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Initial phase and frequency modulations of pumping a playground swing
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The playground swing is a dynamic, coupled oscillator system consisting of the swing as an object and a
human as the swinger. Here, we propose a model for capturing the effect of the initial phase of natural upper body
motion on the continuous pumping of a swing and validate this model from the motion data of ten participants
pumping swings of three different swing chain lengths. Our model predicts that the swing pumps the most if the
phase of maximum lean back, which we call the initial phase, occurs when the swing is at a vertical (midpoint)
position and moving forward when the amplitude is small. As the amplitude grows, the optimal initial phase
gradually shifts towards an earlier phase of the cycle, the back extreme of the swing’s trajectory. As predicted
by our model, all participants shifted the initial phase of their upper body movements earlier as swing amplitude
increased. This indicated that swingers adjust both the frequency and initial phase of their upper body movements
to successfully pump a playground swing.

DOI: 10.1103/PhysRevE.107.044203

I. INTRODUCTION

The pumping of a playground swing can be defined as a
coupled oscillator system consisting of an object and a human,
the swing and the swinger. This understanding and the com-
monality of swinging as a playground activity have resulted
in more than a half century of research on the dynamics of
playground swings (from the 1970s [1–4] to the 2020s [5–8]).
In a seated position, the way to add energy to the playground
swing is by rotating the center of mass around the end of the
chain of the swing, corresponding to a driven oscillation [9].
Accordingly, because the motion of the upper body rotates the
center of mass, one can simply focus on the phase between
the upper body and the swing to understand the dynamics of
pumping a playground swing.

To build our model of the dynamics of pumping the play-
ground swing, we combined and expanded upon the key
aspects of two types of models that have been proposed to
capture how the upper body moves to pump a swing. The first
or classic approach [10] defines the upper body movement of
a swinger as cos ωt , where ω is the frequency of movement
oscillations, such that the upper body of the swinger moves
in a smooth and natural way [see Fig. 1(a)]. One issue with
this model is that it assumes the swinger periodically moves
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the upper body at a fixed frequency [hereafter referred to as
the fixed-frequency model (FFM)]. When the amplitude of the
swing grows [see blue curve in Fig. 1(a) bottom], the period
of the swing extends, which results in the fixed frequency
of the swinger’s upper body movement moving outside the
swing’s basin of frequency entrainment. Once this happens,
the swinger can no longer pump the swing effectively [6].
Thus, by assuming swingers’ natural upper body movement
occurs at a fixed frequency, the FFM predicts that effec-
tive swing pumping only occurs up to a certain amplitude
(i.e., ≈40◦).

The second and more recent approach assumes that the
swinger detects when the velocity of the swing equals zero
and abruptly moves the upper body at this zero-velocity point
(e.g., [6,11]). As illustrated in Fig. 1(b), this model, here-
after referred to as the square-wave model (SWM), enables
the frequency of the upper body movement to adjust to that
of the swing, such that effective swing pumping has no am-
plitude limit. One issue with this model is that the movement
of the upper body is defined in a less natural way, because
this model assumes that a swinger makes square-wave-like
changes to the angle of the upper body when the seat of the
swing reaches the highest extremes, in front and in the back
(phase = 0π, 1.0π ).

The aim of the current paper was to propose a model of
playground swing pumping that better captures human swing
behavior, by combining the smooth upper body movement
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(a) Fixed Frequency model. A=10 (b) Square-Wave model. A=10
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FIG. 1. Schematic drawing of different ways of modeling capturing the phase between the seat of the swing (blue) and the upper body
(red). (a) Fixed frequency model. (b) Square-wave model. (c) Model proposed here. Top row: A (amplitude of the swing) = 10◦. Bottom row:
A = 40◦. The unit for the upper body angle (ordinate axis on the right of each panel) is arbitrary. Note that in the bottom row a whole cycle of
the swing to the phase of 2.0π is not shown because the period of the swing is extended with the gain of the amplitude.

characteristics of the FFM with the frequency adaption char-
acteristic of the SWM. As shown in Fig. 1(c), the model
proposed here assumes that the swinger smoothly moves the
upper body to modulate the movement to the state of the
swing. This is achieved by including a term for both the initial
phase α and frequency ω of the upper body movement. Here,
we defined the initial phase α of upper body movement as
the interval between the onsets of a cycle of the swing and
upper body, where the cycle of the swing is defined to start
from the back extreme of swing movement and the onset of
the cycle of upper body movement is defined as the point at
which a swinger’s leaning backwards movement reaches its
maximum. As illustrated in Fig. 1(c) top, when the amplitude
of the upper body reaches its maximum when the swing is
at its vertical position, the initial phase of the upper body α

equals 0.5π . When the initial phase α is 0π (= 2.0π ), the
maximum leaning back of the swinger occurs at the back
extreme of the swing [see Fig. 1(c) bottom]. As can also be
discerned from an inspection of Fig. 1(c) bottom, the upper
body of the swinger remains in sync with the swing even when
the period of the swing increases. In short, this model predicts
that swing pumping requires that a swinger not only modify
the frequency of upper body movement ω, but also the initial
phase α of the upper body movement to keep this coupling
system effective.

To validate the proposed model and the role of initial move-
ment phase in pumping a playground swing, we recorded the
motion data of ten participants pumping a playground swing.

An in-laboratory swing was constructed, such that lengths of
the chains from the top bar of the swing to the swing seat
could be manipulated. The chain length of a swing is one of
the key parameters that determines the resonant frequency of
the swing. The motion data of participants swinging for three
different chain lengths were therefore examined to verify the
reliability of our model and the role of the initial phase on
pumping a swing.

II. MODEL

A. Model formulation

As illustrated in Fig. 2(a), our model assumes the swing
is a uniform rigid body, a chain and seat, with mass M0 and
length L. Consistent with Klimina and Formalskii [5], we also
assume two degrees of freedom in the hip and the knee joints
of the swinger, with the weight and length of torso, legs, and
lower legs defined as m1−3 and l1−3, respectively. The angles
of the seat, the upper body, and the lower leg are denoted as
θ, φ, and ψ , with the origin for θ (i.e., θ = 0) corresponding
to the vertical position of the swing. The angles of φ and ψ

are defined with respect to θ , such that φ = 0◦ = θ and ψ =
0◦ = θ . All angular variables are positive for counterclock-
wise motion with the swinger assumed to be seated facing
the + side (forward) of θ . The ranges of motion of the hip and
the knee joint are defined as φ̄ ± φ0 and ψ̄ ± ψ0, respectively,
where φ̄ and ψ̄ are the centers of the range [see Figs. 2(b) and
2(c)]. This manipulation captures the asymmetry of human
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FIG. 2. Rigid body model with two degrees of freedom sitting on a swing. (a) Definitions of parameters. (b, c) Positive (b) and negative
(c) range of motion of the hip and the knee joint.

leaning movements on a swing, whereby the leaning back
motion of human upper body movement is larger compared
to the leaning forward.

To obtain the sitting position of the human a and b shown
in Fig. 2(a), we assume that the upper body and lower leg

are perpendicular to the seat in the stationary state of the
swing and that the moment around the seat is zero, such that
a = (m2/2 + m3)l2/M, b = (m1 + m2/2)l2/M, where M =
m1 + m2 + m3. The Lagrangian L for the model is
therefore

L = 1

2
(I + I ′)θ̇2 + Ngcos θ − m1

2
l1gcos(θ + φ) + m3

2
l3gcos(θ + ψ )

+ m1

2
l1{(2θ̇ φ̇ + φ̇2)l1/3 + (θ̇2 + θ̇ φ̇)(−L cos φ + a sin φ)}

+ m3

2
l3{(2θ̇ ψ̇ + ψ̇2)l3/3 + (θ̇2 + θ̇ ψ̇ )(L cos ψ + b sin ψ )}, (1)

where I = (M0/3 + M )L2, I ′ = (m1l2
1 + m2l2

2 + m3l2
3 )/3 + (m1m3 − m2

2/4)l2
2 /M, and N = (M0/2 + M )L. This Lagrangian is

an extension of the model proposed by Glendinning [6]. If the length and the weight of the upper legs are ignored, m2 = 0, l2 =
0, and a = b = 0; the mass of the chain is equal to zero, M0 = 0; and the angles of the hip joints and the knee joints are equal,
φ = ψ , then Eq. (1) is equivalent to Glendinning’s [6] model.

The Euler-Lagrange equation for the seat angle θ from Eq. (1) is

(I + I ′)θ̈ + {m1l1(−L cos φ + a sin φ) + m3l3(L cos ψ + b sin ψ )}θ̈
= −NLg sin θ + m1

2
l1g sin(θ + φ) − m3

2
l3g sin(θ + ψ )

− m1

2
l1

(
2

3
l1 − L cos φ + a sin φ

)
φ̈ − m3

2
l3

(
2

3
l3 + L cos ψ + b sin ψ

)
ψ̈

− m1

2
l1(L sin φ + a cos φ)(2θ̇ φ̇ + φ̇2) − m3

2
l3(−L sin ψ + b cos ψ )(2θ̇ ψ̇ + ψ̇2) − k sign(θ̇ )(θ̇2L3 + k′). (2)

The term ksign(θ̇ )(θ̇2L3 + k′) appearing on the right-hand
side of Eq. (2) embodies both velocity-dependent resistance
and dry friction. In the context of pumping dynamics, fric-
tion is often neglected or represented as a simple linear air
resistance proportional to velocity. Studies examining this
resistance have primarily focused on contact resistance at the
pillar of the swing [12,13]. In contrast, one can feel the airflow
through hair and on the face, particularly with a large swing
amplitude when pumping a swing. Our calculation indicates
that the velocity of the swing can reach over 20 km/h when
the chain length is 2.01 m. These observations have led us to
incorporate significant air resistance in our model, which is
characterized by a resistance proportional to the square of ve-
locity. The coefficients k = 0.4 and k′ = 7/3 were determined

using the Runge-Kutta method, with φ0 = 30◦ in the range of
θ < 100◦.

The position a of the swinger in Fig. 2(a) may shift dur-
ing pumping and may vary among swingers and thus have
a consequential impact on both Eqs. (1) and (2). We in-
vestigated the effect of position a in the range of ±0.1 m,
with the height of the swinger regarded as L1 + L2 + L3 =
0.792 + 0.393 + 0.395 = 1.58 m and weight of m1 + m2 +
m3 = 31.3 + 12.3 + 6.4 = 50 kg. The height and weight of
this typical swinger were derived from the mean values for
Japanese females aged 20–24 according to the Japanese Min-
istry of Education, Culture, Sports, Science, and Technology.
The ratio for three segments was sourced from Plagenhoef
et al. [14]. As a result, the moment of inertia I + I ′ shifts
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by 0.34%, the balanced position from rest varies within 2.9◦,
and the shift in the moment caused by gravity N is 0.22%.
Therefore, we considered these values small enough to regard
the parameter a as a constant.

The resonance between the swing and the swinger results
in a gain in swing amplitude θ . If we regard the swing as a
single pendulum, the period of the swing will be longer as
θ increases [6]. Under the condition that φ̇ = ψ̇ = φ̈ = ψ̈ =
k = 0 in Eq. (2), the period Tn of the nth cycle of the swing
can be estimated using the complete elliptic function of the
first kind K as follows:

Tn = 2π

ωn
= 8πK

[
sin

(
An−1

2

)]√
I + I ′ + Ip

g
√

C2
s + C2

c

,

Ip = m1l1(−L cos φ + a sin φ) + m3l3(L cos ψ + b sin ψ ),

Cs = N − m1

2
l1 cos φ + m3

2
l3 cos ψ,

Cc = −m1

2
l1 sin φ + m3

2
l3 sin ψ, (3)

where An−1 denotes the amplitude of the swing at the back
extreme of the cycle n − 1, while A0 = 0. Again, the onset of
a swing cycle n corresponds to when the seat is at the back
extreme (θ < 0, θ̇ = 0).

Given the period obtained from Eq. (3), the motion of
the upper body φ and the lower leg ψ are then defined as
sinusoidal functions of the form

φ(t ) = φ0 cos(ωnt + αn) + φ̄, (4)

ψ (t ) = ψ0 cos(ωnt + αn) + ψ̄, (5)

where ωn = 2π/Tn such that the frequencies of the upper
body and the lower leg movements are defined with respect
to the frequency of the swing ωt , as in Case and Swanson
[10]. Here, the time index t is set to zero at the back extreme
of the swing to start a new cycle of the swing. It is almost
infeasible to predict the period precisely when the length of
the pendulum is in a state of constant fluctuation. To overcome
this difficulty, we compared periods between the maximum
and the minimum of the pendulum length. Assuming that the
pendulum length is defined as the distance between the pivot
point of the swing and the center of mass of the swinger, it
reaches its maximum when the swinger reclines horizontally
and will be a minimum when the swinger sits with an upright

posture. Here, we estimated the length of the pendulum for
a typical swinger with a height of 1.58 m and a weight of
50 kg. For the swing with a short chain length 1.61 m, the
pendulum length varied within 1.4669 ± 0.0419 m, and the
size of the range 0.0419 m is about 2.86% of the median
length of 1.4669 m. For the medium chain of 1.81 m, the
range of the chain length was 1.6494 ± 0.0395 m, equating
to 2.39%, and for the long chain of 2.01 m the range of
the chain length was 1.8322 ± 0.0375 m, corresponding to
2.04%. We regarded these fluctuations as small enough to
define the distance between the pivot of the swing and the
estimated median of the center of mass of the swinger as the
pendulum length. We put this pendulum length into Eq. (3)
and obtained oscillatory period Tn. This estimate enabled us to
successfully derive a numerical solution for Eq. (2) using the
Runge-Kutta method, which demonstrates that the oscillation
of the swing constantly increases its amplitude.

At the onset of the cycle of the swing t = 0, φ(t ) and ψ (t )
are determined by Eqs. (4) and (5), with the term α as the
initial phase of the upper body and the lower leg (updated
at the onset of each cycle). Note that the initial phase α is
the interval between the onset of a cycle of a swing (t = 0)
and the time of maximum leaning back φ0 in that cycle. Thus,
if the angle φ reaches its maximum at the onset of the swing
cycle t = 0, the initial phase will be α = 0π as shown in
Fig. 1(c) bottom. If the angle φ reaches its maximum when
the swing is at the vertical (θ = 0, θ̇ > 0), the initial phase
will be α = 0.5π as shown in Fig. 1(c) top.

For the initial phase α, it is difficult to derive equations that
define its relationship with other parameters, such as the am-
plitude and the period. Instead, we explore the relationship
between the initial phase and the gain of amplitude per cycle
by examining the contributions of different model parameters
(e.g., α, φ0, ψ0, φ̄, and ψ̄), to the gain of the amplitude of the
swing by substituting φ and ψ of Eqs. (4) and (5) into Eq. (2).
To estimate the gain � of the amplitude A per cycle, we
assume that θ in Eq. (2) is expressed as θ (t ) = −A sin ωt , and
then expand the trigonometric functions for θ, φ, and ψ to
fourth order terms. We then multiply Eq. (2) by θ̇ and integrate
the energy of one cycle to estimate �. Importantly, we do
not put the initial phase α in the equation that determines the
swing amplitude θ as in Case and Swanson [10]. Instead, the
initial phase α is defined in Eqs. (4) and (5), which determine
the motion of the swinger, φ and ψ . Accordingly, the gain of
the amplitude per cycle can be expressed as

�= An

2Ng sin An

{
cφm1l1φ0π sin αn − cψm3l3ψ0π sin αn − k

(
8

3
A2

nω
2
nL3 + 4k′

)}

where cφ =
(

1 + 1

4
Anφ0 cos αn − 1

8
A2

n − 1

8
φ2

0 − 1

2
φ̄2

)
g −

(
L − 2

3
l1 − 3

8
Lφ2

0 − L

2
φ̄2

)
ω2

n

+
(

1

2
(1 − φ̄)φ0An cos αn − 1

4
(1 − φ̄/2)φ2

0

)
Lω2

n,

cψ =
(

1 − 1

4
Anψ0 cos αn − 1

8
A2

n − 1

8
ψ2

0 − 1

2
ψ̄2

)
g −

(
L + 2

3
l3 − 3

8
Lψ2

0 − L

2
φ̄2

)
ω2

n

+
(

1

2
(1 − ψ̄ )ψ0An cos αn − 1

4
(1 − ψ̄/2)ψ2

0

)
Lω2

n. (6)
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FIG. 3. Initial phase α, amplitude of the swing A, and gain of the amplitude per cycle � (left, short chain; middle, medium chain; right,
long chain). The bright, medium, and dark colors indicate small (φ0 = 25◦), medium (φ0 = 35◦), and large (φ0 = 45◦) amplitude of the upper
body, respectively. Colored dots indicate the initial phase α to obtain the maximum � for a given amplitude A. Triangles in dark colors are
initial phases for zero � values.

It is important to note that the term on the leftmost side
in the wave brackets, cφm1l1φ0π sin αn, illustrates that � in-
creases with sin αn. If the initial phase αn is close to 0.5π ,
the maximum gain will be achieved, and if the term sin αn is
small, the gain of the amplitude will be limited. In Eq. (6), one
of the coefficients of sin αn and cφ , depends on cos αn so that
� would not reach its maximum at αn = 0.5π . If we assume
the typical swinger of height 1.58 m and weight 50 kg, our
numerical simulation showed that cφ stays greater than zero
when the amplitude of swing θ is less than 90◦. Therefore the
term of � in Eq. (6) will reach its maximum with αn = 0.5π

in the earlier stages of pumping while θ is small, and as
the amplitude of the swing increases, cφ also increases to a
significant extent and the phase needed to obtain maximum
� will gradually shift from 0.5π toward 0π . Given that the
mass of the lower leg ψ0 is significantly smaller than that of
the upper body [14], we will disregard the effect of the lower
leg from this point on.

B. Initial phase and amplitude gain of swing

Figure 3 illustrates the amount of gain per cycle, �,
predicted by Eq. (6) as a function of swing amplitude A,
initial phase α, and chain length. Three slopes for each
panel differ in the amplitude of the swinger’s maximum lean-
ing back (bright color, φ0 = 25◦; medium color, φ0 = 35◦;
dark color, φ0 = 45◦). These values of φ0 are determined
as the mean ± 1 standard deviation (SD) of φ0 obtained from
the subsequent motion analysis of ten participants [mean =
35.75, SD = 10.81; see Fig. 6(c)]. The colored dots indicate

the α for the maximum � in a given swing amplitude A, and
gray triangles are those where � = 0. From an inspection of
Fig. 3, it is clear that for the proposed model the gain of swing
amplitude � increases in proportion to the amplitude of the
upper body, φ0. Moreover, given the same amplitude A and
initial phase α, the swing with a shorter chain is more likely to
amplify. The initial phase α for the maximum gain � (colored
dots) gradually shift from 0.5π as A increases. Furthermore,
if the initial phase α ≈ 0, that is, if maximum leaning back φ0

occurs near the back extreme of the swing, the swing will not
amplify or decay.

In summary, our proposed model is an extension of the
previous models presented in the literature, with the following
key additions. First, a frictional force k was introduced in
Eq. (2), so that the gain of the amplitude of the swing did
not explode along with the pump, and it remained within a
realistic human movement range (see Fig. 3). Second, the
initial phase of upper body movement was also introduced
onto the equation of motion [Eq. (4)], with the resultant model
defining how the initial phase α affects the amplitude gain
of the swing. In what follows, we examined whether the
corresponding predictions (also illustrated in Fig. 3) are also
observed in the motion data of human swingers.

III. MOTION ANALYSIS

A. Method

1. Participants

Ten female college students (mean age 20.3 years) par-
ticipated in this study. All participants stated that they had
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FIG. 4. A participant pumping the swing in the lab.

previously learned to effectively pump a playground swing
(usually in their childhood). They were not specifically trained
for the purpose of this study and did not practice pumping the
swing in the laboratory prior to recordings. Participation in
the experiment was entirely voluntary and all procedures and
methods employed were approved by the Ethics Committee of
Jumonji University, which adheres to the principles outlined
in the Declaration of Helsinki.

2. Experimental setup

The swing with the horizontal pillar of 2.29 m high was
set up in a room with a ceiling height of 3.00 m (see Fig. 4).
Three lengths of the chains to hold the seat to the pillar were
employed: 1.61 m as short, 1.81 m as medium, and 2.01 m as
long. The lengths were measured from the pillar to the surface
of the seat. These chains consist of four segments, with three
knots for participants to easily grip the chain.

A motion capture system consisting of four cameras
(OQUS 300, Qualisys, Sweden) was used to measure the
position of optical markers attached to the swing and to the

participants in two-dimensional coordinates (x and y in Fig. 2)
at a frequency of 100 Hz. Three markers were attached to the
swing, one at the top pillar, and one at both the front and
the back of the seat of the swing. The average position of
two markers attached to the seat defined the position of the
intersection of the chain and the seat. Seven markers attached
to the participants: (1) top of the head, (2) right acromion, (3)
right greater trochanter, (4) right knee, (5) right ankle, (6) right
elbow, and (7) right wrist.

3. Task

Participants were asked to pump the swing from rest,
while seated until the amplitude increased more than 40◦
without kicking the floor. When the experimenter judged
that the swing amplitude was large enough, the experimenter
announced that the participant could stop. Thus, the trial dura-
tion and the maximum amplitude of the swing differed among
trials (average trial duration of ≈60 s). Each participant
performed one trial for each chain length, and the order of
the trials was randomized among participants.

B. Examination of model fit

Figure 5 shows the amplitude gain per cycle �, predicted
from the model versus the gain obtained from participant
trials. To predict the amplitude gain, we put values of
A, ω, α, and φ of each cycle obtained from motion data and
the chain length into Eq. (6). All swing cycles of all ten par-
ticipants are plotted on each panel, consisting of 210, 226, and
260 cycles. The R2 values of the linear fit between predicted
and measured � were 0.57, 0.41, and 0.30 for short, medium,
and long chains, respectively. The observed � values are con-
stantly larger than predicted ones, especially in shorter chains,
and this would lead to a better fit of the linear regression in
shorter chains. Our model predicted a smaller amount of gain
per cycle � than the actual gain, especially for shorter chains,
due to the conservative setting of the friction term k = 0.4
in Eq. (2). Given that friction increases proportionally with
the square of the seat velocity, this parameter setting leads to
the prediction of a smaller gain, particularly in shorter chains
where the seat swings more rapidly. Modifying the parameters
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FIG. 6. Period of the (a) seat, (b) upper body, and (c) amplitude of maximum lean back as a function of the swing amplitude A. Red, green,
and blue indicate short, middle, and long chains, respectively. The solid lines in panels (a) and (b) indicate the period of the swing predicted
from Eq. (3).

for the friction term of Eq. (2) for each chain length and/or
reconsidering the model of the resistance force itself would
be necessary for a better fit in the future.

C. Period of seat and upper body, and amplitude of lean back

Figure 6(a) shows the period of the seat, the interval be-
tween the onset of the seat cycle n and n + 1, as a function
of the amplitude of the seat at the back extreme (θ < 0, θ̇ =
0). As in Fig. 5, the data of ten participants overlap for
all chain lengths, indicating the stability (and similitude) of
the observed behavioral pattern across individuals (i.e., the
observed pattern of behavior is individually independent).
Colored curves indicate the theoretical period obtained from
Eq. (3). As expected, the period of the swing converged to
the predicted curve for all three chains, with increases in
chain length and amplitude leading to a longer period of
seat oscillation. The swing continued to amplify over 40◦
where the swing period extended rapidly. This indicates that
the swingers did in fact adjust the frequency of the upper
body movement along with the pump. For the long chain
length, for example, when the amplitude of the swing A in-
creased from 0◦ to 70◦, the period increased from 2701.4 to
2977.3 ms (a difference of 275.9 ms, or approximately 10% of
the cycle).

Figure 6(b) shows the period of the upper body motion.
Although the deviation around the curve is much larger than
that of the seat, the upper body of the human swingers still
followed the curve predicted by the model. The reason for
the increased variance was likely due to the noise inherent
to human movements [15], and/or because participants inter-
mittently controlled both frequency and the initial phase of the
upper body movement.

Contrary to the periods of the seat and the upper body, the
amplitude of maximum leaning back, φ0, does not show clear
relations with the length of the chain, or with the amplitude
of the swing [Fig. 6(c)]. As Fig. 3 indicates, the amount of
gain � increases with the size of leaning back φ0. However,
even when the gain of the swing amplitude is necessary, the
amplitude of leaning back stayed rather invariant. Therefore,
to pump the swing, participants preferred to control temporal
aspects of their movement (i.e., period), rather than the spatial
aspects of upper body motion (i.e., φ0).

D. Upper body cycle trajectories

Figure 7 shows the trajectory of the upper body angle φ as
a function of the phase of the seat. The three columns from
the left show the profile of the first five participants and the
right half shows that of the remaining five. The shapes of the
profile of the upper body movement are roughly sinusoidal
as assumed by Case and Swanson [10] and assuming that
there were no sudden jumps of upper body motion at either
extremes or any fixed motion in between (see [6,11,16]). In
addition, the variations in the trajectory of the upper body
movement, caused by individual differences (vertical compar-
isons of panels), were greater than that of the chain length
(horizontal comparison). This indicated that each participant
moved their upper body with their own unique way (i.e., each
participant has a slightly unique movement profile) within a
resonance range with the swing.

The colored thick curves in Fig. 7 are the trajectories of the
upper body in a cycle when the amplitude of the seat A was
the closest to 10◦, as this is when a large gain of the amplitude
was required. As expected, when the amplitude of the swing
A was small, the maximum lean back φ0 of participants oc-
curred around the initial phase α ≈ 0.5π , such that the swing
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FIG. 7. Trajectories of upper body motion as a function of the phase of the seat. The colored thick curves are from the cycle of A ≈ 10◦

when the pump is required. The gray curves are from the cycle of maximum A of the trial where the gain of the amplitude was no longer
necessary. The curves in faint colors are from cycles in between. The initials of the corresponding participant, length of chain, and maximum
A of the trial are shown.

continued to amplify in succeeding cycles (i.e., curves in faint
colors), then the amplitude of the swing eventually exceeded
40◦. The gray curve shows the trajectory of the cycle when
the maximum amplitude of the trial is achieved and, thus, a
gain in amplitude is no longer necessary. Comparing the gray
curve to the colored thick line within each panel, the size of
peaks and the valleys of the curves are similar in most cases.
The most salient difference can be found in the horizontal
(i.e., temporal) position of the curves, or the initial phase. This
difference is detailed in the next section.

E. Shift of initial phase during pumping

The initial phase of the upper body α as a function of A is
shown in Fig. 8, which captures the timing of maximum upper
body lean back along with the pump of the swing. The three
trials for each chain length for one participant are presented in
each panel, with their initials shown above each panel column.
Importantly, if it is critical for participants to control not only
the frequency ω but also the initial phase α in order to pump
the swing, the initial phase will be α = 0.5π at the beginning
of the trial, and will exhibit a gradual decrease as amplitude

increases, as Fig. 3 predicts. Furthermore, if the gain of the
amplitude is no longer necessary, the initial phase will drop
down to α = 0π . In Fig. 8, the initial phase that maximizes
the gain �, obtained from Eq. (6), is shown in colored solid
lines (if three lines are not seen in a panel, lines overlap), and
the initial phase that maintains the swing amplitude is shown
as gray lines. For Fig. 8, actual data of A, φ, and α from trials
were used to calculate theoretical values. As expected, at the
beginning of a trial with small amplitude A, the initial phase
of each participant is around 0.5π , indicating that participants
leaned back the most when the swing was at the vertical
position while moving forward. Furthermore, the initial phase
shifts gradually as the theoretical curve predicts with the pump
of the swing. Finally, when the pump is no longer necessary,
the initial phase converges into the gray line near 0π showing
that the maximum leaning back occurs at the back extreme of
the swing.

Although most of the trials start with the initial phase
around α ≈ 0.5π and end up with α ≈ 0π , the dynamics of
the convergence to α = 0π varied among participants. It is
important to note that there was only about 70 cm of space
between the beam of the swing and the ceiling of the room.
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FIG. 8. Initial phase α as a function of amplitude A. Colored dots
indicate the initial phase and amplitude for each cycle in colors of
red, green, and blue for chain lengths of S, M, and L, respectively.
Lines with color show theoretical values of initial phase to achieve
maximum gain � with colors the same as dots. Gray lines indicate
theoretical values of making � = 0.

Thus, when the amplitude of the seat increased, participants
faced a risk of hitting their head or leg on the ceiling. There-
fore, participants appeared to switch their movement goals
from pumping the swing to minimizing the amplitude gain, or
maintaining its amplitude. Thus, in all trials, the initial phase
converged to 0π in the last few cycles of a trial.

IV. DISCUSSION

Here we proposed and validated a model of playground
swing pumping, in which a swinger is predicted to modu-
late the amplitude of the swing via both the initial phase
α and frequency ω of upper body movement. Consistent
with these predictions, actual motion data of human swingers
revealed that the smooth upper body movements of the
swingers could amplify the movements of a swing over 40◦,
by adapting both the frequency and initial phase of their upper
body movement.

From the model and the motion data, two important find-
ings were observed in relation to the modulation of the
initial phase of upper body movement. First, the initial phase
gradually shifted from 0.5π toward 0π as the amplitude of
the swing increased, which was consistent with the maximum

gain predicted by the proposed model (see Fig. 3). Second, the
initial phase changed according to the goal of the movement.
That is, when pumping the swing was necessary, initial phase
remained around 0.5π . However, once the goal switched to
maintaining the amplitude of the swing, the initial phase of
upper body movements converged to 0π .

In addition to modulating upper body frequency and ini-
tial phase, the amount of swing amplification could also be
achieved by controlling the magnitude of swingers’ leaning
back φ0 movements, as illustrated in Fig. 3. The larger up-
per body angle φ0 could lead to the larger gain of � when
required, but participants did not prefer to control this spa-
tial variable (i.e., via changes in the magnitude or degree
of leaning back φ0). Instead, it appeared that all participants
primarily focused on controlling the temporal aspects of their
movement to modulate swing amplitude, i.e., the frequency ω

and the initial phase α of upper body movements. Indeed, par-
ticipants tended to exhibit an invariant amplitude of leaning
back across swing amplitudes, constantly leaning back max-
imally. Therefore, the dynamics of pumping the playground
swing can be regarded as the system where swingers fix spatial
degrees of freedom, while modulating (controlling) temporal
degrees of freedom (see [16]).

Despite the effectiveness of the proposed model, it remains
unclear how human swingers continuously modulated the up-
per body frequency and the initial phase from cycle to cycle.
As illustrated in Fig. 3, it is rather simple to find the optimal
period and initial phase for one cycle. However, the actual
pumping of the playground swing is a sequence of consecutive
cycles, and each cycle is tightly and continuously bound to the
next. Thus, modifying α in a cycle n may also affect ω in the
next cycle n + 1. Moreover, the shift of the initial phase shown
in Fig. 8 requires fine control. When the swing amplifies
from 0◦ to 75◦ in the long chain condition, for example, the
extension of the period of the swing will be less than 275 ms.
The initial phase shifts from 0.5π to 0π , that is, a quarter of
the period, therefore the shift of α will be about 70 ms. If it
takes ten cycles to amplify the swing to 75◦, the amount of the
shift will be about 7 ms per cycle, which is an extremely short
duration to perceive and control for humans.

One possibility is that human swingers are able to achieve
such tight control via attunement to centrifugal forces, which
specify the required shift in the initial phase of the movement.
For example, when the amplitude of the swing increases, the
centrifugal forces on the upper body also increase. When the
seat is moving backwards with high velocity, the larger inertial
forces would push the upper body of the swinger backwards.
As a result, the upper body may lean back earlier regardless
of the intention of the swinger, which may cause a gradual
shift of α and the optimal covariation of α with ω. One way
to test this hypothesis would be to examine the phase shift
of swingers in a virtual reality environment where centrifugal
forces have no effect. The expectation would be that in the
virtual reality environment, there would be no shift of the
initial phase α along with the pumping of the amplitude of
the swing. This would limit the size of gain � and slow down
the process of swing pumping, thereby preventing the swing
from amplifying more than 40◦.
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In conclusion, the current paper demonstrates the impor-
tance of frequency and initial phase modulations in pumping
a playground swing, and in contrast to previous work provides
a more ecologically valid model and understanding of the
dynamics of playground swinging.
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