate there that
the condition for an outbreak (condition of instability of the
healthy initial state) is R0 = β〈tI〉 > 1. This can also be seen
more closely on the right-hand side of (37), where g(μ̃, R0)
is a concave function of μ̃ (see Fig. 2). We have for μ̃ small
the expansion g(μ̃, R0) = R0μ̃ + O(μ̃2) > μ̃ only if R0 > 1
and always g(μ̃, R0) → 0 < μ̃ as μ → ∞. Therefore, a posi-

tive root μ0(R0) > 0 exists only for R0 > 1. This behavior is
shown in Fig. 2, where μ0(R0) increases monotonically with
R0 enhancing the (nonpersistent) exponential growth of j(t )
at the outbreak of the epidemic.

Returning to the stability analysis of the endemic state, we
rescale (36) with (38) as

μ̃ = R0See−μ̃t1 (1 − e−μ̃) − R0Je(1 − e−μ̃t2 ). (39)

At the threshold of an oscillatory instability, the eigenvalue is
purely imaginary. Plugging μ̃ = iω into (39) and separating
real and imaginary parts yields the two conditions

f1(r0, ω) = cos ωt1 − cos ω(t1 + 1) − r0(1 − cos ωt2) = 0,

f2(r0, ω) = ω + sin ωt1 − sin ω(t1 + 1) + r0 sin ωt2 = 0,

(40)

which need to be simultaneously fulfilled for an oscillatory
(Hopf) instability where we introduced the reduced control
parameter r0 = JeR0 = (R0 − 1)/t2.

On the left-hand side of Fig. 3 we plot the zero lines of fi in
the (r0, ω) plane for t1 = 1

2 and t2 = 10. They intersect at r0 ≈
0.063 and ω = 0.35, corresponding to a critical R0 ≈ 1.63.
The right-hand side of Fig. 3 shows numerical solutions of the
full delay system (30) with the same parameters t1 and t2. The
system is solved using an Euler forward scheme with fixed
time step δt = 10−4. The initial conditions are j0 = 10−4,
s0 = 1 − j0, and r0 = c0 = 0 close to the healthy state. We
varied R0 from 1.5 (subcritical, top left) to 2.0 (bottom right
frame). Clearly for R0 = 1.7 the stable focus turns into a limit
cycle that becomes wider with increasing R0.

0

0.2

0.02 0.080

0.4

0.3

0.1

0.060.04

ω

r0

FIG. 3. Shown on the left is the intersection of the contour lines of f1, f2 = 0 of (40) which yields (ω, r0) ≈ (0.35, 0.063). Shown on the
right are numerical solutions of the fully nonlinear delay system (30) for R0 = 1.5 (top left) to R0 = 2.0 in the ( j, s) plane. A limit cycle is
born at R0 ≈ 1.63.
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IV. MICROSCOPIC MODEL AND
COMPUTER SIMULATIONS

A. Simple random-walk model

To explore the S-C-I-R-S phenomenology, we combine
this model with a multiple-random-walker approach which
we implemented in a PYTHON code [31]. In this random
walk Z walkers navigate independently on a periodic two-
dimensional lattice. Each walker performs at integer times
t = 0, 1, 2, . . . instantaneous independent random steps to a
nearest-neighbor lattice point (simple walk). The position of
walker j ( j = 1, . . . , Z) can be described by the random vari-
ables

x j (t ) = x j (t − 1) + η( j)
x (t ),

y j (t ) = y j (t − 1) + η( j)
y (t ) (41)

for t = 1, 2, . . ., with the random steps (η( j)
x (t ), η( j)

y (t )) =
(1, 0), (−1, 0), (0, 1), (0,−1) occurring with probability 1

4 .
This simple multiwalker motion is a microscopic model with
scaling limits to (standard) Brownian motion [32]. We assume
an Nx = Ny = N periodic lattice with x( j)(t ) = x( j)(t )modN
and y( j)(t ) = y( j)(t )modN for the position of each walker j. In
order to connect the random walk with the epidemic dynamics
we apply the following infection rule [11]: If a walker j ∈ I
meets a walker k ∈ S on the same lattice point (collision of an
infected-infectious and a susceptible walker), i.e.,

j ∈ I ∧ k ∈ S

∧x j (t ) = xk (t )

∧y j (t ) = yk (t ), (42)

then the susceptible walker k gets infected with probability
Pinf and undergoes an instantaneous transition S → C fol-
lowed by the transition pathway as described previously. The
infection probability Pinf is constant for all walkers and time
independent. The random paths of the walkers are not af-
fected by transitions between the compartments or collisions
of walkers. In the simulations at each integer time instant
t , we count the populations ZS,C,I,R(t ) in the compartments
where the total population Z = ZS (t ) + ZC (t ) + ZI (t ) + ZR(t )
remains constant over time. As in the macroscopic model, we
focus on the fractions s(t ) = ZS (t )/Z , c(t ) = ZC (t )/Z , j(t ) =
ZI (t )/Z , and r(t ) = ZR(t )/Z .

We implement the mutually independent waiting times
tC,I,R as random numbers drawn from specific 	 PDFs
KC,I,R(t ). The 	 distribution provides sufficient flexibility to
generate a wide range of possible behaviors such as sharp δ

peaks, broadly scattered waiting times with a maximum, or
a monotonically decreasing PDF. The 	 (also called Erlang)
PDF is written

Kξ,α (τ ) = ξατα−1

	(α)
e−ξτ , α, ξ > 0, (43)

where α is the so-called shape parameter and 1/ξ the
timescale parameter. The 	 PDF has a maximum for α > 1
at tm = α−1

ξ
and is monotonically decreasing for α � 1 and

weakly singular at t = 0 for α < 1. For α = 1 we get the
exponential PDF Kξ,1(τ ) = ξe−ξτ . Some cases of 	 PDFs are

drawn in histograms of Fig. 4. Useful is its Laplace transform

K̂ξ,α (λ) =
∫ ∞

0
e−λτ Kξ,α (τ )dτ = ξα

(λ + ξ )α
, (44)

from which we can easily retrieve K̂ξ,α (λ)|λ=0 = 1 (normal-
ization), 〈t〉 = − d

dλ
K̂ξ,α (λ)|λ=0 = α

ξ
(mean waiting time), and

V = 〈t2〉 − 〈t〉2 = α
ξ 2 (variance). In the simulations, to gener-

ate constant (sharp) waiting times, we use the feature (see,
e.g., [11])

lim
ξ→∞

Kξ,α=ξτ0 (τ ) = δ(τ − τ0), (45)

where the mean τ0 = 〈τ 〉 is kept constant in this limit and the
variance is vanishing. This limit is easily seen in the Laplace
space

lim
ξ→∞

K̂ξ,ξτ0 (λ) = lim
ξ→∞

(
1 + λ

ξ

)−ξτ0

= e−τ0λ =
∫ ∞

0
e−λtδ(t − τ0)dt . (46)

B. Validation of the macroscopic S-C-I-R-S model
and case study

In the simulations we remove unimportant fluctuations by
recording the ensemble-averaged3 compartment populations
〈s(t )〉, 〈c(t )〉, 〈r(t )〉, and 〈 j(t )〉. We average numerically over a
number of equivalent random-walk realizations with identical
parameters, waiting-time distributions, and observation times.
Each realization employs different random numbers (PYTHON

seeds) for the waiting times and random walk. We perform
a case study to validate the macroscopic equations (28) for
the endemic equilibrium which exists for R0 = β〈tI〉 > 1. We
realize natural initial conditions close to the healthy state with
one infected walker (in compartment I) and Z − 1 susceptible
walkers at t = 0 (start of the experiment). In all computer
experiments the walkers have random initial positions on the
lattice. We determine the endemic equilibrium values numer-
ically by using the asymptotic relation

[Se,Ce, Je, Re]num(t ) ≈ 1

t

t∑
r=1

〈[s(r), c(t ), j(t ), r(t )]〉 (47)

converging for t → ∞ to the endemic state Se, Ce, Je, or Re

if it exists. We measure the accordance of our macroscopic
endemic equations (28) with the random-walk approach by
computing the ratios of the numerically determined endemic
values and the values computed with (28),

rC = (Ce)num

[1 − (Se)num]〈tC〉/〈T 〉 ,

rI = (Je)num

[1 − (Se)num]〈tI〉/〈T 〉 ,

rR = (Re)num

[1 − (Se)num]〈tR〉/〈T 〉 , (48)

3We denote here ensemble averages of random functions B(t ) by
〈B(t )〉.
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FIG. 4. Compartment fractions averaged over ten random-walk realizations with Z = 100, N = 11 (density Z/N2 ≈ 0.83), Pinf = 0.9, and
	-distributed waiting times having the means 〈tC〉 = 5, 〈tI〉 = 10, 〈tR〉 = 35, ξC = 0.1, ξI = 0.2, and ξR = 0.3. By using Eq. (47) for the
numerical evaluation we get (dashed lines) Se ≈ 0.31, Ce ≈ 0.075, Je ≈ 0.14, and Re ≈ 0.48; with Eq. (48) we have rC ≈ 1.08, rI ≈ 1.03, and
rR ≈ 0.98. We depict the corresponding 	-distributed waiting times (b) tC , (c) tI , and (d) tR with the parameters and color code used in the
simulation of (a).

by employing the numerically determined Se. In all simula-
tions with existing endemic equilibria and sufficiently large
observation time the ratios rC,I,R ≈ 1 + O(10−2) are up to a
few percent close to one, confirming impressively the predic-
tion Ce:Je:Re = 〈tC〉:〈tI〉:〈tR〉 of the macroscopic model (28).
In the following discussion we give numerical evidence that
our macroscopic S-C-I-R-S model is well suited to the micro-
scopic random-walk approach.

In the experiment of Fig. 4 the waiting times are broadly
scattered and distributed by 	 distributions of different
parameters. For the chosen parameters the epidemic dynam-
ics converges rapidly to the endemic states with the ratio
Ce:Je:Re = 〈tC〉:〈tI〉:〈tR〉 predicted by Eqs. (28). In Fig. 5 we
have equal δ-distributed waiting times and very large R0. The
measures (48) are rC,I,R ≈ (1.01, 1.00, 0.99) close to one and
indicate excellent accordance with Eqs. (28), although the ob-
servation time is not very large. In this plot (blue dash-dotted
line) Se is slightly overestimated as (47) is an asymptotic
relation holding for large t .

The depicted time evolutions of Fig. 6 exhibit for δ-
distributed waiting times slightly attenuated oscillations. This
indicates that this case is close to an oscillatory (Hopf) in-
stability. We approach this instability by slightly reducing the

walkers density (reducing R0). The corresponding persistent
oscillatory behavior is shown in Fig. 7(a).

FIG. 5. (a) Average over five random-walk realizations and (δ-
distributed) waiting times tC = tI = tR = 10 (T = 30) with Z = 500,
N = 11 (density Z/N2 ≈ 4.13), and Pinf = 0.9. We have small Se ≈
0.04 (R0 ≈ 24, 39) and Ce = Je = Re ≈ 0.32 ≈ 1

3 (dashed lines).
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FIG. 6. Compartment fractions averaged over ten random-walk realizations for (a) δ-distributed and (b) exponentially distributed waiting
times with Z = 150, N = 21 (density Z/N2 ≈ 0.34), Pinf = 0.9, and the means 〈tC〉 = 10, 〈tI〉 = 100, and 〈tR〉 = 50. (a) Endemic states (dash-
dotted lines) for δ-distributed waiting times: Se ≈ 0.10 (R0 ≈ 9.68), Ce ≈ 0.06, Je ≈ 0.56, and Re ≈ 0.27. The ratios are rC ≈ 1.07, rI ≈ 1.00,
and rR = 0.98 [see (48)]. (b) Endemic states (dash-dotted lines) for exponential waiting times: Se ≈ 0.16 (R0 ≈ 6.01), Ce ≈ 0.06, Je ≈ 0.52,
and Re ≈ 0.26. The ratios are rC ≈ 1.07, rI ≈ 1.00, and rR ≈ 0.98.

Figures 7(a) and 7(b) differ by changing to exponentially
distributed tC and 	-distributed tR. All other parameters in-
cluding the density are identical in both Figs. 7(a) and 7(b).
Figure 7(a) exhibits a Hopf unstable persistent oscillatory
behavior. The resulting Se in Fig. 7(b) is slightly lower,
increasing R0 and leading to attenuation of the Hopf oscilla-
tions. As both plots employ identical parameters but different
waiting-time PDFs, this demonstrates that R0 also depends on
further characteristics such as the variance.

Figure 8 shows a numerical solution of the macroscopic
system (30) for the same parameters as in Figs. 6(a) and
7(a). The at least qualitative similarity to the microscopic
result is impressive [see in particular Fig. 7(b), which ex-
hibits attenuated oscillations]. In both models the number
of infectious individuals dominates due to the relatively
long infection time. In the long-time limit the oscillations

are damped and the endemic equilibrium is asymptotically
reached.

In the simulations of Figs. 9 and 10 we consider various
combinations of waiting-time distributions. In Fig. 10 we
compare δ-distributed waiting times and 	-distributed waiting
times with the same means. In Fig. 10(a) rC has a relatively
large (by 15%) deviation from Eq. (28). This can be explained
as (47) is an asymptotic relation converging for large t to the
endemic values where in Fig. 10(a) the time range is not very
large. In Fig. 10(b) the time range is considerably increased;
thus all ratios rC,I,R become very close to one, indicating
excellent accordance with Eq. (28). The slightly different
absolute values are due to slightly different R0 = 1/Se despite
all parameters Pinf, Z , and N being identical. This confirms our
observation in Fig. 7 that R0 depends on further characteristics
of the waiting-time PDFs such as their variances.

FIG. 7. (a) Plot of δ-distributed waiting times, with all parameters as in Fig. 6(a) but with Z = 140 to have a slightly lower density
to approach the oscillatory (Hopf) instability (density Z/N2 ≈ 0.32). Endemic values are Se ≈ 0.11 (R0 ≈ 8.53), Ce ≈ 0.06, Je ≈ 0.56, and
Re ≈ 0.26 and the ratios are rC ≈ 1.07, rI ≈ 1.01, and rR ≈ 0.96. (b) Identical parameters (including density) as in (a) but with exponentially
distributed tC with 〈tC〉 = 10, Gamma-distributed tR with ξR = 0.1 and 〈tR〉 = 50, and tI is δ distributed (tI = 100). The different types of
distributions decrease slightly Se ≈ 0.09 with increasing R0 ≈ 10.95 compared to (a), leading to attenuated oscillations. The other endemic
values are Ce ≈ 0.06, Je ≈ 0.57, and Re ≈ 0.28 and the ratios are rC ≈ 1.08, rI ≈ 1.00, and rR ≈ 0.97.
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FIG. 8. Numerical solution of the ODE model (30) with the
parameters of Fig. 6(a) and R0 = 9.1, j0 = 0.01, s0 = 0.99, and
c0 = r0 = 0. The color code is the same as in Fig. 6.

Figure 11 shows again the numerical solution of the macro-
scopic system (30) which is here for the smaller R0, again in
good agreement with the averaged microscopic behavior.

V. CONCLUSION

We have studied a macroscopic four-compartment
S-C-I-R-S model with memory effects introduced by
random compartmental waiting times. We derived evolution
equations for different arbitrary waiting-time distributions and
considered pertinent cases such as exponential (memoryless),
Mittag-Leffler (fat-tailed with long memory), and sharp
(δ-distributed) waiting times. We highlighted connections
with general fractional calculus and showed that the evolution
equations are of general (fractional) type [Eqs. (11) and (A1)].
For waiting-time PDFs with existing mean, we obtained exact
formulas for the endemic equilibrium and conditions of
its existence and identified the basic reproduction number
R0 = β〈tI〉 as a crucial parameter controlling whether or not
a S-C-I-R-S epidemic starts to spread.

We also found (Appendix B) that the healthy state always
is unstable if tI has a fat-tailed PDF regardless of the dis-

FIG. 9. Compartment fraction averaged over ten random-walk
realizations and Gamma-distributed waiting times. The parameters
are the same as in Fig. 6 except ξC = 0.5, ξI = 0.2, and ξR = 0.01,
The endemic states (dashed lines) are Se ≈ 0.07 (R0 ≈ 14.09), Ce ≈
0.06, Je ≈ 0.58, and Re ≈ 0.28 and the ratios are rC ≈ 1.06, rI ≈
1.00, and RR ≈ 0.97.

tributions of tC,R. In this case R0 and 〈tI〉 do not exist. We
interpreted this instability by the occurrence of very long
infectious periods tI strongly boosting the epidemic spreading.
Due to their general importance, the time-fractional cases call
for further thorough investigation.

We compared the macroscopic S-C-I-R-S model with
a random-walk approach. Our computer experiments have
given numerical evidence that Eqs. (28) are fulfilled for any
of the implemented waiting-time distributions (with initial
conditions very close to the healthy state) whenever the en-
demic equilibrium exists. This was further confirmed by a
comparison of results produced by the random-walk simula-
tions and by direct numerical integration of Eqs. (30) for two
cases of δ-distributed waiting times [see Figs. 6(a) and 8 and
Figs. 10(a) and 11, respectively].

All these results give strong evidence that random walks
offer an appropriate microscopic picture of the S-C-I-R-S
dynamics. It was also found in the simulations that waiting-
time PDFs with different variances but otherwise identical
parameters may influence R0.

For future research it would be desirable to relate the en-
demic value Se, i.e., R0 (here determined numerically), with
characteristics of the waiting-time PDFs (such as their vari-
ances), infection probabilities in a collision of I and S walkers,
and the random walk.

An interesting extension of our model could be considering
the cases of a nonconstant total population, i.e., when we
admit, on the one hand, birth and death rates (i). On the other
hand, another promising direction would be to analyze how
spatial inhomogeneities affect the epidemic dynamics (ii). In
the first case (i) one can introduce a further compartment D
(deaths) where a walker in state I can perform after a random
waiting time tI either a transition to R as in the present version
of the model or a transition to D after a random waiting time
tD. The transition rate to D is the mortality rate due to the
disease. The walkers having made a transition to R continue
their transition pathway as in the present version of the model
(i.e., to S and so forth). The choice whether a walker who
is in compartment I performs a transition to D or R could
be assumed random (with a certain probability) as well. Intu-
itively, one might expect that the cases of persistent oscillatory
behavior in the infected population of the present version of
the model would turn into attenuated oscillations.

Moreover, including spatial effects (ii) in the model leads
to the occurrence of fluxes and inhomogeneities with macro-
scopic space-time partial differential evolution equations of
general fractional types. The spatial effects involved are
closely related to the assumption of admissible jumps of
the walkers in their random walk, for instance, local steps
as in the present model or long-range steps as in, for
instance, Lévy flights [12] or a combination of both defin-
ing different classes of random walkers (corresponding to
distinct mobility of individuals). It would be desirable to
study the connection of the random walk (beyond simple
walks) and the macroscopic space-time evolution equations.
The present S-C-I-R-S model would represent a pertinent
benchmark limiting case in the mentioned extensions (i)
and (ii).

A further challenge is the investigation of microscopic
random-walk models and their connection with oscillatory
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FIG. 10. (a) Plot of δ-distributed waiting times for the same parameters as in (b) except ξC,I,R = 104 [generating the δ distribution; see (45)].
The endemic values (dashed lines) are Se ≈ 0.15 (R0 = 1/Se ≈ 6.59), Ce ≈ 0.06, Je ≈ 0.53, and Re ≈ 0.25 with ratios rC ≈ 1.15, rI ≈ 1.00,
and rR ≈ 0.96. (b) All waiting times are 	 distributed with their means identical to those of (a) with 〈tC〉 = 10, ξC = 0.1, 〈tI〉 = 100, ξI = 0.1
(αI = 10), 〈tR〉 = 50, ξR = 0.05, Z = 150, N = 21 (density Z/N2 ≈ 0.34), Pinf = 0.9, Se ≈ 0.06 (R0 = 1/Se ≈ 15.91), Ce ≈ 0.06, Je ≈ 0.58,
Re ≈ 0.29, and ratios rC ≈ 1.06, rI ≈ 0.99, and rR ≈ 0.99.

(Hopf) instabilities (condition for persistent oscillatory behav-
ior). The characteristics of the Hopf instabilities of the healthy
state and of quasiperiodic outbursts are closely related to the
specific distributions and the mutual ratios of the waiting
times tC,I,R. Models of the S-C-I-R-S class as in the present
paper may help decision makers to take improved protection
measures such as confinement, wearing of masks, or vacci-
nation. The effect of vaccination can be directly studied in
our S-C-I-R-S model by considering the stability of initial
states with a nonvanishing number of immune (vaccinated)
individuals. We leave these issues for future research.

Generally, S-C-I-R-S–type models with memory as intro-
duced in the present paper may open a wide research field to
better understand the phenomenology of real-world epidemic
dynamics.
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FIG. 11. Numerical solution of the ODE model (30) with the
same parameters as in Fig. 10(a) and R0 = 6.6, j0 = 0.01, s0 = 0.99,
and c0 = r0 = 0.

APPENDIX A: GENERAL DERIVATIVES

We can alternatively represent Eqs. (11) in the Riemann-
Liouville sense of general derivatives as

d

dt
s(t ) = −A(t ) + d

dt

∫ t

0
LR(t − τ )r(τ )dτ,

d

dt
c(t ) = A(t ) − d

dt

∫ t

0
LC (t − τ )c(τ )dτ,

d

dt
j(t ) = d

dt

∫ t

0
LC (t − τ )c(τ )dτ

− d

dt

∫ t

0
LI (t − τ )[ j(τ ) − j0]dτ,

d

dt
r(t ) = d

dt

∫ t

0
LI (t − τ )[ j(τ ) − j0]dτ

− d

dt

∫ t

0
LR(t − τ )r(τ )dτ, (A1)

which also are obtained straightforwardly from the Laplace
transformed representation (9) and employing the definition
(10). On the right-hand sides, general derivatives come into
play. The notion of a general (fractional) derivative was intro-
duced by Kochubei [29], generalizing d

dt y(t ) as (in the Caputo
sense)

D∗
t y(t ) =

∫ t

0
k(t − τ )

d

dτ
y(τ )dτ

= d

dt

∫ t

0
k(t − τ )y(τ )dτ − y0k(t ) = Dt y(t ) − y0k(t ),

(A2)

with y0 = y(t )|t=0. The part Dt y(t ) = d
dt

∫ t
0 k(t − τ )y(τ )dτ is

a general derivative in the Riemann-Liouville sense for some
admissible kernels k(τ ) (see [29] for an outline of this theory).
The general derivative (A2) has the LT∫ ∞

0
e−λt D∗

t y(t )dt = λk̂(λ)ŷ(λ) − y0k̂(λ). (A3)
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The general derivatives contain the class of standard fractional
derivatives of Caputo and Riemann-Liouville type and for a
k(t ) = δ(t ) the standard first-order derivative.

APPENDIX B: STABILITY ANALYSIS FOR ARBITRARY
WAITING-TIME DENSITIES

In Sec. III we derived that the healthy state is unstable if
R0 = βtI > 1 for δ-distributed kernels. Here we consider arbi-
trary waiting-time kernels first with finite means to generalize
this result and at the end of this Appendix we briefly look at
the time-fractional case. To this end we take into account that
the PDFs KC,I,R(t ) can be seen as a superposition (average
over tC,I,R) of the δ(t − tC,I,R) kernel as

KC,I,R(t ) = 〈δ(t − tC,I,R)〉

=
∫ ∞

0
δ(t − τ )KC,I,R(τ )dτ = (δ � KC,I,R)(t ) (B1)

and in this way we can average

〈 f (tC,I,R)〉 =
∫ ∞

0
KC,I,R(τ ) f (τ )dτ (B2)

for sufficiently good functions f and thus

〈e−μtC,I,R〉 = K̂C,I,R(μ), (B3)

yielding the Laplace transform of the PDF. Therefore, averag-
ing Eqs. (30) for δ kernels over the waiting times tC,I,R brings
us back to the general S-C-I-R-S equations (1), which can be
seen from

〈A(t − tC )〉 =
∫ t

0
A(t − τ )Kc(τ )dτ = (KC � A)(t ), (B4)

where we used causality of A and KC . Hence we can gener-
alize the case of δ kernels (34) to any kernels by accounting
for

〈e−μ(tI +tR+tC )〉 = K̂C (μ)K̂I (μ)K̂R(μ),

where we always use the mutually independence of the wait-
ing times. Hence, by averaging Eq. (34) we get

A0(u,w)[1 − K̂C (μ)K̂I (μ)K̂R(μ)] + μu = 0,

A0(u,w)[1 − K̂C (μ)] − μv = 0,

A0(u,w)K̂C (μ)[1 − K̂I (μ)] − μw = 0,

A0(u,w)K̂C (μ)K̂I (μ)[1 − K̂R(μ)] − xμ = 0, (B5)

leading to the solvability condition

∥∥∥∥∥
βJe[1 − K̂C (μ)K̂I (μ)K̂R(μ)] + μ βSe[1 − K̂C (μ)K̂I (μ)K̂R(μ)]

βJeK̂C (μ)[1 − K̂I (μ)] βSeK̂C (μ)[1 − K̂I (μ)] − μ

∥∥∥∥∥μ2 = 0. (B6)

We have again [as in (35)] μ = 0 as a threefold eigenvalue.
The remaining nonzero eigenvalue is determined by

μ = βSeK̂C (μ)[1 − K̂I (μ)] − βJe[1 − K̂C (μ)K̂I (μ)K̂R(μ)].
(B7)

We have to point out that in order to obtain these results
we have relaxed causality in the exponential ansatz (33) and
assumed that it is defined for all t ∈ R. The difference of
causal and noncausal averaging can be seen by comparing

〈eμ(t−tC )〉 = eμt
∫ ∞

0
e−μτ KC (τ )dτ = eμt K̂C (μ)

�= 〈�(t − tC )eμ(t−tC )〉 = eμt
∫ t

0
e−μτ KC (τ )dτ,

(B8)

where �(τ ) indicates the Heaviside unit step function and
corresponds to causality. To obtain the condition (B6) we have
averaged as in the first line of (B8), where the exponential is
noncausal, allowing exponentials with arguments t − tC < 0
to contribute. Both sides become asymptotically equal in the
limit t → ∞. Hence, the relation (B6) can also be interpreted
as the large-time asymptotics of causal averaging.

Let us focus now on the stability of the healthy state s0 = 1.
Then (B7) yields (Se → s0 = 1 and Je → j0 = 0)

μ = βK̂C (μ)[1 − K̂I (μ)] = G(μ). (B9)

As in the case of δ-distributed waiting times, G(μ) is a con-
cave function with G(μ) → 0 as μ → ∞; thus we can argue
in the same way [see Eq. (37) and Fig. 2]. Hence there is
an intersection μ0 > 0 only if d

dμ
G(μ)|μ=0 > 1. Expanding

G(μ) (assuming existing mean 〈tI〉) gives

G(μ) = β[1 − 〈tC〉μ + o(μ)]〈tI〉μ = β〈tI〉μ + o(μ). (B10)

Therefore,

d

dμ
G(μ)

∣∣∣∣
μ=0

=: R0 = β〈tI〉 > 1 (B11)

is the condition for this instability of the healthy state and
hence the interpretation as the basic reproduction number R0

makes sense. This holds for waiting-time PDFs with existing
means. On the other hand, the relation (B9) holds for any
waiting-time PDF including fat-tailed ones, which we briefly
consider in the following.

Time fractional case. Assuming KI (t ) is a fat-tailed PDF
such as the Mittag-Leffler PDF with K̂I (μ) = ξI

ξI +μν , ν ∈
(0, 1), and whether or not the other kernels have existing
means we get, for G(μ),

G(μ) = β

ξI
μν + o(μν ) > μ (μ → 0), (B12)

where o(μν ) indicates orders higher than ν. Thus (B9) (in-
dependent of β

ξI
) always has a positive intersection since
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ν ∈ (0, 1). We conclude that for fat-tailed KI (t ) the healthy
state always is unstable regardless of the distributions of tC
and tR. Physically, this instability can be understood by the

occurrence of very long infectious times tI strongly boosting
the epidemic spreading (corresponding to the limit R0, 〈tI〉 →
∞).
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