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The nonlinear dynamics induced by the modulation instability (MI) of a binary mixture in an atomic
Bose-Einstein condensate (BEC) is investigated theoretically under the joint effects of higher-order residual
nonlinearities and helicoidal spin-orbit (SO) coupling in a regime of unbalanced chemical potential. The analysis
relies on a system of modified coupled Gross-Pitaevskii equations on which the linear stability analysis of
plane-wave solutions is performed, from which an expression of the MI gain is obtained. A parametric analysis of
regions of instability is carried out, where effects originating from the higher-order interactions and the helicoidal
spin-orbit coupling are confronted under different combinations of the signs of the intra- and intercomponent
interaction strengths. Direct numerical calculations on the generic model support our analytical predictions and
show that the higher-order interspecies interaction and the SO coupling can balance each other suitably for
stability to take place. Mainly, it is found that the residual nonlinearity preserves and reinforces the stability of
miscible pairs of condensates with SO coupling. Additionally, when a miscible binary mixture of condensates
with SO coupling is modulationally unstable, the presence of residual nonlinearity may help soften such
instability. Our results finally suggest that MI-induced formation of stable solitons in mixtures of BECs with
two-body attraction may be preserved by the residual nonlinearity even though the latter enhances the instability.
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I. INTRODUCTION

The experimental realization of atomic gas Bose-Einstein
condensates (BECs) has provided new opportunities for
the study of quantum phenomena on a mesoscopic scale.
Quantitative measurements of collective excitations [1-6],
sound propagation [7], and interactions between distinct
condensates [8,9] have been made. It is now well ac-
cepted that, for sufficiently low temperatures, the nonlinear
properties of atomic matter waves are well described by
the time-dependent Gross-Pitaevskii (GP) nonlinear equa-
tion, which takes trapping potentials, spatial distributions of
macroscopic wave functions for the mean-field condensates,
and interatomic interactions into account [10,11]. In addi-
tion, the GP equation includes a two-body nonlinear term
through a contact interaction that is parametrized by the
s-wave scattering length, which determines the nonlinear-
ity strength in the mean-field description of the condensate
and can be manipulated by the magnetically [12], opti-
cally [13], or confinement-induced [14] Feshbach resonance.
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In this respect, several remarkable results on nonlinear
excitations have been reported theoretically as well as ex-
perimentally. They include the four-wave mixing in BECs
[15], vortices [16—-18]; dark solitons in BECs [19,20]; bright
solitons [21]; multisoliton complexes [22]; compactons [23];
nonlinear periodic waves [24]; gray solitons [25]; gap matter
solitons [26]; Faraday waves [27]; Bloch oscillations of BECs;
Landau-Zener tunneling [28], superfluid to Mott insulator
phase transition [29]; compression of a condensate [30]; tem-
poral [31], spatial [32,33], and spatiotemporal chaos [34,35],
the process of BEC collapse [36]; and open BECs [37,38].

Modulational instability (MI), in which small perturba-
tions to a carrier wave, reinforced by nonlinearity, expe-
rience rapid growth [39], is an indispensable mechanism
for understanding pattern formation in a uniform medium.
The MI in two-component BECs was first discussed by
Goldstein and Meystre [40]. Following these studies, the MI
in two-component BEC systems has been studied extensively
[41-43]. Indeed, MI-induced regular density modulations,
formed throughout the BEC, lead to the emergence of a large
number of beating dark-dark solitons [44], static dark-dark
solitons [45], and dark-bright solitons [46].

Recently, the further development of trapping techniques
has allowed the creation of multicomponent condensates,
which are formed by trapping different atomic species or
the same atoms with different hyperfine spin states [8,47].
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In multicomponent systems, additional types of interactions,
such as interspecies interactions, can occur between different
components of the condensates leading to new features not
observable in a single condensate. Among these features, we
have complex phase diagrams [48—51], metastable states [52],
vortex transfer dynamics [16,50], and symmetry-breaking
instabilities [53,54]. In addition, the interaction between half-
quantum vortices [55], reconnection of % vortices [56], the
dynamics of spin-vortex dipoles [57], and the collision of
skyrmions, scattering dynamics of skyrmions, and generation
of multiple skyrmions [58] have been predicted. The collision
of half-quantum vortices in a spin-1 BEC was also observed
[59,60]. Countersuperflow instability has been studied the-
oretically [46,61], as well as experimentally [62] in mixed
BECs of cold atoms by accelerating the two components
in opposite directions, utilizing the Zeeman shift under a
magnetic-field gradient.

Spin-orbit (SO)-coupled BECs have been studied exten-
sively in different contexts, including phase separation, stripe
phases [63], spotlighting the phase transition [64], and vor-
tices with or without rotations [65,66]. In addition, the MI in
two-component BECs with SO coupling in one [67-69] and
two dimensions [70] was recently explored. Indeed, the effects
of the MI on the ferromagnetic ground state of the trapped
spinor BEC modeled by three coupled field equations have
been studied analytically and demonstrated numerically [71].
The spontaneous multidomain formation induced by the dy-
namical instability in a spin-1 condensate with ferromagnetic
interactions has been investigated through extensive numer-
ical simulations [72]. A complete understanding of domain
formation in a spin-1 atomic condensate has been provided
[73]. It has been observed that the MI phenomenon can lead
the sound waves propagating in continuous-wave solutions of
repulsive spinor BECs to the exponential growth of noise and
that this can eventually destroy the initial underlying contin-
uous wave and create a spin texture [74]. Conditions of MI
in one-dimensional (1D) effective one-component quantum
droplets and Bose-Bose mixtures, coupled through SO and
Rabi couplings, have been established [75].

The objective of the present work is to study the mech-
anism of MI of the two-component helicoidal SO-coupled
BEC:s equally distributed between the two pseudospin states,
in a steady-state propagation regime, taking into account the
residual nonlinearity describing the shape-dependent confine-
ment correction of the two-body collision potential. It has
been shown that higher-order interactions induced by shape-
dependent confinement can either suppress or enhance the
MI, which is interesting for control of one-component BEC
instabilities [76]. In the two-component BECs, the space-time
evolution of the density shows that the residual nonlinearity
may play an important role in producing the MI conditions
in miscible condensates and altering the MI conditions in
immiscible condensates at appropriate physical settings [77].

The rest of the paper is organized as follows. In Sec. II
we formulate the problem for two-component BECs using
a system of 1D coupled GP equations that account for the
helicoidal SO-coupling with residual nonlinearity. In Sec. III
we undertake the linear stability of plane-wave solutions of
the proposed model equations. The instability zones, as well
as the analytical expressions of the gain of MI, are obtained. In

Sec. IV the results of linear stability analysis are validated by
the direct numerical simulations of the governing equation us-
ing the split-step Fourier transform method. The emergence of
matter waves in binary BECs is comprehensively discussed.
The joint effect of helicoidal SO coupling and higher-order
residual interaction strengths, under different combinations
of intra- and intercomponents of interaction strengths, is also
regarded. Section V summarizes the paper and gives possible
future directions.

II. THEORETICAL MODEL AND LINEAR
STABILITY ANALYSIS

A. Theoretical model

In the present paper, interested in the interplay between
shape-dependent confinement and spin-orbit coupling in the
generation of nonlinear excitations, we adopt as a govern-
ing model a vector Gross-Pitaevskii equation with residual
nonlinearities and spin-momentum coupling terms. In such
a context of mean-field approximation, with macroscopic
wave functions of macroscopic quantum states of the two-
component condensate with spin-up and spin-down internal
states and with helicoidal SO coupling, the vector Gross-
Pitaevskii equation with spin-orbit coupling reads [78]
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where W = (1, ¥2)". Gi=(§ 0 ). and P =(5 %),
with i = 1, 2. The o, ; are Pauli matrices. This model origi-
nates from a modified GP equation that contains higher-order
(HO) terms and a multichannel model of Feshbach resonances
[79]. Based on that modified GP equation, a set of coupled
GP equations was derived to describe a binary mixture of 1D
BEC condensates in the presence of HO residual nonlinear-
ities [77]. Recently, in the context of MI, it was shown that
matter waves arise even in the miscible binary BECs due to
the helicoidal SO interaction [68,69]. In a situation where
the scattering dynamics is involved, the HO correction should
be considered. Such terms in the GP equation account for
Rydberg molecules embedded in the condensate [80] and for
narrow Feshbach resonances and tighter traps [79], known to
enhance the condensate stability [79]. In a more explicit form,
the ruling equations for the dynamics of macroscopic wave
functions of the two-component condensate are the coupled
1D cubic GP equations
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where | and y, are the two-component BECs pseudospin
states, B is the helicoidal gauge potential, @ represents the
SO coupling, and A is the strength of the Zeeman splitting.
Next, g1 = 2a;1/a, and g, = 2ax/a, are the strengths of
the two-body intraspecies interactions, while g = 2aj»/a;
and g»; = 2ap;/a, denote the strengths of the two-body in-
teractions. The p; and p, are the intraspecies and pj, and
P21 the interspecies higher-order interaction strengths, respec-
tively. In the present work we assume that the interspecies
interaction parameters are the same g, = g»;. Here a; =
Jh/mw, 1is the transverse characteristic length, w is the
transverse trap frequency, m is the atomic mass, and # is
the Planck constant. The a1, a2, and a;, are three s-wave
scattering lengths, which in principle can be independently
adjusted in experiments using optical and magnetic Feshbach
resonance techniques [12,81,82]. In practice, however, one
scattering length is generally fixed while the two others are
tuned simultaneously [83,84]. Finally, the spatial variable x,
time ¢, density |vy|> 4 |¥2]?, and energy are expressed in
normalized units a , wI', all, and hw ., respectively. The
wave functions are normalized by the respective atom num-
bers N; = [(|¢;1%dx) with j = 1, 2.

B. Linear stability analysis and eigenfrequencies
of unstable modes

In order to study the MI of Egs. (2) and (3), we use the
standard linear stability analysis. For this, we consider the
propagation of the cw or quasi-cw state in the form of miscible
binary condensate with uniform densities n9 and nyy and
the common chemical potential i of both components. The
steady-state solutions of a system of two coupled 1D cubic GP
equations with helicoidal coupling and higher-order residual
nonlinearity, corresponding to the cw state, can be written as

Vi =e "M i, j=1,2. 4)
The densities, Zeeman splitting, SO coupling, higher-order
residual nonlinearity, intraspecies and interspecies interac-
tions, and chemical potential are determined by algebraic
equations

(—1)i~'A

M= 7 +gjnjo + g12n3—jo0. ®)

In order to investigate the MI of BECs with helicoidal SO
coupling and higher-order residual nonlinearity, we introduce
the perturbed field of the form

Y= e W (o + 8y, j=1,2, (6)
where the complex fields 8y; = 6v;(x, t) represent small per-
turbations such that |§v;| < ,/mjo. Substituting Eq. (6) into

(2) and (3) and linearizing around the unperturbed solutions
leads to the equations for the perturbed fields
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where 817 are the complex conjugates of the perturbed fields
8yj and & = @(r) = ae™'. The frequency term is given by

—gn)—mo(g2—g2)+A (9

and then represents an imbalance between the chemical po-
tentials of the two condensates. Now we assume the following
ansatz for the perturbed fields:

8v; =¢jcos (kx—/ Q(s)ds)
0

+ in; sin (kx — / Q(s)ds). (10)
0

Here k is a real wave number, €2 is a complex eigenfrequency,
and ¢; and n; are amplitudes. A set of linearly coupled equa-
tions for perturbation amplitudes ¢; and 7; are derived by
substituting Eq. (10) in Egs. (7) and (8),

M x (¢1, &, i, m) =0, (11)

where M is a 4 x 4 matrix. There exists a nontrivial solution
under the condition that det(M) = 0 and in such a case we can
obtain the dispersion relation of the system for 2. The matrix
M is expressed as

K= — 2 =n(g

Q+ wig w12 w13 w14
Q
M= w3 + wxn w3 w4 (12
w31 w32 Q— w33 w34
w41 w4 w43 Q — w4
with the entries given by
w11 = Wy = w3 = wi = Pk,
k2
wp=——, o= —ak, w4 =0,
2
_ 2 k
wy1 = —2n10(g1 — k"p1) — oR
w3 = 24/Mionao(k*p1a — g12),
Wy = w3 = w3, wxn =0,
Wy = Wi, a1 = 2/monao(K2par — g21),
2 k*
Wi = w13, w43 = —2n20(8 — k" p2) — ER (13)
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From the structure of the matrix, it is natural to set y; =
g —pik* (j=1,2) and y1» = g2 — piok® as the effective
strengths of intra- and intercomponent two-body interactions,
respectively. A nontrivial solution of a system of four equa-
tions requires that det(M) = 0. After some straightforward
calculations, we obtain the nonlinear dispersion relation

L +CP+CQ+C =0, (14)

where the coefficients C, (n = 0, 1, 2) are given by

_ 2 2 g2 k_z
G =—k|2x +ﬂ)+)’2nzo+)/1”10+2 ,

C1 = — 2K [B(yanao — yinio) + 26,/Yi2y21iiona0]s
K, 2, 2
Co :E{[k —4(a” + B — yimo)]

x [k2 — 4(a® + B% — yana0)] — 16y12y21m10n20}, (15)

with & = o cos(xt). Then the corresponding SO coupling
coefficient turns out to be varying periodically in time. The
four solutions obtained from Eq. (14) are

1 o Co
Qip=—-Q+ = [-2(C+293) + =,
2 o
1 C
Q4=+ -\/—2(c2 +202) - =2, (16)
2 o

where Q9 = /A — 3Gy, with A = (Ao + ﬁ—g) and Ay =

(AL for Ay =C2 412G, and Ay =2C3 +
27C12 — 72C,Cy. These time-dependent frequencies are very
important in analyzing the MI onset because they pro-
vide the instability criteria of the system. In problems with
time-dependent Hamiltonians, quasienergies may become
time dependent, especially in unstable regimes. Such time-
dependent quasienergies can be measured accurately in atoms
using transient absorption spectroscopy, as it has been demon-
strated recently [85].

C. Eigenfrequencies of unstable modes in the limit of large
chemical potential imbalance

In the preceding section the system of equations (7) and (8)
actually represents a Floquet problem, which has the form

iag—;// = H(t)sy, (17)

where 8¢ = (811, 8y»)T and

2
C20x2
In this equation the linear operator ¢ is defined such

that ¢[8v¢] = 8¢ + 6y *. We have 0 = o(t) = o, cos(kt) —
oy sin(kt) and the matrices

a 02
H = +i(fo; —ao)—+(g+q = Je.  (18)
0x ax
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The coefficients oy, oy, and o, are Pauli matrices. Since H ()
is a time-dependent function such that H(t + T') = H(t), with
period T = 2w /k, the energy of the system is no longer
conserved and thus becomes undefined. It is replaced by a
quasienergy which is unique up to multiples of 7ix, where
k plays the role of the driving frequency. In the limit of
large driving frequencies, quasienergies are obtained through
the averaged energy in Floquet states. The useful analytical
tool for deriving the Floquet Hamiltonian is the Magnus ex-
pansion, which in this case of periodically driven systems
is referred to as the Magnus-Floquet expansion [86,87]. In
general, this expansion is used for finding the Floquet Hamil-
tonian when there is a time-varying external potential in the
usual physical space (see, for instance, Refs. [88-92]). In our
setting (7) and (8), however, the periodic driving happens to
apply to a momentum term, yielding a kinematic momentum,
which makes it very hard to treat in position space, and switch-
ing to the rotating frame [78] or using more sophisticated
gauge transformations may not solve the problem. In order to
circumvent that difficulty, it is appropriate to solve the system
in momentum space. Taking the Fourier transform of Eq. (17)
over the spatial domain x, we get

2V~ 3067, 0)

ot

where 8§ = 8y (k, t) = (8y1, 8y»)T is the Fourier transform
of the perturbation v (x, ) over the spatial domain x, and
denoting the spatial frequency as k, we get

H(t) = 3k — [Bo. — ao (1)]k + (g — qkP)e.

The dynamics induced by the varying Hamiltonian part
in the system can be given, to the first order, by the leading
contribution to the Floquet-Magnus expansion. It is ruled by
the unitary transformation [87]

k
U =exp <—ia—[ox sin(xt) + oy cos(xt) — ay]>.
K

The operator U can help us understand the effect of pe-
riodic drives on dynamical instabilities. The transformed
Hamiltonian, given by H = U [H(@) — ia%]U, is found to be

5 - K _BGiok — 50k + ok

+ (g —qk>e, (1)
2 14 1022 sin?(icr /2) g4

where ¢(¢) = 2% sin(kt) and &(t) = 2%[cos(fct) —1].
Therefore, the effective Hamiltonian, obtained by averaging
‘H over a period, reads

N k?
Hetr = = + V103 — 120: + (8 = 4K, (22)
kBll—A/14+(22)2k2] - Bk ..
where Vv = W and Uy = W. In the limit

when «/k — 0, we get vy — 0 and v, — Bk. Let us de-
compose the perturbation §v into real and imaginary parts,
i.e., 8¢ = ¢, + ig;. Then if we set §v = @, + i®;, with @, =
(@1r» @2)T and &; = (15, P2:)7, the dynamics of the system
in the large imbalance limit is well described by the effective
Schrodinger equation 9,81 = Hedy or equivalently by a
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matrix equation of the form
99
ot

where the vector ¢ = (®1,, @1, @2r, $2i)7 and the matrix M
reads

= M@, (23)

0 %kz — U2 0 V1

| vt 0 -V + w3 0
M= 0 vy 0 1K+ v,

-V + w4 0 —Vs + w43 0

(24)

The parameters w;; are the same as in the preceding section.
The four eigenvalues of the matrix M are given by

A= LC+£VC?-4D), (25)

where the coefficients are given by C = %(a)43 + wy k> +
va(wg3 — way) — 2(1)% + v% —viwy3) and D= (vf + v% —
TkHI(01 — @23)* + 13 — Va3 — W21) — Wa321].

III. ANALYSIS OF THE INSTABILITY ONSET:
INSTABILITY GAINS AND DOMAINS

From the above perturbation frequencies, we can get con-
siderable insight into the dynamical behavior of the system,
notably the stable and unstable domains as well as the corre-
sponding instability gains.

A. Instability growth rate

The set of solutions (16) implies that 2 may be posi-
tive, negative, or even complex, depending on the system
parameters. However, real, negative, or positive, values of
predict the stability of the cw. General complex solutions of
Eq. (14) are such that Q = 2, + i€2; so that exp(—if Qdt) =
exp(—i [ Q,dt)exp( Q;dt). This means that the occurrence
of instability fully depends on the imaginary part of the per-
turbation frequency.

In the particular case when the two BEC components have
a common chemical potential, the parameters A, ngj, g;, and
g12 satisfy the relation

A — [n0(g2 — g12) — nio(g1 — g12)1 =0, (26)

and we obviously have ¥ = 0, because p; = u,. Then &@* =
& = « and 2 is time independent. For two BEC components
with equal densities ng; = ng, = ny, for instance, the above
condition merely reduces to taking A = np(g> — g1)/2. In
such a case, necessary information about the instability of the
system can be extracted through the maximum MI growth rate
given by

§(£2) = [1Im($2)[]max. (27
where the maximum is obviously taken over all perturbation
frequencies ; (j =1, ...,4). In practice, however, it is not

obvious how to fulfill the condition (26) exactly because of
inevitable errors and deviations.

In the general case where the physical system’s parameters
A, noj, gj, and g1 are chosen freely, it is completely unreal-
istic to neglect the imbalance « between the components of

the binary mixture. To better quantify the MI growth rate, we
introduce the so-called integrated gain defined as a functional
of the time-dependent perturbation frequency €2 and given by

G[€2] = [[Im(w)|Tmax. (28)

where the complex frequency

o(t) = %/OT Q(t)dt. (29)

The bound t € ]0, fi4«] is any realistic timescale over which
Ml is expected to develop in the system, with #,,x the run time
of the experiment. In the case when the chemical potential
imbalance ¥ = 0 or in the limit t — 0, we readily get the
standard case G = £ = [|Im(2)|]max- There is a possibility
for the integrated gain (28) to be directly measured in any
cold-atom experiment (see Ref. [93]). The process would be
the following. Let the BEC evolve in an external potential
(magnetic trap and optical lattice) for a variable time ¢ > fo.
Then switch off the potential, let the free BEC expand, and
image the atomic cloud to get the number of atoms N ().
When the physical system has no time-dependent parameter,
the result In[N(¢)/N(ty)] can be linearly fitted to yt, which
means we have purely exponential growth. Then the growth
rate is simply extracted as the loss rate . When the physical
system is subject to dynamical effects, like time management
of parameters, we expect the result In[N(¢)/N (ty)] to be fitted
to a curve I'(¢), where I'(¢) is not necessarily a linear function
of . In that case the growth rate can be extracted as the
time average of all loss rates measured through linear fits at
different times.

In the limit of large chemical potential imbalance, the
system becomes unstable when at least one of the eigen-
frequencies (25) acquires a positive real part. It is therefore
sufficient to have A3 positive for the condensates to undergo
modulational instability. The MI gain in this case is expressed
in terms of |Re(A4)|, from which we define the total growth
rate to be

£(1) = [IRe(r1)Imax- (30)

Note that this growth rate is obtained from the real parts of the
eigenvalues.

B. Gain profiles and instability domains

The linear stability analysis is crucial to the study of the
emergence of matter waves in the sense that it gives some
onset of MI. The detected regions of parameters will allow
proceeding with numerical simulations with accuracy. In gen-
eral, predictions of MI rely on its growth rate, which can
be obtained numerically or analytically. As stated earlier, de-
pending on the chemical potentials of the two components,
when k¥ — 0, the chemical imbalance is weak, i.e., (1 ~ w,.
The MI growth rate can be directly plotted from the formula
G = [|[Im(£2)|]max, obtained from Eq. (16). On the other side,
for k # 0, the imbalance between the chemical potentials of
the two components imposes the use of the formula (30). Nev-
ertheless, the growth rate of MI, in general, contains nonlinear
and dispersive terms whose suitable balance is confronted by
the effect of the helicoidal SO coupling, materialized by o and
B. In the process, additional nonlinear effects are introduced
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(a)
35
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25 1
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FIG. 1. Variation of the MI growth rate versus the intraspecies higher-order interaction under the effect of the helicoidal SO coupling for
g1 =4, g, = 1,and gj» = 0.5: (a) the helicoidal gauge potential is switched off 8 = 0 and G evolves with changing « and (b) 8 # 0 (8 = 0.5)

and « changes the same way as in (a).

by the HO interaction terms that are different in the model
studied. In the rest of this section, the growth rate spectrum is
addressed separately for each of the cases.

1. Case of weak chemical potential imbalance

It is primordial to estimate values that are likely to support
the emergence of nonlinear patterns in the growth rate spec-
trum. This is illustrated in Fig. 1, where the integrated gain
of instability is plotted against the intraspecies HO interaction
strength P = P, in the absence [see Fig. 1(a)] and presence
[see Fig. 1(b)] of the helicoidal gauge potential B. Precisely,
for P, = P, = P = P,y =0 and w; = u,, one recovers the
dispersion relation from Ref. [68], which does not include
any timescale over which the MI gain is expected to develop.
Additionally, if « = 8 =0, the commonly known case of
MI is recovered. However, with P, = P, # 0, the features of
Fig. 1(a) reveal the presence of MI when o = 8 = 0, except
that only negative values of P; contribute to the development
of the instability. In the meantime, with & ## 0 and increasing,
the instability region diffuses toward positive values of P,
which gives more room for the HO interaction coefficients
to contribute to the onset of MI and justifies the importance
of the helicoidal SO coupling in the process. The same be-
havior of the MI gain remains ostensible even for 8 # 0 [see
Fig. 1(b)]. To proceed further, we introduce P;; = gogi;, where
8o 1s positive for all kinds of interactions.

Recall that the main difference of the model under study
is the combination of HO interatomic interactions and the
helicoidal SO coupling. Note that the difference between the
chemical potentials of the two species introduces a timescale
for the MI gain to be computed. It is fixed, for the rest of
this analysis, as fnax = 5. In Fig. 2 the stability and instability
features are displayed in the (o, 8) plane, where Fig. 2(a)
show G for g; > g, and g, = 0, with gy taking the values
0 [Fig. 2(al)], 0.24 [Fig. 2(a 2)], and 0.90 [Fig. 2(a3)]. Here
go = 0 gives results from Ref. [68], which does not include
the HO interactions, while go 7% 0 implies the presence of
such interactions. In general, the MI regions are of a crescent
shape and symmetrical with respect to the o = 0 axis. The

parametric expansion of the MI zone decreases with increas-
ing go, i.e., the strength of the HO interatomic interactions.
The same scenario is visible when gj» # 0 and g = g» = 4,
as depicted in Fig. 2(b). However, even though the point
(o, B) = (0,0) remains a stable point, the symmetry of the
instability regions appears with respect to the § = 0 axis,
which also means instability for both left- and right-handed
SO coupling.

To further explore the contribution of the helicoidal SO
coupling versus the effect of the residual nonlinearities, more
results are summarized in Figs. 3 and 4, under the respective
conditions g;g, > gz12 and g1g, = gzlz, for different combina-
tions of the interatomic interaction strengths. In particular, the
cases g1 > g» and g; < g, are compared to the features of
instability due to g; = g». Interestingly, the instability gain
highly depends on the excitation wave number whose vari-
ations induce a rich MI cascade scenario. In the first case,
for example, the presence of the residual nonlinearities, with
go = 0.02, breaks the MI gain of Fig. 2(al) into four pieces,
with regions of high intensity belonging to zones where o and
B are both positive [see Fig. 3(a;)]. With increasing the wave
number k to 3, the crescent shapes of instability appear and
the four instability regions are shifted with respect to (¢, ) =
(0, 0) along the o axis. When k = 5, only two symmetrical
regions of instability remain, separated by the « = 0 axis [see
Fig. 3(a3)]. For g; = g», still under the miscibility condition,
one sees two symmetrical regions of instability along the «
axis, in the presence of two minor axes [see Fig. 3(b;)]. Im-
posing k = 3, the two spots of high intensity are reduced [see
Fig. 3(b,)], a behavior that gets pronounced for k = 5, with a
slight clockwise rotation around (¢, 8) = (0, 0), as shown in
Fig. 3(bs). For the case g; < g» [see Fig. 3(c)], regions of high
MI gain appear where the signs of o and § are opposite, after a
counterclockwise rotation compared Fig. 3(b;), while regions
with low intensity belong to the interval of o and 8 with
identical signs. We should stress that this case, where k = 1,
is the opposite of what is obtained for g; > g». In Fig. 3(c,),
where k = 3, the intensity of MI is amplified and keeps the
same parametric distribution. In general, Fig. 3 shows that
the MI gain is amplified gradually and the regions of high
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FIG. 2. Contour plot of the MI growth rate distribution in the (o, 8) plane, recorded for (al) go = 0, (a2) go = 0.24, and (a3) go = 0.90,
with gy =4, g, =1, and g, =0 and (bl) go = 0, (b2) go = 0.24, and (b3) go = 0.90, with g, = 4, g, =4, and g, = 2; k = 1 in all panels.
The four modes indicated by A;, A,, By, and B, in (al) will be of interest in the numerical analysis.

MI gradually diffuse outward from the («, 8) plane when the
wave number k increases. The case g;g, > g212 presented in
Fig. 4 shows similar features, except that for k = 1, only two
regions of high MI intensity appear. However, in the presence
of the residual nonlinearities, with go = 0.02, the results are
similar to those found in Ref. [68], except that for k = 3, the
MI distribution of the gain reduces to a ring of instability.

In order to complete this linear stability analysis and reveal
the combined effect of the helicoidal SO coupling, the residual
nonlinearities, and the perturbation wave number k, the MI
gain G is plotted in Fig. 5 in the (k, o) plane for different
values of the helicoidal gauge potential 8, with g1g> < g212
and g = g» > 0 [see Fig. 5(a)]. Figure 5(b) addresses the
same case, but with gy = g, <0 and gy < 0. In the first
case, i.e., Fig. 5(a), the immiscibility condition gives rise to
regions of instability. For 8 = 0, one clearly sees four lobes of
instability symmetrical with respect to both the « and k axes.
With increasing f, such symmetry in the instability domain
is broken in the « direction, with minor lobes appearing for
o < 0 and lobes of high intensity of the gain getting extended
to high values of the gauge amplitude «. Further increasing
B, the minor lobes in the area o < 0 tend to disappear, let-
ting the MI possibly take place in the upper area « > 0 [see
Fig. 5(a3)]. It is clear that in this repulsive case, compared to
what was obtained in Ref. [68], the MI growth rate depends on
o, particulary in the case 8 = 0, where a constant growth rate
is obtained. This is confirmed by the spectrum of Fig. 5(b,),
where the central lobes of instability are annihilated by the
appearance of high lateral lobes of instability, also distributed
to the areas &« < 0 and @ > 0. For the rest, when f increases,
the MI displays reverse features from the repulsive case. As a
whole, the regions of MI in the (k, @) plane are very sensitive
to modifications in the gauge potential and the nature of the

interaction, repulsive or attractive, both the traditional and HO
interatomic interactions. However, compared to the contribu-
tions of Refs. [68,77], combining the helicoidal SO coupling
and HO interatomic interactions constitute a promise of richer
MI excitation scenarios, in the context where nonlinear and
dispersive effects are well balanced.

2. Case of large chemical potential imbalance

In this particular case, most of the calculations are made
considering « > 1. In the context where g; = go = 1 and
g12 = 2, the MI growth rate is represented in Fig. 6(a) in the
(k, k) plane, with the gauge amplitude taking the respective
values @ = 0.1, 0.9, and 2. The instability features show the
migration of the maximum growth rate to high values of |«|
when « increases. The same behaviors of G are delivered by
Fig. 6(b), where g, = g, = —1 and g, = —2. In the (k, B)
plane, the development of the MI growth rate is displayed
in Fig. 7, where Fig. 7(a) shows results for go = 0.02, with
g1 = g =1 and gj; = 2. Here, for the chemical imbalance
mismatch if ¥ = 1, the instability is supported by four sym-
metric lobes in both the k¥ and B directions. Recall that,
for B < 0 (B > 0), the helicoidal SO coupling is right (left)
handed. Interestingly, when the mismatch « gets large, the
maximum instability delocalizes to the zone B > 0, giving
favor to the left-handed SO coupling to drive the maximum
MI growth rate. The same spectrum of behaviors is shared
by Figs. 7(b;)-7(b3), where go = 0.5, when the right-handed
SO coupling is progressively switched off, leaving two major
instability bands for k = 8 [see Fig. 7(bs)]. The MI behaviors
of Fig. 8 are also of interest, where the MI growth rate exists
in the («, B) plane with the instability bands depending on
changes in the interatomic interaction strengths. As a whole,
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FIG. 3. Contour plot of the MI growth rate distribution in the (¢, 8) plane for (a) go = 0.90, gy =4, go = 1, and g, = 0.5; (b) go = 0.02,
g1 =g =4,and g1, = 0.5; and (c) go = 0.90, g; = 1, g, = 4, and g;» = 0.5. From top to bottom, the rows correspond to the perturbation

wave numbers k = 1, 3, and 5, respectively.

the MI growth rate displays asymmetric instability bands that
rotate around the point (¢ = 0, 8 = 0) for the major lobes to
be supported by the 8 axis. However, for gy increasing, the
instability areas get smaller, and MI essentially takes place for
o <0and B <Oorfora > 0and B > 0. A similar spectrum
of behaviors is delivered by Fig. 9, where the MI growth rate
is plotted in the (k, @) plane, with the interatomic interaction
strengths varied. Although the instability zone gets expanded
for go = 0.9, the asymmetric behavior of the MI growth rate is
obtained for g; > g, and g; < g», while the maximum growth
rate takes place around and at the point = 0.

IV. NUMERICAL EXPERIMENTS

Our analytical predictions obtained in the preceding sec-
tion are based on linearization and then represent only an
approximation of the actual behavior of the system. In order to
have a deeper view into the actual dynamics and confirm our
predictions on the modulation instability of the system, we
perform numerical computations of the governing model in
Egs. (2) and (3). Throughout this section, we take the strength
of the Zeeman splitting to be A = 0.01 and use p;; = gogij>

where g is positive for all kinds of interactions. This particu-
lar choice of the residual nonlinearity strength is expected to
preserve the miscibility condition of the system as fixed by the
two-body interaction. We use a continuous wave as the initial
condition for both components of the condensate and compute
the time and space evolution of the wave through the system.
For this, we take

Y1(x, 0) = Yo (x, 0) = /g + & cos(kx), €19

where the wave number is k = 1. The perturbation amplitude
is € = 0.01, which is small enough compared to the wave
amplitude ,/np = 1.0 and thus would not cause a qualitative
change in the results. The numerically simulated dynamics of
the binary BEC is portrayed for selected points in parameters
space.

A. Stabilization of miscible mixtures with two-body repulsion

In the case when the strengths of two-body interactions are
negative, both stable and unstable dynamics of the system are
possible depending on both the miscibility and asymmetry of
the two-component system.
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FIG. 4. Contour plot of the MI growth rate distribution in the («, 8) plane for (a) g1 =4, g> = 1, g1» = 2, and gy = 0.90; (b) g1 = g =
gin=2and go =0.90; and (c) g1 = 1, g2 =4, g1» = 2, and go = 0.02. From top to bottom, the rows correspond to the perturbation wave
numbers £ = 1, 3, and 5, respectively.
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FIG. 5. Distribution of the MI growth rate versus the perturbation wave number k and the gauge amplitude « for (a) go = 0.90, g, = g, =1,
and g1, =2 and (b) go = 0.02, g; = g» = —1, and g, = —2. From left to right, the columns correspond to 8 = 0, 1, and 2, respectively.
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FIG. 6. Distribution of the MI growth rate versus the perturbation wave number k and the frequency mismatch « for § = 2, with « taking
the respective values of 0.1, 0.9, and 2 for columns from left to right. The helicoidal gauge potential takes the value 8 = 2 with (a) go = 0.90,
gr=g =1l,andg;; =2and (b) go =0.02, g, = g, = —1,and g; = 2.

1. Enhancement of the existing stability

When the strengths of interactions allow the mixture to be
miscible, i.e., g1g1 > g}, one expects the wave propagation
in the system to be stable for purely two-body repulsion.
Figure 10 shows the dynamics of the wave in the system
when only the intraspecies two-body interactions exist. Since
the interspecies interaction is absent, the miscibility condition
g181 > g212 is always satisfied. As one could expect, the wave
propagation in the system is fully stable [see Figs. 10(al)
and 10(a2) for the first and second BEC components,

k=3

respectively] when gy = 0. The maximum amplitude oscil-
lates but remains very close to its initial value. In the presence
of residual interaction (go # 0) as shown in Figs. 10(b1) and
10(b2), the stability of the system is further reinforced as the
small modulations which were present in Figs. 10(al) and
10(a2), though not making the system unstable, have been
suppressed in Figs. 10(b1) and 10(b2). The full space-time
evolution of the density corresponding to Figs. 10(b1) and
10(b2) is portrayed for the first [Fig. 10(c)] and the second
[Figs. 10(d)] species to further appreciate the stability. Similar

FIG. 7. Distribution of the MI growth rate versus the perturbation wave number k and the helicoidal gauge potential 8 for @ = 1, with the
frequency mismatch « taking the respective values 1, 3, and 8 for columns from left to right. The helicoidal gauge potential takes the value
/3 = 2, with (a) 8o = 0.90, 81 =8 = 1, and 812 = 2 and (b) 80 = 0.02, 81 =82 = —1, and 812 = 2.
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FIG. 8. Distribution of the MI growth rate in the («, 8) plane for a perturbation wave number k = 1 and the frequency mismatch « taking
the respective values 1, 3, and 8 for columns from left to right, with (a) go = 0.02 and (b) go = 0.9. The other parameters are g; = g, = 1,

gin=2,and ny = 1.

behavior can be obtained even when the system has both
the intra- and the intercomponent two-body interactions as
displayed in Fig. 11 because the miscibility condition is still
satisfied. The difference between the interaction strengths g;
and g, seems to play no role in this stability since Figs. 10
and 11, where the system is asymmetric and symmetry, re-
spectively, both display similar dynamics. Hence the residual
nonlinearity preserves and reinforces the stability of miscible
pairs of condensates with SO coupling. What would happen
if the initial state is modulationally unstable is an interesting
question.

9,>9,
919,>91,95,

(@1

N

0
k

9,= 9,
9195912954

2. Softening of the existing instability

The evolution of a miscible system with intracomponent
two-body interactions and spin-orbit coupling is shown in
Fig. 12. The system is modulationally unstable, and asymme-
try has been considered as g; # g». In the presence of residual
nonlinearity, the system is still unstable. This can be seen
from the exponential growth in the wave amplitude when g
is zero as in Fig. 12(a) and nonzero as in Fig. 12(b). It can
equally be seen from the formation of periodic structures in
both condensates as shown in Figs. 12(c) and 12(d). However,

@) [

2.5

1.5

2 -2 0
k

FIG. 9. Distribution of the MI growth rate versus the perturbation wave number k and the gauge amplitude «, with the frequency mismatch
k =5 and (a) go = 0.02 and (b) go = 0.9. From left to right, the columns correspond to g; > g>, g1 = &2, and g, > g1, with g, = 2.
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FIG. 10. Numerically computed stable dynamics of the system
with only intracomponent two-body interaction. We used go = 0,
k=1 g1=4 =1 80=0,a=8=0, and (a) go =0 and
(b) go = 1. Also shown is the space-time evolution of the wave in
the (c) first and (d) second species for the same parameters as in (b).

the unstable mode exponentially grows only to a smaller max-
imum amplitude as obtained when comparing Figs. 12(al)
and 12(b1) or Figs. 12(a2) and 12(b2). This corresponds to a
reduction of the instability gain and consequently a softening
of the MI. Even when the system has both the intra- and the
intercomponent two-body interactions and no asymmetry, the
same dynamics qualitatively occurs in the system as displayed
in Fig. 13, where the system is still miscible. Hence when a
miscible binary mixture of condensates with SO coupling is
modulationally unstable, the presence of the residual nonlin-
earity may help soften such an instability.

FIG. 11. Numerically computed stable dynamics of the system
with both intra- and intercomponent two-body interactions. We used
g0 =0k=1,g1=g=4,g0=2,0a =B =0,and (a) go = 0 and
(b) go = 1. Also shown is the space-time evolution of the wave in the
(c) first and (d) second species for the same parameters as in (b).

(b1)

FIG. 12. Numerically computed unstable dynamics of a miscible
system with intracomponent two-body interactions and spin-orbit
coupling. We used go =0, k=1, g1 =4, g&o=1, gn=0, a =
1.595, B =0, and (a) go =0 and (b) go = 1. Also shown is the
space-time evolution of the wave in the (c) first and (d) second
species for the same parameters as in (b).

3. Suppression of modulational instability

The softening effect of residual nonlinearity holds the
promise of being responsible for the complete stabilization of
some unstable modes. That is true, for instance, for a miscible
binary condensate system with two-body repulsion. The dy-
namics of the system is presented in Fig. 14. In the absence of
residual nonlinearity, the system is unstable as the amplitude
exponentially grows in both condensates [see Figs. 14(al) and
14(a2)] and periodic structures with high amplitude pulses
within both the first [Fig. 14(a3)] and second [Fig. 14(a4)]
BEC components. When we consider the residual nonlinearity

(a1) (b1)

(a2) (b2)

FIG. 13. Numerically computed unstable dynamics of a miscible
system with both intra- and intercomponent two-body interactions,
residual nonlinearity, and spin-orbit coupling. We used gop = 1, k =
1, g1=g=4, gn=2, «a=1.595, =0, and (a) go =0 and
(b) go = 1. Also shown is the space-time evolution of the wave in
the (c) first and (d) second species for the same parameters as in (b).
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FIG. 14. Numerically computed space-time evolution of the den-
sity in both condensate components depicting the suppression of
instability in a miscible system with two-body repulsion due to
the residual nonlinearity. The system is subject to both intra- and
intercomponent two-body interactions and the helicoidal gauge po-
tential. Weusedk = 1,81 =g, =4,82 =2, =0, B = 1.996, and
() go =0and (b) go = 1.

to be nonzero, however, the system becomes modulationally
stable as there is no longer exponential growth in the wave
amplitude in both condensates [Figs. 14(b1) and 14(b2). The
perturbed initial plane wave only performs small-amplitude
oscillations leading to modulated planelike waves within both
the first [Fig. 14(b3)] and second [Fig. 14(b4)] BEC com-
ponents. The gradual process of stabilization is depicted in
Fig. 15. Figure 15(a) shows the density profiles after a runtime
t = 50, which is long enough to get the onset of MI in the sys-
tem. As the residual nonlinearity increases, the wave profile
evolves and a dramatic change arises around gop = 0.90 when

—=—normalized growth rate
===maximum amplitude

%

maxxv((\cq

space 9

FIG. 15. (a) Density profiles and (b) numerically computed in-
stability growth rate for runs up to ¢t = 200 for various values of
the residual nonlinearity strengths showing the gradual stabilization
of the system. We used k=1, g1 =g, =4, gn=2, « =0, and
B = 1.996.

the profile turns from a train of pulses (blue dash-dotted line)
to a regular modulated plane wave (green dotted line). The
amplitude of the modulated plane wave is further transformed
to make it greater (red dashed line) and then closer to the
initial wave (solid black line). From the space-time evolution
of the wave, we can extract information about the stable and
unstable ranges of residual interaction strengths as well as
the information on the instability growth rate. This can be
done in several ways, including using the overall maximum
amplitude max, ,( [¥]?) or using the time 7, when the first MI
peak occurs. The actual instability growth rate &, displayed
in Fig. 15(b) with a black solid line, was calculated as 1/7,
and normalized to 1 using its value in the limit of zero residual
nonlinearity. For gg > 0.90, no MI peak was found for runs
up ¢ = 200 and thus we took 7, = oo for those modes. For
increasing go, the plot shows a smooth but fast drop in &,
which makes it comparable to the analytical gain profile. The
maximum amplitude is also displayed in Fig. 15(b), depicting
a sudden drop from maxx,t(|1/f|2) = 2.045 to 1.108, which is
close to the amplitude of the initially perturbed plane wave
1.020. It is obvious that the drop marks the separation between
the stable and unstable regions. The maximum amplitude can
then allow us to easily distinguish along the gy axis a stable
range go = 0.90 from an unstable range gy < 0.90.

Hence, for miscible binary mixtures, the residual nonlin-
earity can preserve the stability or soften the instability by
reducing the growth rate. It can also suppress the instability
for safe system parameters, turning unstable modes into com-
pletely stable ones.

B. Instability enhancement
1. Case of repulsive interactions

From the above analysis, it is clear that the residual interac-
tion plays an important role in the stabilization of the repulsive
two-species BECs even in the presence of spin-orbit couplings
and helicoidal gauge potential, provided the miscibility crite-
rion is fulfilled. It is therefore interesting to question whether
that stability remains true when the miscibility criterion is no
longer satisfied. Figure 16 portrays the dynamics of the first
[Fig. 16(a)] and second [Fig. 16(b)] BEC components in the
case when g8, < gzlz, for a symmetrical mixture in the pres-
ence of helicoidal gauge potential. The two-body interactions
are still repulsive as in the preceding section. In the absence
of residual interaction, the dynamics is unstable, as expected
for immiscible systems. As done for miscible systems in the
preceding section, we consider immiscible systems where
the residual interaction is not negligible. Unlike previously,
the residual nonlinearity rather destabilizes the system. The
onset of the modulational instability in the two-component
BEC arises earlier when the strength of residual nonlinearity
increases, eventually leading to very high wave amplitudes
[see the modes with gy = 0.08 (green solid line) and 0.09 (ma-
genta dash-dotted line)]. In this case, the formation of periodic
structures through the MI process as shown in Fig. 16(c) is
accompanied by the gradual separation of the initially mixed
species. When pulse trains are formed within the system, the
pulses from different species avoid any overlap between them
in both the absence [Fig. 16(d1)] and presence [Fig. 16(d2)]
of residual nonlinearity.
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FIG. 16. Numerically computed space-time evolution of the
maximum density in the (a) first and (b) second condensate species
depicting the destabilizing effect of the residual nonlinearity in an
immiscible system with two-body repulsion. The system is subject to
both intra- and intercomponent two-body interactions and the heli-
coidal gauge potential. Weusedk =1,g1 =g =2,812 =4, =0,
and B = 1.996. (c¢) Example of space-time evolution for go = 0.03
in the first species and (d) examples of space profiles depicting the
immiscibility of generated pulses.

2. Case of attractive interactions

The MI enhancement obtained above for mixtures with
two-body repulsion happens to exist also for mixtures with
two-body attraction whether they are immiscible or not. To
examine that, we consider the interesting situation when the
system is miscible and subject to intracomponent two-body
interactions and the helicoidal gauge potential. The modula-
tional instability occurs in the two-component BEC even for
very weak strengths of residual nonlinearity, as one may see in
Fig. 17. When the strength of residual nonlinearity increases,
the exponential growth arises earlier and becomes stronger,
eventually leading to extremely high wave amplitudes in both
BEC components [see the mode with gy = 0.020 (magenta
dash-dotted line) in Figs. 17(a) and 17(b)]. The instability is
accompanied by the formation of stable pulse trains as shown
in Fig. 17(c). The pulses are regularly spaced by a distance of
27 [k, with k = 1 corresponding to the wave number of the
injected perturbation. In both the absence [Fig. 17(d1)] and
presence [Fig. 17(d2)] of residual nonlinearity, the pulses are
Akhmediev-like breathers, as one can readily notice from their
shape. Hence the MI-induced formation of stable solitons in
mixtures of BECs with two-body attraction may be preserved
by the residual nonlinearity even though the latter enhances
the instability. We believe that such a result is due to a com-
plex mechanism whose investigation is beyond the scope of
this work.

V. CONCLUSION

To summarize, the MI has been addressed in a binary
mixture of BECs through a set of coupled GP equations in
the presence of HO residual nonlinearities and helicoidal

——1=6.1 (BEC 1,9, = 0)
—-—-1=6.1 (BEC 2, g, = 0) (d1)
H I

—t=5.9 (BEC I,gu=001)
N,: 10 _--,-l=5.9 (BEC 2,9, =0.01) (d2)

[th(x.t

FIG. 17. Numerically computed space-time evolution of the
maximum density in both condensate components depicting the
destabilizing effect of the residual nonlinearity in a system with two-
body attraction. The system is subject to intracomponent two-body
interactions and the helicoidal gauge potential. We used k = 1, g; =
g =—1,82=0,0 =0,and g = 1.996. (c) Example of space-time
evolution for go = 0.03 in the second species and (d) examples of
space profiles depicting the Akhmediev-like breathers generated by
the MI.

SO coupling. Through the standard theory of linear stability
analysis, we have found the dispersion relation for the per-
turbation frequency, from which an expression for the MI
integrated gain has been proposed. A comprehensive para-
metric analysis of the instability gain has been carried out,
with insistence on the competitive effects between residual
nonlinearities, helicoidal SO coupling, and interatomic in-
teractions. Our analysis revealed that the presence of HO
interactions supports modulational instability even in miscible
two-component condensates, in the context where the gauge
potential and the gauge amplitude are suitably chosen. Due to
the combination of the residual HO interaction and helicoidal
SO effects, it was found that the MI occurrence in immiscible
condensates gets importantly modified and responds to gain
excitation in both left- and right-handed helicoidal coupling.
Such results were found to agree with direct numerical sim-
ulations. Due to the residual interaction, the modulational
instability is softened and can even be suppressed for miscible
binary mixtures with two-body repulsion in the presence of
spin-orbit coupling. For immiscible mixtures, however, the
modulational instability is enhanced by the residual inter-
atomic interactions.
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