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Unravelling quantum chaos using persistent homology
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Topological data analysis is a powerful framework for extracting useful topological information from complex
data sets. Recent work has shown its application for the dynamical analysis of classical dissipative systems
through a topology-preserving embedding method that allows reconstructing dynamical attractors, the topologies
of which can be used to identify chaotic behavior. Open quantum systems can similarly exhibit nontrivial dy-
namics, but the existing toolkit for classification and quantification are still limited, particularly for experimental
applications. In this paper, we present a topological pipeline for characterizing quantum dynamics, which draws
inspiration from the classical approach by using single quantum trajectory unravelings of the master equation to
construct analog quantum attractors and extract their topology using persistent homology. We apply the method
to a periodically modulated Kerr-nonlinear cavity to discriminate parameter regimes of regular and chaotic
phases using limited measurements of the system.
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I. INTRODUCTION

Classical nonlinear systems can exhibit chaotic behavior if
they possess extreme sensitivity to initial conditions and are
topologically mixing. The interplay of these two properties
leads to long-term unpredictability and seemingly random
dynamics, despite being fully deterministic. When dissipative
effects play a role, a complex geometrical structure can be
observed in the phase-space dynamics, known as a strange
attractor. Strange attractors differ from other phase-space at-
tractors in that two points that are initially nearby on the
attractor will eventually evolve to become arbitrarily far apart.
This divergence is used as a diagnosis of whether a particular
system is chaotic, quantified in conventional methods by cal-
culating the maximal Lyapunov exponent (LE), a measure of
the average rate of divergence in phase space [1].

When quantum effects are significant, chaotic behavior
at the wave-function level is precluded due to the linearity
of the Schrödinger equation [2]. Instead, the role of chaos
in quantum mechanics is studied by identifying signatures
of quantum systems which result in a classical counterpart
that yields chaotic dynamics. Early efforts in quantifying
quantum chaos focused on the spectral statistics of chaotic
Hamiltonians, with level-spacing statistics corresponding to
that of random matrices when the classical limit is chaotic
[3–5]. There have also been various quantum generalizations
of the classical LE constructed in terms of quasiclassical
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phase-space dynamics, the stochastic Schrödinger equation,
and, more recently, out-of-time-order correlators (OTOCs)
[6–9]. Beyond addressing fundamental questions concerning
the correspondence principle between quantum and classi-
cal limits [10], there is interest in understanding the role of
quantum chaos in the thermalization of quantum many-body
systems and subsequent implications for quantum information
and near-term quantum computation [11–15].

In comparison to the classical case, where the maximal LE
can be used unambiguously as an indicator of chaos, the tool
set for quantifying chaos in open quantum systems remains
limited. Furthermore, these methods typically involve quanti-
fiers that are difficult to measure in real experimental settings.
For example, calculating the recently proposed OTOC-based
LEs requires the ability to precisely reverse the evolution of a
system, which is extremely challenging [16,17].

Recently, there has been growing interest in topological
data analysis (TDA) methods for approaching problems in
physics where geometric structure and symmetries can be
exploited [18–20]. TDA is a powerful and robust frame-
work that enables the extraction of useful and explainable
topological information from complex high-dimensional data
sets. One such application has been in the characterization
of classical dynamical systems through counting the number
of low-dimensional holes of reconstructed attractors [21–24].
This offers an alternative to methods based on calculating the
maximal LE, which can be heavily affected by noise and finite
data sizes [25,26].

The primary objective of this paper is to see whether TDA-
based methods for chaos detection which have already proven
effective in the classical case can be applied to the harder-
to-visualize dynamics of open quantum systems, where the
attractor in phase space is no longer well-defined by trajecto-
ries as in the classical case. As single system trajectories are
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FIG. 1. Schematic of (a) leaky periodically driven nonlinear cav-
ity model and (b) TDA pipeline for a noisy periodic time series
(left) embedded into two dimensions using time-delay embedding
(middle) with the presence of a single cycle indicated by the corre-
sponding persistence diagram (right) with 0D (blue) and 1D (orange)
features. To illustrate the embedding of two points (red) in the
time series according to Takens’ embedding, the corresponding two-
dimensional point (red) is indicated on the point cloud.

compared in the classically chaotic case to find exponential
divergence, it seems sensible to adopt a quantum approach
that does likewise. Thus, we propose an approach based on
quantum trajectories that are obtained from unravelling meth-
ods. Specifically, we consider the Monte Carlo wave-function
method, which replaces the original master equation with
an ensemble of stochastically evolving quantum trajectories,
whose average recovers the full density operator evolution
[27,28]. We follow one member of the ensemble and use
the time evolution of suitable observables to approximate a
classical trajectory analog.

We apply this approach to probe the structural stability
of cavitylike open quantum systems to detect transitions to
quantum chaos (that is, regimes where the classical counter-
part is chaotic); namely, we consider a Kerr-nonlinear cavity
driven by a periodically modulated external electromagnetic
field and show that the topological properties of a single
quantum trajectory can be used to distinguish between regular
and chaotic parameter regimes of the system. These quantum
trajectories can be realized in continuous monitoring schemes,
which opens a route for the application of this topological
approach in real-life experimental setups [29,30]. A graphical
schematic of the full pipeline is shown in Fig. 1. From a
broader perspective, this paper also bridges the application
of TDA to quantum dynamics and we foresee that further
research surrounding this connection will be fruitful.

The outline of this paper is as follows: Section II provides a
brief introduction to attractor reconstruction using time-delay
embedding and the TDA method of persistent homology.
Section III establishes the quantum system (and its classical
counterpart) considered in the current study and introduces
the Monte Carlo wave-function method. Sections IV and V
present the proposed topological approach for identifying reg-
ular and chaotic regimes in classical and quantum systems,
respectively, demonstrating examples of the full pipeline.
Section VI summarizes the results obtained using this ap-
proach to detect chaotic phases in the parameter space of the
system. Section VII makes concluding remarks and suggests
future directions.

II. BACKGROUND

A. State space reconstruction

In general, the attractor of a classical dynamical sys-
tem may not be directly accessible in an experimental setup
because a mathematical description of the system and the
dimensionality of its full phase space is unknown. Typically,
measurements may only be able to be recorded of one relevant
quantity at regular time intervals, resulting in a single time
series x(t ) that represents a scalar observation function of the
full state vector x(t ):

x(t ) = F (x(t )). (1)

Takens’ embedding theorem implies that this single time
series that has been observed from a potentially unknown
dynamical system can be useful in reconstructing the attractor
for the full system [31]. Specifically, the observed time series
x(t ) can be embedded into a d-dimensional vector space in
such a way as to preserve the topological properties of the full
state space x(t ). This time-delay embedding involves taking
uniformly time-lagged samples of the time series and concate-
nating them into a single vector,

X(t ) = (x(t ), x(t − τ ), . . ., x(t − (d − 1)τ )), (2)

where d is the embedding dimension and τ is the embedding
time delay. The embedded points form features, such as loops
and voids, that reflect the same topology as the attractor of the
dynamical system, guaranteed by Takens’ theorem as long as
appropriate embedding parameters are chosen [1,31]. There
is no consensus on the most favorable way to choose these
and it is largely dependent on the specifics of the data, but
popular heuristic methods include using mutual information
for estimation of the optimal time delay and false nearest
neighbors for determination of a proper embedding dimension
[32,33].

B. Topological data analysis and persistent homology

TDA deals with attaching topological structure to finite
sets of data, so invariant properties under smooth deformation
can be derived algebraically. These structures are known as
simplicial complexes, and can be constructed given any set of
data that is equipped with some measure of distance. This tri-
angulationlike procedure results in a network of k-simplices,
which are sets of k + 1 of the points. For example, 0-simplices
are points, 1-simplices are edges between pairs of points,
2-simplices are areas enclosed by three points, and so on. The
condition under which k-simplices are formed from a finite
set of points is chosen by the user, which consequently deter-
mines the k-simplices included in the simplicial complex. A
common choice is the Vietoris-Rips (VR) complex which is
built by forming k-simplices from sets of points whose pair-
wise distances are less than or equal to ε, a given non-negative
filtration parameter (also referred to as a characteristic scale).
The VR filtration is used in the present paper and illustrated in
Fig. 2. The reader should note that for much larger data sets,
the exponential increase in the number of simplices makes
computation extremely inefficient and other, more efficient,
complexes can be used such as the witness complex, which
builds the complex using a subset of the original data [34].
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FIG. 2. Simplicial complexes constructed at a small (left) and
large (right) value of the filtration parameter ε. Sets of k points are
connected together by k − 1 simplices (edges, faces, etc.) if all the
points in the set have pairwise intersecting ε balls, corresponding to
the Vietoris-Rips filtration.

Over varying values of ε, a sequence of simplicial com-
plexes can be obtained, known as a filtration. Each complex in
the filtration will have different topological information which
can be extracted to determine the abstract shape of that com-
plex. One such nontrivial topological property is the number
of k-dimensional “holes,” which can be determined by calcu-
lating the kth Betti number of the complex using techniques
from algebraic homology [35]. By tracking how the topology
of the simplicial complex varies with the filtration parameter
ε, we can effectively study what the shape of the data set looks
like at different scales. This method is known as persistent
homology, and allows a degree of importance to be attributed
to topological features based on how far through the filtration
they persist. The jargon refers to ranges of ε as lifetimes, with
topological features being born or created at a particular value
and dying or destroyed at another. Qualitatively, features that
have short lifetimes we attribute to noise, while those that live
longer correspond to the true topological features of the data
set that we are aiming to discover.

In the above discussion, we aim to introduce the method
of persistent homology, although it is by no means a com-
prehensive introduction. We refer the reader to the following
literature which provide more in-depth and mathematical cov-
erage, if this is needed [19,20,36].

III. MODEL

For our quantum system of interest, we consider a damped,
driven, Kerr-nonlinear cavity which is known to be chaotic
in the classical case and whose chaotic regimes have been
well studied in the literature [37,38]. Its unitary dynamics is
governed by the following Hamiltonian, written in a frame
rotating with the cavity resonance frequency ω:

H = 1
2 h̄χa†2a2 + ih̄F (t )(a† − a), (3)

where a† (a) are photon creation (annihilation) operators, re-
spectively, χ is the photon interaction strength, F (t ) describes
the periodic modulation by an external driving field, and time
t is normalized by the cavity period 2π/ω. We consider the
same driving as in Ref. [38], where F (t ) is a string of rectan-
gular pulses of amplitude A, length T/2, and separation T/2,
such that F (t ) = F (t + T ). Note that if F (t ) is time inde-

pendent, the system loses the potential for exhibiting chaotic
behavior.

Next, we incorporate damping of the cavity field into the
model using the conventional formalism of open quantum
systems. The time evolution of the reduced density matrix ρ

describing the cavity state is governed by a master equation of
the Lindblad form [27]:

∂ρ

∂t
= − i

h̄
[H, ρ] + L[ρ]. (4)

The second term on the right-hand side of Eq. (4) captures the
weak coupling of the system to the environment by a set of
jump operators Li. In general, there can be many of these oper-
ators which describe different classes of system-environment
couplings. Ignoring this term simply reduces Eq. (4) to the fa-
miliar von Neumann equation, capturing the unitary dynamics
of the system described by the Hamiltonian (3). Here, only
single photon emissions described by the jump operator L are
considered and the dissipative term in Eq. (4) can be expressed
as

L[ρ] = LρL† − 1
2 {L†L, ρ}, (5)

where {A, B} = AB + BA. The effect of damping manifests as
photon emissions from the leaky cavity, represented by a jump
operator L = √

γ a, where γ is a dissipative coupling constant.
We assume that the pumping rate of photons into the cavity
from the thermal environment is zero, following Refs. [38,39].

Though the master Eq. (4) can be solved numerically, if the
relevant Hilbert space of the quantum system is of dimension
N , the density operator requires N2 real numbers to represent.
This heavy computational requirement can be reduced us-
ing the quantum jump (Monte Carlo wave function) method,
which constructs quantum trajectories by evolving wave func-
tions |ψ (t )〉 using a pseudo-Hamiltonian of the form

HMC = H − ih̄

2
L†L, (6)

combined with stochastic jumps that correspond to the en-
vironmental action of the jump operator(s). Averaged over
an ensemble of many trajectories, this evolution becomes
equivalent to the master equation treatment in Eq. (4) [28,40].
Expectation values of observables Ô are similarly calcu-
lated by using the expectation values of wave functions
〈ψ (t )|Ô|ψ (t )〉 and taking the ensemble mean over all tra-
jectories. Importantly, this method allows for mimicking the
behavior of individual realizations of the system dynamics and
correctly reproduces the density matrix when averaged over
many iterations.

In the classical limit of large amplitude coherent states,
when the average number of photons in the cavity tends to
infinity, following Refs. [37–39], the master Eq. (4) can be
transformed into

dξ

dt
= −1

2
γ ξ + F (t ) − iχ |ξ |2ξ, (7)

where ξ is a complex dynamical variable whose real and
imaginary components represent the position and momentum,
respectively. This variable can be compared directly with the
expectation value of the photon annihilation operator 〈â〉ψ in
the quantum case. The nonlinear dynamical system described
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FIG. 3. Stroboscopic values of Re(ξ ) at integer multiples n of the
driving period 40 < n < 100 as a function of the driving amplitude
A. This classical bifurcation diagram visually indicates the transitions
between regular and chaotic behavior. Simple curves correspond
to regular periodic dynamics and the thicker bands correspond to
chaotic trajectories which wander densely in the phase space. The
driving period is fixed at T = 8 and other model parameters have
values of γ = 0.05 and χ = 0.008.

by Eq. (7) can be shown to exhibit regions of chaotic behavior,
as visualized in the bifurcation diagram (Fig. 3) that shows
the stroboscopic parameter dependence. Simple curves corre-
spond to regular dynamics, while thicker bands indicate an
exploration of the phase space that is characteristic of chaotic
behavior.

IV. CLASSICAL CHAOS DETECTION

The attractor of a dissipative system describes its long-time
evolution in phase space and has distinct topological proper-
ties based on whether the system dynamics exhibit regular
(nonchaotic) or chaotic behavior. As discussed in Sec. II A,
an attractor can be faithfully reconstructed (up to its topol-
ogy) from the time series of a single observable through an
embedding technique, without knowledge of the full phase-
space dynamics. The resulting embedded data can then be
analyzed through TDA methods such as persistent homology
to characterize the reconstructed attractor and thus the system
of interest. This method has been previously proposed as a
quantifier for classical chaos as an alternative to the maximal
LE, which can be difficult to compute for noisy, finite data
[21,22].

Recall from the Introduction that in the study of quantum
chaos, we are interested in finding signatures of the quantum
system in regimes where the corresponding classical system is
chaotic. Thus, we start with an analysis of the classical limit
described by Eq. (7) and use it to determine the parameter
regimes under which the system exhibits chaos.

The embedding and TDA pipeline is demonstrated for the
analysis of the classical dynamical system for drive parameter
values corresponding to regular and chaotic phases in Fig. 4.
In this paper, for the time-delay embeddings we determine op-
timal hyperparameters using the heuristic methods discussed
in Sec. II. It should be noted that although the specific values
of the embedding delay and embedding dimension are not
important as long as they satisfy the criteria of Takens’ the-

FIG. 4. Example of TDA pipeline for the classical system
[Eq. (7)] in regular (A=1, T =8) (left) and chaotic (A=4.5, T =8)
(right) phases. Time series evolution of real part of dynamical
variable (a), (b) with corresponding two-dimensional time-delay em-
bedding (c), (d), and persistence diagram (e), (f) for zero- (blue) and
one-dimensional (orange) features. Embedding time-delay is τ = 20,
determined using heuristic methods (see Sec. II A).

orem [31], they do have an influence on the features obtained
through persistent homology due to the discrete nature of the
data. We verify in the Appendix that the results for the quan-
tum case remain robust over a wide range of hyperparameter
values.

For driving parameters chosen in the regular phase (A = 1,
T = 8), the periodic dynamics obtained by numerically solv-
ing Eq. (7) and shown in Fig. 4(a) lead to a reconstructed
attractor that has a simple geometric structure. The embedded
point cloud shown in Fig. 4(c) exhibits a single cycle. This
is quantified by the persistence diagram in Fig. 4(e) which
identifies the presence of the cycle through the single long-
lived one-dimensional feature furthest from the diagonal. The
strange attractors that correspond to chaotic dynamics have
much more complex structures whose topology cannot be
described analytically as in the regular case [1]. Figure 4(b)
shows the time series for parameter values chosen in the
chaotic phase (A = 4.5, T = 8), which results in a recon-
structed attractor whose points are scattered densely over the
phase space in Fig. 4(d). Correspondingly, the persistence
diagram in Fig. 4(f) indicates that at the scale of the system dy-
namics there are numerous features with a range of lifetimes.
During the transition between the regular and chaotic phases,
we note that the attractors develop two long-lived features
indicative of two cycles. This is highly suggestive of period-
doubling behavior on the route to chaos, also illustrated by
the curve bifurcations in Fig. 3, as the correlation between
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the number of cycles observed in phase space trajectories and
multiperiodicity of the dynamics has been previously identi-
fied [22,41].

These distinctions between persistent features of different
systems can be used as a quantifier for distinguishing regular
and chaotic phases. Motivated by the significance of the size
and number of cycles outlined in the above discussion, we
consider as a topological measure the average lifetime of low-
dimensional topological features, discussed further in Sec. VI.

V. QUANTUM CHAOS DETECTION

Turning now to the quantum case, we present an approach
for detecting chaotic dynamics in open quantum systems us-
ing TDA, which draws inspiration from the classical attractor
reconstruction method outlined above. The key idea is that
instead of the ensemble-based master equation formulation,
single quantum trajectories obtained from the quantum jump
unravelling can be used as direct analogs to the trajectories
in the classical formulation of chaos. Through measure-
ment of a suitable observable, a time series can be obtained
whose dynamical properties we can extract through time-
delay embedding and the application of TDA as described in
Sec. IV.

It has been shown previously that as an open quantum
system becomes macroscopic, the behavior of observables
〈x̂〉 and 〈p̂〉 gradually resemble that of classical attractors in
phase space [42,43]. However, at small action scales deep in
the quantum regime, this classical evolution becomes blurred
by decoherence and stochastic dissipative influences of the
environment. Our findings suggest that the stochastic evo-
lution of individual states is able to reflect the topology of
the underlying motion, robust to the effects of quantum un-
certainty. As a consequence, topological analysis of single
quantum trajectories provides a quantifier for quantum chaos
in open quantum systems. Without requiring the dynamics
of the entire density operator, this method is computation-
ally efficient and, more importantly, can be easily applied in
experimental settings. For example, single quantum trajecto-
ries can be realized through continuous monitoring schemes
such as homodyne detection or through directly measur-
able observables such as single photon detections (or any
other decay or pump channel) corresponding to quantum
jumps [29,30].

We first demonstrate this approach by considering the time
evolution of the position expectation value 〈x̂〉 as our ob-
servable to provide a simple comparison with the classical
case in Fig. 5. The time evolution of the quantum system
described by Eq. (3) is simulated using the computational
library QuTiP [44]. We allow a single quantum trajectory
to evolve over Ttrans < t < 1000 T, where Ttrans = 400 T is
discarded as transient behavior. We use Hamiltonian parame-
ters χ = 0.008 and γ = 0.05, which gives an average photon
number of 50, and consider a truncated Hilbert space with up
to N = 300 photons, following Ref. [39]. Using the computed
wave functions which evolve stochastically under Eq. (6), we
first obtain the time evolution for the position expectation
value 〈x̂〉 and apply time-delay embedding as before to obtain
a higher-dimensional point cloud that captures an underlying
topology of the system dynamics through Takens’ theorem.

FIG. 5. Example of TDA pipeline for the quantum system
[Eq. (3)] in regular (A=1, T =8) (left) and chaotic (A=4.5, T =8)
(right) phases. Time series evolution of position expectation value
〈x〉 (a), (b) with corresponding two-dimensional time-delay embed-
ding (c), (d) and persistence diagram (e), (f) for zero- (blue) and
one-dimensional (orange) features. Embedding time delays are τ =6
and τ =2, respectively, determined using heuristic methods (see
Sec. II A). Note that there are fewer points in the embedded cloud
compared to the corresponding classical clouds due to the shorter
evolution time simulated.

Since the point clouds in Figs. 5(c) and 5(d) are observed qual-
itatively to resemble the attractors of the dissipative classical
case, we refer to them as quantum attractors. In the classical
limit of large mean photon numbers, the single photon decays
will enter into Eq. (7) as a shot noise term that will become
negligible in the limit of an infinite number of photons, thus
leading to an exact reproduction of the results in Fig. 4. For the
moderate photon numbers considered here, there is an obvious
smearing out of the point clouds due to quantum noise arising
from fluctuations in the photon number from stochastic decay
events.

Despite the presence of this noise in the quantum regime,
the key result to note here is that the topological features
of these noisy quantum attractors remain robust. As a con-
sequence, these features can be extracted using persistent
homology and used to differentiate dynamical phases as in
the classical case discussed in Sec. IV. Here, we focus on
low-dimensional features which are more efficient to compute
than high-dimensional features and capture more intuitively
meaningful properties of the topology. We expect, however,
that higher dimensional topological features may provide
additional useful insights and leave this study to future
work.
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FIG. 6. Average one-hole lifetime as a function of driving am-
plitude A and driving period T for time evolution of (a) real part of
dynamical variable for the classical system [Eq. (7)] and (b) position
expectation value 〈x〉 of single Monte Carlo trajectory of quantum
system [Eq. (3)].

Given that a true topological description of the dynam-
ics has been captured, we expect the topology extracted by
Takens’ theorem to be independent of the observable chosen.
Thus, we also consider an observable based on the count of
quantum jump events, which is easier to obtain experimen-
tally and does not interfere with the intracavity dynamics.
A time series of binned photon counts is constructed by
moving a sliding window across the quantum jump times, as
shown in Fig. 7(a), which we then process using time-delay
embedding in a similar manner. The topological summary
results for both observables will be further discussed in
Sec. VI.

VI. TOPOLOGICAL SUMMARIES

Various summaries can be used for quantifying the
topological information of persistence diagrams, chosen de-
pending on the specific use case [22,45,46]. Here, we consider
the average lifetime of low-dimensional features in the persis-
tence diagram, defined as

Lavg(D) = 1

|D|
∑

h∈D

(d − b), (8)

where D is the set of all features in the persistence diagram,
and b (d) corresponds to the ε value of birth (death) of a
particular feature h. This provides a summary similar to that
of the Betti number and tells us the average size of topological
feature in the reconstructed attractor.

It is known that under different drive parameters A and
T , the quantum system of Eq. (3) contains regions of reg-
ular and chaotic behavior [39,47]. Here, we consider the
driving amplitude between the range of 0 < A < 5 and driv-
ing period between 0 < T < 50. The average lifetime for
one-dimensional holes of the reconstructed attractors are com-
puted over this (A, T )-parameter space for both the classical
and quantum systems, shown in Figs. 6(a) and 6(b), respec-
tively. The key observation is that the distinct chaotic bands
defined by different topological properties of the correspond-
ing quantum attractors are well correlated with the dynamical
phases captured by the TDA-based approach applied to the
classical system. This suggests that the quantum attractors
reconstructed from single quantum trajectories contain topo-
logical information about the open quantum system that can

FIG. 7. (a) Binned photon count time series (red dashed line)
for chaotic phase (A = 4.5, T = 8) with bin edges (green) and jump
event timings (blue). (b) Average one-hole lifetime as a function of
driving amplitude A and driving period T . The binning interval is
fixed at 9 and embedding parameters chosen using heuristic methods
(see Sec. II A).

be used to distinguish between regular and chaotic dynam-
ics. Note that the blurring of fine structure variations of the
classical dynamics within the chaotic phase bands of Fig. 6(a)
are due to effects arising from the quantum-classical transition
[39,48]. Additionally, we show that this measure is a robust
indicator of chaos by demonstrating that the phase distin-
guishability is independent of free hyperparameters for the
time-delay embedding as long as they satisfy the conditions
for Takens’ theorem (see Appendix).

Figure 7(b) shows the corresponding phase diagram ob-
tained by considering the photon count as the observable
and is similarly reminiscent of the classical phase diagram
in Fig. 6(a). It should be noted that the additional free pa-
rameter of the binning interval size has a large influence on
these values and the distinction between phases is somewhat
less clear. The intervals need to be sufficiently large to filter
out zero photon count bins, and consequently the time step
size is larger than for the position operator observable, which
results in fewer embedded points for a fixed evolution time.
Nonetheless, we emphasize the observation that this simple
measurable offers insight into a topological signature of quan-
tum chaos and we leave it to future studies to investigate the
optimal observables for probing such topologies of quantum
dynamics.

VII. CONCLUSION

In this paper, we introduced a topological approach for
the dynamical analysis of open quantum systems, which ap-
plies a phase-space embedding method on single quantum
trajectories to construct quantum attractors and extract their
topological properties using persistent homology. This was
inspired by recent applications of TDA to the dynamical anal-
ysis of classical systems, underpinned by Takens’ theorem,
which guarantees the preservation of topology under certain
transformations of time series data.

We used our quantum pipeline to investigate the dynamical
phases of a leaky Kerr-nonlinear photonic cavity driven by
an external field, which can exhibit chaotic behavior under
certain driving parameters. Our results indicate that the single
quantum trajectory retains topological information about the
entire system dynamics which can be extracted to capture
the regular and chaotic phases of the open quantum system.
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Importantly, these topological measures are found not to be
dependent on the observable considered and can be calcu-
lated using limited measurement of the system through weak
continuous monitoring schemes or other directly measurable
observables. Thus, the approach may present an advantage
over other methods for quantifying chaos in open quantum
systems, which can be experimentally difficult to realize
or require measurements of the full wave function of the
set of eigenstates [16,17,49–51]. Difficulties arise in part
from the global nature of topological properties compared
to standard LE-based techniques, which require many lo-
calized measurements to construct a suitable phase-space
picture.

This paper applies the framework of TDA for the analysis
of chaotic quantum dynamics. We hope that this can open
another perspective for employing such topological machine-
learning techniques for studying the dynamics of quantum
systems, making use of their inherent robustness to noise
and limited measurements, and ability to effectively handle
high-dimensional data sets. Another potential application of
the approach is as a data reduction step; rather than com-
puting summary statistics of the persistence diagrams, one
could feed all the obtained feature lifetimes into a machine-
learning model such as an artificial neural network that
could be trained to distinguish between regular and chaotic
dynamics [20,51].

In this paper, we considered a system whose classical-
quantum correspondence is well established, but we envision
that the ideas developed in this paper can be used to study the
behavior of topological properties for quantum chaotic sys-
tems without a classical counterpart such as the driven Rabi
model [52] or systems in which measurement-induced back-
action can modify the boundary between regular and chaotic
regimes [53]. Another interesting class of systems where topo-
logical tools may be useful are those of energy-level statistics
with the Brody distribution, where phase space is segmented
into separate regions of regular and chaotic dynamics [54].
Since energy levels also constitute one-dimensional data, it
may be possible to apply similar time-series analysis meth-
ods to distinguish between energy intervals with regular and
chaotic statistics. This could be cast as a classification, clus-
tering, or anomaly detection problem; for each of these tasks,
there are well-established applications of TDA to classical
data sets.

Since the TDA-based approach can be applied to both the
classical and quantum regimes, another possible future route
of investigation would be to see whether these topological
descriptions of quantum systems can offer any insight into
critical points during the quantum-classical transition. For
instance, the TDA method of zig-zag persistence may provide
a convenient way of tracking the persistence of specific fea-
tures through a filtration of quantum attractors that correspond
to changing size or action scales of the dynamical system
[55,56].

Another direction for which this TDA approach may aid in
uncovering unique physics is understanding quantum phase
transitions in relation to the time dependence of entanglement
structures, following recent work using persistent homology
to extract experimentally intractable entanglement measures
of quantum many-body systems [15,50,57].

Finally, we note the considerable attention given to quan-
tum TDA algorithms as a promising candidate for near-term
quantum advantage [58,59]. In particular relation to our work,
a recent paper [60] establishes a quantum Takens’ embedding
algorithm that may expedite a search for a fully quantum
pipeline for the study of quantum chaos.
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APPENDIX: TIME-DELAY EMBEDDING
PARAMETER DEPENDENCE

It should be noted that although the specific values of the
time delay and dimension for time-delay embedding are not
important as long as they satisfy the criteria of Takens’ theo-
rem [31], they do have an influence on the features obtained
through persistent homology due to the discrete nature of the
data.

Here, we demonstrate that the results for the quantum
case remain robust over a range of hyperparameter values.
Figure 8(a) shows that for a fixed embedding dimension and
varying the time-delay parameter, the topological measure
averaged over ten different chosen points in the regular and
chaotic phases, respectively, can still be easily distinguished.
Figure 8(b) indicates the same result, but with a fixed time-
delay and varying the embedding dimension.

FIG. 8. Average one-hole lifetime as a function of (a) embed-
ding time delay (D = 2) and (b) embedding dimension (τ = 7) for
position expectation value 〈x〉 of single Monte Carlo trajectory of
quantum system [Eq. (3)], averaged over ten points in the regular
(blue) and chaotic (orange) phases, respectively, with corresponding
standard deviations.
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