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Dual ε-closed-loop Nash equilibrium method to study pandemic by numerical analysis
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In this paper, an approach to the disease transmission dynamic of a coronavirus pandemic is presented.
Compared to models commonly known from the literature, new classes that describe this dynamic to our model
were added, which are a class representing costs of the pandemic and a class of the individuals being vaccinated
but without antibodies. Parameters which at most of them depend on time were used. Sufficient conditions
for a dual ε-closed-loop Nash equilibrium in the form of the verification theorem are formulated. A numerical
algorithm and numerical example are constructed.
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I. INTRODUCTION

Over the years, the world has struggled with various
global diseases. A new pandemic, known by the name coron-
avirus pandemic (COVID-19), broke out in 2019 in Wuhan,
China. This situation prompted scientists to create papers,
in which various models of the coronavirus transmission dy-
namic are developed (see, e.g., [1–10] and literature therein).
These compartmental mathematical models differ slightly, es-
pecially in terms of the number of classes (which can be
distinguished as, e.g., susceptible, exposed, infectious, su-
perspreaders, hospitalized, or fatality). Some authors include
in their models a vaccinated class (see, e.g., [1,2,4,11–14]
and literature therein). In our paper we have also included
a vaccinated class (and susceptible, infectious, hospitalized,
and fatality). In addition we take into account new classes,
including part of the population being vaccinated but having
not antibodies (R) and pandemic costs (C) (this class was first
introduced in [15]). These new groups generate costs which
governments of the countries incur. Further costs related to the
pandemic concern lockdown of the community, quarantine,
isolation, hospitalization or surveillance, and serology testing.

We try in this article to find a relation between the
number of individuals having antibodies (which should be
maximized), basic reproduction number R0 (which should
be minimized), and pandemic costs. The factor R0 is very
important in endemicity or pandemics because it gives us
information about the expected number of the secondary cases
created in a susceptible population by a “typical” infective
individual. In other words, it can be understood as the aver-
age number of cases in which one infected individual infects
healthy individuals. If R0 < 1, it means that one infected
individual infects less than one new individual during his
infectious period and as a consequence the pandemic dies out.
On the other hand, if R0 > 1, then one infected individual
infects more than one new individual during his infectious
period, which means that the pandemic expands.

The mathematical models presented in the papers cited
above vary in parameters which are constant, independent
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of time, and chosen suitably according to the case study.
Generally, they are calculated for a given local pandemic
situation (type of virus). We change in our model the role of
these parameters because they can change in time (taking into
account in this way mutations of the virus) and can differ for
different countries and nations. Therefore, parameters in our
paper are functions (controls) which depend on time.

This paper presents an approach to the coronavirus dy-
namic transmission which is based on a game theory. We
construct a noncooperative differential game with two main
players, instead of optimization with respect to all parame-
ters. The first player tries to maximize (using their own own
optimal strategies) the number of the population having anti-
bodies, while the second player tries to minimize the basic
reproduction number R0 and the costs of the pandemic by
choosing their own (optimal) strategies. Both players use their
own suitable defined sets of controls (strategies) which in
previous mathematical models were constants.

Nash equilibrium is one of the most useful and most fun-
damental concepts used in noncooperative game theory. It
conceptualizes the behavior between players and allows deci-
sions to be made by the opponents as if they are making them
at the same time. Each player’s strategy is optimal, taking the
choice of his opponents as fixed. Nash equilibrium is used,
e.g., in economy to illustrate that decision-making is a system
of strategic actions based on the operations of the players.

We can distinguish, e.g., open-loop or closed-loop Nash
equilibria which are usually not equivalent (but if there exists
a unique Nash equilibrium in every subgame, then open-loop
equilibrium and closed-loop equilibrium coincide). The open
loop means that the players do not see the game play of their
opponents. On the other hand, closed loop means that the
players have knowledge about all previous steps of the game
before the next step.

Epidemiological models can be described as evolutionary
games (see, e.g., [16–19] and literature therein). But in these
papers strategies do not depend on time, and solutions which
are a kind of Nash equilibrium were found by discussing
the parameters. Our game theoretical approach is definitely
different because we use functions (strategies) as controls and
therefore we develop a dual dynamic programming method-
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ology. Using this method we formulate sufficient conditions
for a dual ε-closed-loop Nash equilibrium. Dual dynamic
programming was first introduced in [20] (see also, e.g.,
[14,15,21,22]).

We construct a verification theorem which provides the
background to build a numerical algorithm and find an ap-
proximate solution for a dual ε-closed-loop Nash equilibrium,
which is really the Nash equilibrium, accordingly to our math-
ematical model. This approach has at least one undeniable
advantage: it helps us to verify obtained results. In our case,
using the verification theorem, we easily check if the final
results are good enough. If not, we must repeat the whole
procedure. We also do not need to check the convergence of
our numerical algorithm, because if we have a candidate to be
a solution of our problem, we use the verification theorem and
simply check the obtained results.

II. MATHEMATICAL MODEL

We use in our compartmental model of the disease trans-
mission dynamic the following states and strategies.

The states used are V (t ), a part of the population hav-
ing antibodies; R(t ), vaccinated but having not antibodies;
S(t ), susceptible class; I (t ), symptomatic and infectious class;
H (t ), hospitalized class; F (t ), fatality class; and C(t ), costs
of the pandemic. The strategies used are v(t ), control of the
population having antibodies; κ (t ), control of the vaccinated
patients not having the antibodies or requiring medical care;
r1(t ), control of the vaccinated without antibodies entering
the infectious class; r2(t ), control of the vaccinated without
antibodies entering the hospitalized class; r3(t ), control of the
vaccinated without antibodies entering the fatality class; s1(t ),
control of susceptible individuals entering the symptomatic
and infectious class; γa(t ), control of the average rate at which
symptomatic individuals become hospitalized; γi(t ), recovery
control without being hospitalized; γr (t ), recovery control of
hospitalized; ϕ(t ), control of patients losing antibodies; c(t ),
costs of lockdown; c1(t ), costs of maintaining social distanc-
ing and using face masks in public; c2(t ), costs of quarantine
and isolation of the confirmed cases; c3(t ), hospitalization
costs of the confirmed cases; and c4(t ), costs of the vaccina-
tion; where t ∈ [0, T ], T > 0 and all strategies have positive
values.

Let us take a closer look at the following classes:
(a) V contains the part of the population having antibodies

which means vaccinated (and acquisition of immunity) and
obtaining immunity by being infected and then recovered.

(b) R contains the part of the population being vaccinated
but without of the immunity or having side effects. This is
not a large group. It is about 4–6 % of vaccinated people. It
depends on the type of vaccine. However, those people often
require medical care or go to the hospital because of compli-
cations after vaccinations. That situation generates costs and
we want to take into account all pandemic costs in our model.

(c) C describes costs incurred by the government, such as
lockdown of the community, quarantine, isolation, hospital-
ization, or surveillance and serology testing.

One of the most used epidemiological models is the so-
called susceptible-exposed-infected-recovered (SEIR) model
belonging to the class of compartmental models (see [23];

compare [24]). It assumes that the total population can be
divided into four classes of individuals: susceptible, S; ex-
posed, E ; infected, I; and recovered or dead, R (assumed to
be not susceptible to reinfection). The model is based on the
following assumptions:

(1) The total population does not vary in time.
(2) Susceptible individuals become infected and then can

only recover or die.
(3) Exposed individuals have encountered an infected per-

son but are not yet infectious themselves.
(4) Recovered or dead individuals are forever immune.
However, the longevity of the antibody response is still

unknown, but it is known that antibodies wane over time.
Assumption 3 given above is not well recognized when we ap-
ply vaccination of the population. Assumption 2 is too strong
because we can observe that many infected people suffer long-
time consequences of infection and require medical care. It is
difficult to expect that during the period of one-half or one
year the total population does not vary; the population is not
living in a hermetic box. The SEIR model is presented as

dS

dt
= −λS(t )I (t ),

dE

dt
= −λS(t )I (t ) − αE (t ),

dI

dt
= αE (t ) − γ I (t ),

dR

dt
= γ I (t ).

To deal with uncertainties in long-term extrapolations and
with the time dependency of control parameters, the authors of
[24] introduce a stochastic approach into modeling of the epi-
demic, making parameters depend on time and adding three
more equations.

The main goal of this paper is not continuing to get one
more extension of the existing epidemic models. Our aim
is first of all to concentrate on the costs of the pandemic
depending on parameters changing in time. We want to be
still deterministic; however, to take into account different
situations and uncertainties changing in time, which generate
costs, we introduce parameters (controls) that should control
the costs in a better way. This is one of the reasons why we do
not consider the exposed compartment, but we introduce three
new classes: having antibodies (V ), vaccinated but without
immunity or having side effects (R), and a new variable de-
scribing costs (C). It is clear that with our approach we cannot
require the above assumptions for the SEIR model because
they are not satisfied.

Looking carefully at Figs. 1 and 2, we see that our com-
partmental model of the pandemic dynamic has seven classes.
Six of them (S, V , R, I , H , and F ) concern flow of the
population between them during the pandemic. It is obvious
that each person may be located only in one class in the
moment. We can treat classes S and R as “main” classes
because each person was either susceptible or was vaccinated
but does not have antibodies. We do not assume that part of the
population being susceptible can be transformed into vac-
cinated but without antibodies because our model can be
adapted during the pandemic (and of course when vaccines
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FIG. 1. Flow diagram of the model described by Eqs. (1)–(6).

are available) and not at the start, when the pandemic begins.
People who are in classes S or R can pass to other classes
during the pandemic. Susceptible people can be infected and
go to class I . Some models contain a superspreader class (see,
e.g., [6]). We assume in our model that all infected people
are grouped in class I . People who are infected can be hos-
pitalized and go to class H . Other people who were slightly
sick and do not go to the hospital but can acquire antibodies
go to class V . We have in this class people having antibodies,
meaning vaccinated or people who are recovered.

Let us see that people lose immunity over time. This time
is different and depends on many factors, e.g., the type of
vaccine. Therefore, people go back in our model to the suscep-
tible class. Our model describes a real situation when people
who are recovered can be infectious again or get antibodies
after receiving the next dose of the vaccine. We added to our
model a new class which does not exist in the literature to the
best of the authors’ knowledge. This class represents people
who were vaccinated but do not have antibodies. As we men-
tion above, this class is not large, but as the research shows,
there exist cases for which people do not have immunity after
vaccination (see, e.g., [25]). People who have side effects
after vaccination can also be in this class. Because part of the
population being in class R does not have antibodies, they can
be infected easily and can spread the virus. Spreading virus is
of course not equivalent to hospitalization. Milder illness may
not be noticed by the individuals. More severe illness may
cause hospitalization or death.

Parameters δh and δi(t ) visible in Fig. 1 are not strategies.
Both of them describe disease-induced death rates, the first
one due to hospitalization and the second one due to being
infected.

FIG. 2. Flow diagram of the model described by Eq. (7).

Separating class R is important because people who are
vaccinated and do not have antibodies can also generate costs.
The same applies to vaccinated people being in class V . Costs
are involved with purchase and distribution of the vaccines.
People who are infected also generate costs because of, e.g.,
isolation of the confirmed cases, and surveillance and serol-
ogy testing. Costs are generated by hospitalized people, who
are under medical care. Pandemic costs are generated by all
classes except class F (see Fig. 2) given below. As we see,
pandemic costs depend on time because they are not constant
and change during the pandemic. The same situation concerns
parameters which can also change in time.

Taking into account Figs. 1 and 2 and the above considera-
tions, our mathematical model of COVID-19 disease consists
of the seven following differential equations:

dV (t )

dt
= v(t )S(t ) + γi(t )I (t ) + γr (t )H (t )

− ϕ(t )V (t ), t ∈ [0, T ], (1)

dR(t )

dt
= κ (t )R(t ) − (r1(t ) + r2(t ) + r3(t ))R(t ), t ∈ [0, T ],

(2)
dS(t )

dt
= ϕ(t )V (t ) − s1(t )S(t )I (t )

− (v(t ) + s1(t ))S(t ), t ∈ [0, T ], (3)

dI (t )

dt
= s1(t )S(t ) + r1(t )R(t ) + s1(t )S(t )I (t )

− (γi(t ) + γa(t ) + δi(t ))I (t ), t ∈ [0, T ], (4)

dH (t )

dt
= γa(t )I (t ) + r2(t )R(t )

− (γr (t ) + δh)H (t ), t ∈ [0, T ], (5)

dF (t )

dt
= δi(t )I (t ) + δhH (t ) + r3(t )R(t ), t ∈ [0, T ], (6)

dC(t )

dt
= c(t )V (t ) + c1(t )S(t ) + c2(t )I (t )

+ c3(t )H (t ) + c4(t )R(t ), t ∈ [0, T ], (7)

where δi(t ), t ∈ [0, T ], is the disease-induced death rate due to
the infected individals and δh is the diseaseinduced death rate
due to the hospitalized individuals. Simulations made with
different parameters (functions) (see Table III) acknowledge
that all mentioned strategies have an influence on the behavior
of all states. Hence the choice of large numbers of strategies
as well as the proposed system of equations describe more
exactly the behavior of the pandemic. However, simulations
are not sufficient to study them. We need mathematical tools
which help us to infer more correct corollaries. To this ef-
fect we develop a game-theoretic methodology in Secs. III
and IV.

To calculate the basic reproduction number we must first
construct some matrices, using a next generation matrix
concept from [26]. We must take into account differential
equations (1), (2), (4), and (5) because these equations in-
dicate COVID-19 transmissibility. Vector Z , which is given
below, concerns classes V (t ), R(t ), I (t ), and H (t ) only, which
occur in the right-hand sides of Eqs. (1), (2), (4), and (5). This
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vector is associated to the rate of appearance of new infec-
tions. On the other hand, vector F takes into account class

S(t ), which is associated to the net rate out of the correspond-
ing compartments. Hence we have the following vectors:

F =

⎡
⎢⎢⎣

0
0

s1SI
0

⎤
⎥⎥⎦ and Z =

⎡
⎢⎢⎣

ϕV − γiI − γrH
(r1 + r2 + r3 − κ )R

−r1R + (γa + γi + δi )I
−r2R − γaI + (γr + δh)H

⎤
⎥⎥⎦.

From above we get the following matrices:

F =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 s1SI 0
0 0 0 0

⎤
⎥⎥⎦, Z =

⎡
⎢⎢⎣

ϕV 0 −γiI −γrH
0 (r1 + r2 + r3 − κ )R 0 0
0 −r1R (γa + γi + δi )I 0
0 −r2R −γaI (γr + δh)H

⎤
⎥⎥⎦.

As a consequence we have the following Jacobian matrices:

JF =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 s1 0
0 0 0 0

⎤
⎥⎥⎦ and JZ =

⎡
⎢⎢⎣

ϕ 0 −γi −γr

0 r1 + r2 + r3 − κ 0 0
0 −r1 γa + γi + δi 0
0 −r2 −γa γr + δh

⎤
⎥⎥⎦.

The basic reproduction number R0 is computed as the
spectral radius of F Z−1 and is given by

R0(t ) = s1(t )

γa(t ) + γi(t ) + δi(t )
. (8)

We see from Eq. (8) that the strategies s1, γa, and γi and
parameter δi have influence on the basic reproduction number.
The factor R0 will be smaller, while s1 is smaller and γa, γi,
and δi are greater (see Fig. 3).

Denote x = (V, R, S, I, H, F,C) and u = (v, κ, r1,

r2, r3, s1, γa, γi, γr, ϕ, c, c1, c2, c3, c4). Let us write the
right-hand sides of Eqs. (1)–(7) in the following form:

f1(t,V, S, I, H, v, γi, γr, ϕ) = vS + γiI + γrH − ϕV,

f2(t, R, κ, r1, r2, r3) = (κ − r1 − r2 − r3)R,

f3(t,V, S, I, ϕ, s1, v) = ϕV − s1SI − (v + s1)S,

f4(t, R, S, I, s1, r1, γi, γa) = s1S + r1R + s1SI

− (γi + γa + δi )I,

FIG. 3. Impact of the strategies on a basic reproduction number.

f5(t, R, I, H, γa, r2, γr ) = γaI + r2R − (γr + δh)H,

f6(t, R, I, H, r3) = δiI + δhH + r3R,

f7(t,V, R, S, I, H, c, c1, c2, c3, c4) = cV + c1S + c2I + c3H

+ c4R.

Put

f (t, x, u) = ( f1(t,V, S, I, H, v, γi, γr, ϕ),

f2(t, R, κ, r1, r2, r3),

f3(t,V, S, I, ϕ, s1, v),

f4(t, R, S, I, s1, r1, γi, γa),

f5(t, R, I, H, γa, r2, γr ), f6(t, R, I, H, r3),

f7(t,V, R, S, I, H, c, c1, c2, c3, c4)).

Taking into account the above considerations we can write
system of the differential equations (1)–(7) as

dx

dt
= f (t, x, u). (9)

III. GAME APPROACH TO COVID-19

We have at our disposal 15 strategies u =
(v, κ, r1, r2, r3, s1, γa, γi, γr, ϕ, c, c1, c2, c3, c4). In order
to construct a game, we need to divide those strategies for
at least two groups and, having these groups of strategies,
we should distinguish two players who want to cooperate or
not. We decided that our potential players will not cooperate
because we do not believe that the virus wants to cooperate
with people. Thus the next step in building a game is to
define a suitable functional depending on those strategies and
suitable states. It is rather obvious that the functional should
contain R0 which we want to minimize, and the costs of the
pandemic, i.e., the state C(t ) and the state V (t ), which we
want to maximize. In order to control the consumption (costs)
of all controls we add to the functional the norm of u(t ), i.e.,
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‖u(t )‖. To justify that R0 should be minimized note that for
each fixed t ∈ [0, T ], R0(t ) defines the status of the pandemic:
it persists (R0(t ) > 1) or it is going to die out (R0(t ) < 1).
If we look at matrices F and Z from the former section, we
see that R0 is computed as the spectral radius of F Z−1. That
implies that if V (t ) is greater, then R0(t ) is smaller. Hence we
assume that our cost functional has the form

J (x, u) =
∫ T

0
(V (t ) + C(t ) + ‖u(t )‖)dt + R0(T ). (10)

As we mentioned above, we want to maximize the number
of people having antibodies at each step of time and sum
them up (the first term in functional (10)) and to minimize
the basic reproduction number R0 as well the consumption of
the strategies. This approach suggests that classical optimal
control theory is not applicable here and that a better way is
to apply a kind of noncooperative game theory.

Remark 1. Let us see that we can guarantee that increasing
R0 and C does not imply maximizing the values of functional
(10) and, on the other hand, that decreasing V does not cause
this functional to be minimized. It happens because the first
player (with fixed opponents’ strategies) can always choose
his own strategies, which will minimize (10) even when strate-
gies fixed by the second player (one set) cause increasing R0

and C. On the other hand, the second player (with fixed op-
ponents’ strategies also) can always choose his own strategies
which will maximize (10) even when strategies fixed by the
first player (one set) cause decreasing V .

Functional (10) is subject to z seven-dimensional dynami-
cal system (9) for states

x = (V, R, S, I, H, F,C),

controlled by a profile of 15 strategies

u = (v, κ, r1, r2, r3, s1, γa, γi, γr, ϕ, c, c1, c2, c3, c4) (11)

over a finite time interval [0, T ].
We assume that each strategy v, κ , r1, r2, r3, s1, γa, γi,

γr , ϕ1, c, c1, c2, c3, c4 satisfies v(t ) ∈ U1, . . . , c4(t ) ∈ U15,
Ui ⊂ R+, i = 1, . . . , 15, U = U1 × · · · × U15. The strategies
are measurable functions on [0, T ], but additionally we as-
sume that s1(t ), γa(t ), and γi(t ) are continuous in [0, T ] and a
state equation is formulated as

ẋ(t ) = f (t, x(t ), u(t )), t ∈ [0, T ]

x(0) = x0

u(t ) ∈ U, t ∈ [0, T ], (12)

with f : [0, T ] × R7 × R15 → R7 a given Carathéodory
function and the initial state is denoted by the vector
x0 ∈ R7+. We are searching for solutions to (12) in the
space H1(0, T ;R7), i.e., absolutely continuous functions with
square integrable ẋ(t ).

The game approach to issues of epidemiology has many ex-
amples in the literature. For example, we get to know them in
[19] as evolutionary games. We emphasize that the behavior of
the people where it concerns vaccinations against disease has
produced interest in game approaches (evolutionary games)
(see, e.g., [1,11,12,17,18]). The issues of quarantine and isola-
tion policy or a risk of infection also drew some attention (see,
e.g., [16,18]). The evolutionary game approach arose from

game theory by applying the basic concept of Darwinism.
The idea was to compensate for time evolution, which in
the original game theory has appeared (as it mainly deals
with equilibrium). In that approach game players behave more
intelligently and realistically; however, then theory predicts
that game players should act defectively. In game theory, a
noncooperative game is a game with a competition between
individual players. A noncooperative game tries to predict
players’ individual strategies and payoffs and to find Nash
equilibria. It is also more general than cooperative games
because cooperative games can be analyzed using the terms
of noncooperative game theory. Then it is enough to state
sufficient assumptions to encompass all the possible strate-
gies which players may adapt, in relation to the arbitration.
We want to consider a noncooperative game for the problem
(10)–(12) in which strategies are evaluated in time (are func-
tions) and the cost functional is defined on the set of suitable
strategies. That approach is opposite to the papers mentioned
earlier, except partially in [18]. It implies that our approach to
the game is more general than those presented in [1,11,12,16–
18].

To construct a noncooperative game, we divide 15 strate-
gies from (11) across two players, taking into account the
influence of them on the behavior of functional (10). The
“player” means here only a set of the strategies. The first
player ν should choose those strategies among the 15 which
maximize the first term in the functional J , i.e., V , and can
help to minimize the last term, i.e., R0, by making the de-
nominator in (8) larger. It is done by v, γa, and γi. Thus
we assume that player ν has at its disposal three strategies
(v, γa, γi ) and hence we denote ν = (v, γa, γi ). The second
player σ should use the strategies from among those remain-
ing from the 15 which can help to minimize (10). Looking
carefully at (10) and (11), as well as (8), i.e., the basic re-
production number R0(t ), each of the strategies κ , r1, r2,
r3, s1, γr , ϕ, c, c1, c2, c3, and c4 has a greater or lesser
influence on minimizing functional (10). Therefore, we put
σ = (κ, r1, r2, r3, s1, γr, ϕ, c, c1, c2, c3, c4). Player ν wants to
use the strategies v, γa, and γi to maximize (10) and player σ

uses the strategies κ , r1, r2, r3, s1, γr , ϕ, c, c1, c2, c3, and c4

to minimize (10). For the given player ν, on the opponent σ ’s
profile of strategies we write in game terminology

u∼σ = uν (v, γa, γi ) (13)

and for the given player σ

u∼ν = uσ (κ, r1, r2, r3, s1, γr, ϕ, c, c1, c2, c3, c4). (14)

For a state satisfying (12) with player ν we put xu∼ν

for the
given opponents’ strategy u∼ν ; i.e., xu∼ν

satisfies

ẋu∼ν

(t ) = f (t, xu∼ν

(t ), (uν (t ), u∼ν (t ))), t ∈ [0, T ],

xu∼ν

(0) = x0, uν (t ) ∈ Uν = U1×U7×U8, t ∈ [0, T ],

u∼ν (t ) ∈ Uσ = U2 × U3 × U4 × U5 × U6 × U9 × U10

× U11 × U12 × U13 × U14 × U15, t ∈ [0, T ].

(15)

In like manner we follow with xu∼σ

for the state satisfying (12)
for player σ with the given opponents’ strategy u∼σ ; thus xu∼σ
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satisfies

ẋu∼σ

(t ) = f (t, xu∼σ

(t ), (uσ (t ), u∼σ (t ))), t ∈ [0, T ],

xu∼σ

(0) = x0, u∼σ (t ) ∈ Uν=U1 × U7×U8, t ∈ [0, T ],

uσ (t ) ∈ Uσ = U2 × U3 × U4 × U5 × U6 × U9 × U10

× U11 × U12 × U13 × U14 × U15, t ∈ [0, T ].

(16)

A pair (uν, xu∼ν

) with the strategies of player ν and the given
opponent σ we call an admissible process for the game (10)
subject to (12). The set of all such pairs we denote by

Adν (u∼ν ) = {(uν, xu∼ν

) : (uν, xu∼ν

) satisfies (15)}.
A pair (uσ , xu∼σ

) with the strategies of player σ and the given
opponent ν we call an admissible process for the game (10)
subject to (12). The set of all such pairs we denote by

Adσ (u∼σ ) = {(uσ , xu∼σ

) : (uσ , xu∼σ

) satisfies (16)}.
For the given opponents’ strategies u∼ν we constitute a differ-
ential game with cost functional (10) in the form

J (xu∼ν

, uν ) =
∫ T

0
(V u∼ν

(t ) + Cu∼ν

(t ) + ‖(uν (t ), u∼ν (t ))‖)dt

+ s∼ν
1 (T )

γaν (T ) + γiν (T ) + δi(T )
, (17)

which we maximize in the set Adν (u∼ν ) and for the given
opponents’ strategies u∼σ with cost functional (10) in the form

J (xu∼σ

, uσ ) =
∫ T

0
(V u∼σ

(t ) + Cu∼σ

(t ) + ‖(uσ (t ), u∼σ (t ))‖)dt

+ s1σ (T )

γ ∼σ
a (T ) + γ ∼σ

i (T ) + δi(T )
, (18)

which we minimize in the set Adσ (u∼σ ).

IV. A DUAL GAME, ε-CLOSED-LOOP STRATEGIES

The dual game means that we do not consider our objects
in the space [0, T ] × R7, but in a dual set P, and our objects
satisfy dual dynamic inequalities. Even more, we do not study
value functions, but instead we define auxiliary functions
satisfying dual dynamic inequalities. Then with the help of
auxiliary functions we derive a kind of verification conditions
for primal value functions.

Thus, we define dual sets: Pν, Pσ ⊂ R7 of the variables
(t, p), p ∈ R7, t ∈ [0, T ] and their projections on the
space of the variable p, Pν , Pσ . The last sets are chosen
by us. By W 1(Pν ) and W 1(Pσ ) we denote the special
Sobolev spaces of functions of the variables (t, p) with
the following properties: there exists the first order
weak derivative with respect to t which is continuous
with respect to the variable p. We define in Pν and
Pσ dual strategies uν (t, p) = (v(t, p), γa(t, p), γ i(t, p))
and uσ (t, p) = (κ(t, p), r1(t, p), r2(t, p), r3(t, p), s1(t, p),
γr(t, p), ϕ1(t, p), c(t, p), c1(t, p), c2(t, p), c3(t, p), c4(t, p))
with values in Uν , Uσ , respectively. We also use opponents’
strategies u∼ν (t, p∼ν ) and u∼σ (t, p∼σ ), defined in Pσ , Pν ,
respectively. We assume that the strategies uν (t, p) and
uσ (t, p) are Borel measurable and the states corresponding

to them zu∼ν

ν (·, p), p ∈ Pν , p∼ν ∈ Pσ and zu∼σ

σ (·, p), p ∈ Pσ ,
p∼σ ∈ Pν satisfy

żu∼ν

ν (t, p) = f
(
t, zu∼ν

ν (t, p), (uν (t, p), u∼ν (t, p∼ν ))
)
,

t ∈ [0, T ],

zu∼ν (
0, pν

0

) = x0, for some fixed pν
0 ∈ Pν,

uν (t, p) ∈ Uν, t ∈ [0, T ],

u∼ν (t, p) ∈ Uσ , t ∈ [0, T ], (19)

żu∼σ

σ (t, p) = f
(
t, zu∼σ

σ (t, p), (uσ (t, p), u∼σ (t, p∼σ ))
)
,

t ∈ [0, T ],

zu∼σ (
0, pσ

0

) = x0, for some fixed pσ
0 ∈ Pσ ,

u∼σ (t, p) ∈ Uν, t ∈ [0, T ],

uσ (t, p) ∈ Uσ , t ∈ [0, T ], (20)

respectively. Having opponents’ strategies u∼ν and u∼σ we
define for them dual ε-closed-loop strategies

Uν = {
uν : exists zu∼ν

ν (·, p), p ∈ Pν satisfies (19)
}
,

Uσ = {
uσ : exists zu∼σ

σ (·, p), p ∈ Pσ satisfies (20)
}
.

The corresponding trajectories zu∼ν

ν and zu∼σ

σ we call the dual
trajectories and a set of all of them we denote by Xd . By

Pν (u∼ν ) = {
p : [0, T ] → Pν : p(0) = pν

0, exists(
uν, zu∼ν

ν

) ∈ Uν × Xd , uν (t, p(t )) = uν (t ),

p(·) is continuous, zu∼ν

ν (t, p(t )) = xu∼ν

(t ),

(uν (·), xu∼ν

(·)) ∈ Adν (u∼ν )
}

and

Pσ (u∼σ ) = {
p : [0, T ] → Pσ : p(0) = pσ

0 , exists(
uσ , zu∼σ

σ

) ∈ Uσ × Xd , uσ (t, p(t )) = uσ (t ),

p(·) is continuous, zu∼σ

σ (t, p(t )) = xu∼σ (t ),

(uσ (·), xu∼σ (·)) ∈ Adσ (u∼σ )
}

we set the families of auxiliaries trajectories.
Rewrite functionals (17) and (18) in terms of the dual

notions

Jdn(zu∼ν

, uν ) =
∫ T

0
(V u∼ν

(t, p(t )) + Cu∼ν

(t, p(t ))

+ ‖(uν (t, p(t )), u∼ν (t, p∼ν (t )))‖)dt

+ s∼ν
1 (T, p∼ν (T ))

γaν (T, p(T )) + γ iν (T, p(T )) + δi(T )
,

(21)

Jds(z
u∼σ

, uσ ) =
∫ T

0
(V u∼σ

(t, p(t )) + Cu∼σ

(t, p(t ))

+ ‖(uσ (t, p(t )), u∼σ (t, p∼σ (t )))‖)dt

+ s1σ (T, p(T ))

γ∼σ
a (T, p∼σ (T )) + γ∼σ

i (T, p∼σ (T )) + δi(T)
,

(22)

where p∼ν (·) ∈ Pσ (u∼ν ) and p∼σ (·) ∈ Pν (u∼σ ).
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Definition 1. Let us fix ε > 0. A pair (ūν, ūσ ) we
name a dual ε-closed-loop Nash equilibrium, if there ex-
ists an auxiliary trajectory p̄ν ∈ Pν (u∼ν ), such that ūν (t ) =
ūν (t, p̄ν (t )), t ∈ [0, T ], together with the corresponding tra-
jectory x̄∼ν (t ) = z̄ū∼ν

ν (t, p̄ν (t )) belonging to Adν (ū∼ν ) and
if there exists an auxiliary trajectory p̄σ ∈ Pσ (u∼σ ), such
that ūσ (t ) = ūσ (t, p̄σ (t )), t ∈ [0, T ], together with the cor-
responding trajectory x̄∼σ (t ) = z̄ū∼σ

σ (t, p̄σ (t )) belonging to
Adσ (ū∼σ ) and for any p(·) ∈ Pν (ū∼ν ) and p(·) ∈ Pσ (ū∼σ ),
the following inequalities hold:

Jdn
(
z̄ū∼ν

ν (·, p̄ν (·)), ūν (·, p̄(·))) � Jdn
(
zū∼ν

(·, p(·)), ūν (·, p(·)))
− T ε (23)

and

Jds
(
z̄ū∼σ

σ (·, p̄σ (·)), ūσ (·, p̄σ (·)))
� Jds

(
zū∼σ

(·, p(·)), ūσ (·, p(·))) + T ε. (24)

For dual game (21) and (22) we derive existence condi-
tions for a dual ε-closed-loop Nash equilibrium. To this effect
we define ε-dual Hamilton-Jacobi inequalities and auxiliary
pairs of functions (yν (t ),Wν (t, p)), t ∈ [0, T ], p ∈ Pν , yν ∈
L1(0, T ), Wν ∈ W 1(Pν ), (yσ (t ), Wσ (t, p)), t ∈ [0, T ], p ∈ Pσ ,
yσ ∈ L1(0, T ), Wσ ∈ W 1(Pσ ). First we assume that the oppo-
nents’ dual ε-closed-loop strategy u∼ν is given. We assume
that, for given p∼ν , there exists a pair (yν (t ),Wν (t, p)), t ∈
[0, T ], p ∈ Pν satisfying in [0, T ] × Pν the following dual
ε-dynamic programming differential inequality

yν (t ) + ε � sup

{
p(pWν,t (t, p))

+ p f (t,−pWν (t, p), uν, u∼ν (t, p∼ν ))

− p1Wν (t, p) − p7Wν (t, p) + ‖(uν, u∼ν (t, p∼ν )‖

+ 1

T
· s∼ν

1 (T, p∼ν )

γa + γi + δi(T )
: uν ∈ Uν

}
(25)

with the initial condition

−pν
0Wν (0, pν

0) = x0, pν
0 ∈ Pν the same as in (19).

We assume that for the given opponents’ dual ε-closed-loop
strategy u∼σ and p∼σ the pair (yσ (t ),Wσ (t, p)), t ∈ [0, T ],
p ∈ Pσ satisfies in [0, T ] × Pσ the following ε-dynamic pro-
gramming differential inequality:

yσ (t ) − ε � inf

{
p(pWσ,t (t, p))

+ p f (−pWσ (t, p), uσ , u∼σ (t, p∼σ ))

− p1Wσ (t, p) − p7Wσ (t, p) + ‖(uσ , u∼σ (t, p∼σ )‖

+ 1

T
· s1

γ ∼σ
a (T, p∼σ ) + γ ∼σ

i (T, p∼σ ) + δi(T )
:

× uσ ∈ Uσ

}
(26)

with the initial condition

−pσ
0Wσ

(
0, pσ

0

) = x0, pσ
0 ∈ Pσ is the same as in (20).

V. VERIFICATION THEOREM FOR DUAL
ε-CLOSED-LOOP NASH EQUILIBRIUM

We prove a verification theorem allowing to check whether
an approximate dual ε-closed-loop strategy (calculated nu-
merically) is a candidate to be the ε-Nash equilibrium for the
game (21) and (22) subject to (19) and (20).

Theorem 1. Let us take any dual ε-closed-loop strate-
gies (ūν, ūσ ) and auxiliary trajectories p̄ν ∈ Pν (ū∼ν ), p̄σ ∈
Pσ (ū∼σ ), such that (ūν (·, p̄ν (·)), z̄ū∼ν

ν (·, p̄ν (·))) ∈ Adν (ū∼ν )
and (ūσ (·, p̄σ (·)), z̄ū∼σ

σ (·, p̄σ (·))) ∈ Adσ (ū∼σ ) (according to
(14) and (13), ū∼ν = ūσ and ū∼σ = ūν ). Assume that there
exists a pair (ȳν (t ),W̄ν (t, p)), t ∈ [0, T ], p ∈ Pν satisfying in
[0, T ] × Pν (25) with “sup” attained at p̄ν (·) for ūν (·, p̄ν (·))
with opponents’ strategy ū∼ν satisfying

p̄(t )( p̄(t )W̄ν,t (t, p̄(t )))

+ p̄(t ) f (−p̄(t )W̄ν (t, p̄(t )), ūν (t, p̄(t )), ū∼ν (t, p̄∼ν (t )))

− p̄1(t )Wν (t, p̄(t )) − p̄7(t )Wν (t, p̄(t ))

+ ‖(ūν (t, p̄(t )), u∼ν (t, p̄∼ν (t ))‖

+ 1

T
· s∼ν

1 (T, p̄∼ν (T ))

γa(T, p̄(T )) + γ i(T, p̄(T )) + δi(T )
� ȳν (t ). (27)

Assume also that there exists a pair (ȳσ (t ),W̄σ (t, p)), t ∈
[0, T ], p ∈ Pσ satisfying in [0, T ] × Pσ (26) with “inf” at-
tained at p̄σ (·) for ūσ (·, p̄σ (·)) with opponents’ strategy ū∼σ

satisfying

p̄(t )( p̄(t )W̄σ,t (t, p̄(t )))

+ p̄(t ) f (−p̄(t )W̄σ (t, p̄(t )), ūσ (t, p̄(t )), ū∼σ (t, p̄∼σ (t )))

− p̄1(t )Wσ (t, p̄(t )) − p̄7(t )Wσ (t, p̄(t ))

+ ‖(ūσ (t, p̄(t )), u∼σ (t, p̄∼σ (t ))‖

+ 1

T
· s∼σ

1 (T, p̄∼σ (T ))

γa(T, p̄(T )) + γ i(T, p̄(T )) + δi(T )
� ȳσ (t ).

(28)

Moreover, assume that

z̄ū∼ν

ν (t, p) = −pW̄ν (t, p), t ∈ [0, T ], p ∈ Pν, (29)

z̄ū∼σ

σ (t, p) = −pW̄σ (t, p), t ∈ [0, T ], p ∈ Pσ . (30)

Then, the dual ε-closed-loop strategies (ūν, ūσ ) are the Nash
equilibria for the game (21) and (22) subject to (19) and (20).

Proof. We have to show only that for
(ūν (·, p̄ν (·)), z̄ū∼ν

ν (·, p̄ν (·))) ∈ Adν (ū∼ν ) and (ūσ (·, p̄σ (·)),
z̄ū∼σ

σ (·, p̄σ (·))) ∈ Adσ (ū∼σ ) inequalities (23) and (24) hold.
We prove inequality (23) because proof of the second one is
analogous. Let us take any p(·) ∈ Pν (ū∼ν ), put it in (25) in the
place of p, and assume p∼ν = p̄∼ν (t ). Then, for t ∈ [0, T ],
we get

ȳν (t ) + ε � p(t )(p(t )W̄ν,t (t, p(t )))

+ p(t ) f (−p(t )W̄ν (t, p(t )), ūν (t, p(t )), ū∼ν

× (t, p̄∼ν (t ))) − p1(t )Wν (t, p(t )) − p7(t )Wν

× (t, p(t )) + ‖(ūν (t, p(t )), u∼ν (t, p∼ν (t ))‖

+ 1

T
· s∼ν

1 (T, p∼ν (T ))

γa(T ) + γi(T ) + δi(T )
. (31)
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Assuming (29) along p(t ), we can transform (31) to

ȳν (t ) + ε � −p(t )z̄ū∼ν

ν,t (t, p(t ))

+ p(t ) f (z̄ū∼ν

ν (t, p(t )), ūν (t, p(t )), ū∼ν (t, p̄∼ν (t ))

+ z̄ū∼ν

ν,1 (t, p(t )) + z̄ū∼ν

ν,7 (t, p(t ))

+ ‖(ūν (t, p(t )), u∼ν (t, p∼ν (t ))‖

+ 1

T
· s∼ν

1 (T, p∼ν (T ))

γa(T ) + γi(T ) + δi(T )
, (32)

where z̄ū∼ν

ν,1 is the first coordinate of z̄ū∼ν

ν and z̄ū∼ν

ν,7 is the sev-
enth coordinate of z̄ū∼ν

ν . Taking into account that z̄ū∼ν

ν (t, p(t ))
satisfies (19) and integrating (32) in the interval [0, T ] we get∫ T

0
ȳν (t )dt + T ε �

∫ T

0
(z̄ū∼ν

ν,1 (t, p(t )) + z̄ū∼ν

ν,7 (t, p(t ))

+ ‖(ūν (t, p(t )), u∼ν (t, p∼ν (t ))‖)dt

+ s∼ν
1 (T, p∼ν (T ))

γa(T ) + γi(T ) + δi(T )
. (33)

Because “sup” in (25) is attained at p̄ν (·) for ūν (·, p̄ν (·)), by
(27), we get the inequality

p̄(t )( p̄(t )W̄ν,t (t, p̄(t )))

+ p̄(t ) f (−p̄(t )W̄ν (t, p̄(t )), ūν (t, p̄(t )), ū∼ν (t, p̄∼ν (t )))

− p̄1(t )Wν (t, p̄(t )) − p̄7(t )Wν (t, p̄(t ))

+ ‖(ūν (t, p̄(t )), u∼ν (t, p̄∼ν (t ))‖

+ 1

T
· s∼ν

1 (T, p̄∼ν (T ))

γa(T, p̄(T )) + γ i(T, p̄(T )) + δi(T )
� ȳν (t ).

Proceeding as above, i.e., using (29), the fact that z̄ū∼ν

ν (t, p(t ))
satisfies (19), and integrating, we get the inequality∫ T

0
(z̄ū∼ν

ν,1 (t, p̄(t )) + z̄ū∼ν

ν,7 (t, p̄(t ))

+ ‖(ūν (t, p̄(t )), u∼ν (t, p̄∼ν (t ))‖)dt

+ s∼ν
1 (T, p̄∼ν (T ))

γa(T, p̄(T )) + γ i(T, p̄(T )) + δi(T )
�

∫ T

0
ȳν (t )dt .

(34)

Comparing (33) and (34) we get

Jdn
(
z̄ū∼ν

ν (·, p̄ν (·)), ūν (·, p̄ν (·)))� Jdn
(
zū∼ν

(·, p(·)), ūν (·, p(·)))
− T ε, (35)

i.e., the first inequality in the definition of the dual ε-closed-
loop Nash equilibrium for the game (23) and (24). The second
one is analogous; thus the theorem is proved. �

VI. NUMERICAL ALGORITHM

Now we construct a numerical algorithm whose aim is to
find suspected strategies (which can be optimal) and verify
them using Theorem 1. These strategies are grouped into two
players: ν and σ . Both of them participate in a noncooperative
differential game having M > 0 sets of 15 strategies. Based
on M sets of three strategies chosen by player ν and one set
of 12 (fixed) strategies of the player σ , we find M values of

the functional (17). At the same time, based on M sets of
12 strategies chosen by player σ and one set of three (fixed)
strategies of the player ν, we find M values of the functional
(18). To do this, we calculate M times the basic reproduction
number from (8) and find M values of the population having
antibodies and also M values of the pandemic costs, solving
M times the system of differential equations (1)–(7) for both
players. We find the maximal value of functional (17) among
M values of this functional found earlier and also find the
minimal value of functional (18) among M values of this func-
tional found earlier. Hence we found 15 strategies for player
ν corresponding to the maximal value of functional (17) and
found also 15 strategies for player σ corresponding to the
minimal value of functional (18). The strategies found in this
way are called suspected optimal. Having these functions, we
build dual ε-closed-loop strategies which are based on the sus-
pected optimal strategies (see steps 6.1–6.2.3 below). Next we
find some auxiliary functions. To do this, we solve differential
equations (25) and (26), using strategies found previously. In
the last step we check inequalities (29) and (30), substituting
all functions calculated previously. If these inequalities are
satisfied, it means that we found the best strategies which
define the dual ε-closed-loop Nash equilibrium.

A Nash equilibrium guarantees that the strategies chosen
by the first player are optimal (and with the strategies fixed by
the second player) and simultaneously the strategies chosen
by the second player (and with the strategies fixed by the first
player) are also optimal.

From a medical point of view, the first player chooses their
own optimal strategies in order to maximize the part of the
population having antibodies and the second player chooses
their own optimal strategies in order to minimize the basic re-
production number. Let us see that neither the first player nor
the second one wins by changing only one’s own strategies. It
means that neither maximizing the number of the population
having antibodies, V , nor minimizing the basic reproduction
number R0 is the optimal approach. It is because both players
win at the same time (choosing ther own optimal strategies).
Hence the most expected situation in order to overcome the
pandemic relies on maximizing V and minimizing R0 at the
same time.

Below the precise steps of our numerical algorithm are
given.

Algorithm. Algorithm checking Verification Theorem 1.

Step 1
Take time T > 0, the number of strategies M > 0 and ε > 0.
Step 2.1
for j = 1 to M by 1 do

Fix uν j = {v j (t ), γa j (t ), γi j (t )}, t ∈ [0, T ], such that
v j (t ) ∈ U1, γa j (t ) ∈ U7, γi j (t ) ∈ U8 and for fixed u∼ν =
{κ (t ), r1(t ), r2(t ), r3(t ), s1(t ), γr (t ), ϕ(t ), c(t ), c1(t ), c2(t ), c3(t ),
c4(t )}, t ∈ [0, T ], such that κ (t ) ∈ U2, r1(t ) ∈ U3, r2(t ) ∈ U4,
r3(t ) ∈ U5, s1(t ) ∈ U6, γr (t ) ∈ U9, ϕ(t ) ∈ U10, c(t ) ∈ U11,
c1(t ) ∈ U12, c2(t ) ∈ U13, c3(t ) ∈ U14, c4(t ) ∈ U15 solve
differential equation (9) which describes system (1)–(7) with
initial conditions x j (0) = x0 j , where x0 j ∈ R7, finding Vj and
Cj .
end for
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Algorithm. (Continued.)

Step 2.2
for j = 1 to M by 1 do

Fix uσ j = {κ j (t ), r1 j (t ), r2 j (t ), r3 j (t ), s1 j (t ), γr j (t ), ϕ j (t ),
c j (t ), c1 j (t ), c2 j (t ), c3 j (t ), c4 j (t )}, t ∈ [0, T ], such that
κ j (t ) ∈ U2, r1 j (t ) ∈ U3, r2 j (t ) ∈ U4, r3 j (t ) ∈ U5, s1 j (t ) ∈ U6,
γr j (t ) ∈ U9, ϕ j (t ) ∈ U10, c j (t ) ∈ U11, c1 j (t ) ∈ U12,
c2 j (t ) ∈ U13, c3 j (t ) ∈ U14, c4 j (t ) ∈ U15 and for fixed
u∼σ = {v(t ), γa(t ), γi(t )}, t ∈ [0, T ], such that v(t ) ∈ U1,
γa(t ) ∈ U7, γi(t ) ∈ U8 solve differential equation (9) which
describes system (1)–(7) with initial conditions x j (0) = x0 j ,
where x0 j ∈ R7, finding Vj and Cj .

end for

Step 3.1

for j = 1 to M by 1 do

Calculate R0 j (t ), t ∈ [0, T ], from (8) for strategies from
step 2.1.

end for

Step 3.2

for j = 1 to M by 1 do

Calculate R0 j (t ), t ∈ [0, T ], from (8) for strategies from
step 2.2.

end for

Step 4.1

for j = 1 to M by 1 do

For strategies found in step 2.1 and for suitable R0 j (t ),

t ∈ [0, T ], found in step 3.1, calculate
∫ T

0 (V u∼ν

j (t ) + Cu∼ν

j (t ) +
‖(uν j (t ), u∼ν (t ))‖), t ∈ [0, T ], where V u∼ν

j and Cu∼ν

j are
solutions of (9) found in step 2.1. For these values calculate
values of the functional J (xu∼ν

j , uν j ) given in (17), where xu∼ν

j

is a state variable for player ν j for the opponents’ strategy u∼ν .

end for

Step 4.2

for j = 1 to M by 1 do

For strategies found in step 2.2 and for suitable R0 j (t ),

t ∈ [0, T ], found in step 3.2, calculate
∫ T

0 (V u∼σ

j (t ) + Cu∼σ

j (t ) +
‖(uσ j (t ), u∼σ (t ))‖), t ∈ [0, T ], where V u∼σ

j and Cu∼σ

j are
solutions of (9) found in step 2.2. For these values calculate
values of the functional J (xu∼σ

j , uσ j ) given in (18), where xu∼σ

j

is a state variable for player σ j for the opponents’ strategy u∼σ .

end for

Step 5.1

for j = 1 to M by 1 do

For strategies found in step 2.1, find the maximal value of
the functional J (xu∼ν

j , uν j ) among those found in step 4.1.

end for

Find strategies corresponding to the maximal value of the
functional given above us

ν = {vs(t ), γ s
a (t ), γ s

i (t )}, t ∈ [0, T ],
and u∼ν

s = {κ s(t ), rs
1(t ), rs

2(t ), rs
3(t ), ss

1(t ), γ s
r (t ), ϕs(t ), cs(t ),

cs
1(t ), cs

2(t ), cs
3(t ), cs

4(t )}, t ∈ [0, T ]. We name these strategies
suspected ε-optimal (see Table I). (see the basic reproduction
number R0 in Fig. 4 for the best strategies).
Step 5.2
for j = 1 to M by 1 do

Algorithm. (Continued.)

For strategies found in step 2.2, find the minimal value of
the functional J (xu∼σ

j , uσ j ) among those found in step 4.2.
end for

Find strategies corresponding to the minimal value of the
functional given above
us

σ = {κ s(t ), rs
1(t ), rs

2(t ), rs
3(t ), ss

1(t ), γ s
r (t ), ϕs(t ), cs(t ), cs

1(t ),
cs

2(t ), cs
3(t ), cs

4(t )}, t ∈ [0, T ] and u∼σ
s = {vs(t ), γ s

a (t ), γ s
i (t )},

t ∈ [0, T ]. We name these strategies suspected ε-optimal (see
Table II). (see part of the population having antibodies in Fig. 5
for the best strategies).
Step 6.1
Choose a set Pν and number of vectors pj ∈ Pν as K > 0.
Step 6.1.1
for j = 1 to K by 1 do

Fix pν
0 j ∈ Pν and build a set uν j (t, pj ) = {v j (t, pj ),

γa j (t, pj ), γi j (t, pj )} which consists of the suspected strategies
found in step 5.1 in the following way: v j (t, pj ) = vs(t )p1 j p2 j ,
γa j (t, pj ) = γ s

a (t )p5 j p6 j , γi j (t, pj ) = γ s
i (t )p7 j p1 j , where

p1 j, . . . , p7 j are coordinates of the vectors pj ∈ Pν .

end for
Step 6.1.2
for j = 1 to K by 1 do

Fix pν
0 j ∈ Pν and build a set u∼ν

j (t, pj ) = {κ j (t, pj ),
r1 j (t, pj ), r2 j (t, pj ), r3 j (t, pj ), s1 j (t, pj ), γr j (t, pj ),
ϕ j (t, pj ), c j (t, pj ), c1 j (t, pj ), c2 j (t, pj ), c3 j (t, pj ), c4 j (t, pj )}
which consists of the suspected strategies by using step 5.2 and
according to (14) u∼ν

s = us
σ in the following way:

κ j (t, pj ) = κ s(t )p1 j p2 j , r1 j (t, pj ) = rs
1(t )p2 j p3 j ,

r2 j (t, pj ) = rs
2(t )p3 j p4 j , r3 j (t, pj ) = rs

3(t )p4 j p5 j ,
s1 j (t, pj ) = ss

1(t )p6 j p7 j , γr j (t, pj ) = γ s
r (t )p7 j p1 j ,

ϕ j (t, pj ) = ϕs(t )p1 j p2 j , c j (t, pj ) = cs(t )p2 j p3 j ,
c1 j (t, pj ) = cs

1(t )p3 j p4 j , c2 j (t, pj ) = cs
2(t )p4 j p5 j ,

c3 j (t, pj ) = cs
3(t )p5 j p6 j , c4 j (t, pj ) = cs

4(t )p6 j p7 j , where
p1 j, . . . , p7 j are coordinates of the vectors pj ∈ Pν .

end for
Step 6.1.3
for j = 1 to K by 1 do

Solve (19) for strategies uν j (t, pj ) and u∼ν
j (t, pj ) and with

fixed initial conditions zu∼ν

j (t, pj ) = x0 j , where x0 j are the
same vectors as chosen in step 2.1, to find zu∼ν

j (t, pj ).

end for
Step 6.2
Choose a set Pσ and number of vectors pj ∈ Pσ as K > 0.
Step 6.2.1
for j = 1 to K by 1 do

Fix pσ
0 j ∈ Pσ and build a set uσ j (t, pj ) = {κ j (t, pj ),

r1 j (t, pj ), r2 j (t, pj ), r3 j (t, pj ), s1 j (t, pj ),
γr j (t, pj ), ϕ j (t, pj ), c j (t, pj ), c1 j (t, pj ), c2 j (t, pj ),
c3 j (t, pj ), c4 j (t, pj )} which consists of the suspected strategies
found in step 5.2 in the following way:
κ j (t, pj ) = κ s(t )p1 j p2 j , r1 j (t, pj ) = rs

1(t )p2 j p3 j ,
r2 j (t, pj ) = rs

2(t )p3 j p4 j , r3 j (t, pj ) = rs
3(t )p4 j p5 j ,

s1 j (t, pj ) = ss
1(t )p6 j p7 j , γr j (t, pj ) = γ s

r (t )p7 j p1 j ,
ϕ j (t, pj ) = ϕs(t )p1 j p2 j , c j (t, pj ) = cs(t )p2 j p3 j ,
c1 j (t, pj ) = cs

1(t )p3 j p4 j , c2 j (t, pj ) = cs
2(t )p4 j p5 j ,

c3 j (t, pj ) = cs
3(t )p5 j p6 j , c4 j (t, pj ) = cs

4(t )p6 j p7 j , where
p1 j, . . . , p7 j are coordinates of the vectors pj ∈ Pσ .
end for
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Algorithm. (Continued.)

Step 6.2.2
for j = 1 to K by 1 do

Fix pσ
0 j ∈ Pσ and build a set u∼σ

j (t, pj ) = {v j (t, pj ),
γa j (t, pj ), γi j (t, pj )} which consists of the suspected strategies
by using step 5.1 and according to (13) u∼σ

s = us
ν in the

following way: v j (t, pj ) = vs(t )p1 j p2 j ,
γa j (t, pj ) = γ s

a (t )p5 j p6 j , γi j (t, pj ) = γ s
i (t )p7 j p1 j , where

p1 j, . . . , p7 j are coordinates of the vectors pj ∈ Pσ .
end for
Step 6.2.3
for j = 1 to K by 1 do

Solve (20) for strategies uσ j (t, pj ) and u∼σ
j (t, pj ) and with

fixed initial conditions zu∼σ

j (t, pj ) = x0 j , where x0 j are the
same vectors as chosen in step 2.2, to find zu∼σ

j (t, pj ).
end for
Step 7.1
for j = 1 to K by 1 do

Find a pair of functions yν j and Wν j solving differential
equation (25) for the fixed initial conditions −pν

0 jWν j (0,

pν
0 j ) = x0 j , where x0 j are the same vectors chosen in step 2.1,

pν
0 j are the same vectors chosen in step 6.1, for the strategies

uν j (t, pj ) and u∼ν
j (t, pj ) found in step 6.1 and for

R0 j (uν j (t, pj ), u∼ν
j (t, p∼ν

j )).
end for
Step 7.2
for j = 1 to K by 1 do

Find a pair of functions yσ j and Wσ j solving differential
equation (26) for the fixed initial conditions −pσ

0 jWσ j (0,

pσ
0 j ) = x0 j , where x0 j are the same vectors chosen in step 2.2,

pσ
0 j are the same vectors chosen in step 6.2, for the strategies

uσ j (t, pj ) and u∼σ
j (t, pj ) found in step 6.2 and for

R0 j (uσ j (t, pj ), u∼σ
j (t, p∼σ

j )).
end for
Step 8.1
for j = 1 to K by 1 do

Check equality (29) for zu∼ν

j which were found in step 6.1
and for Wν j which were found in step 7.1.
end for
Step 8.2
for j = 1 to K by 1 do

Check equality (30) for zu∼σ

j which were found in step 6.2
and for Wσ j which were found in step 7.2.
end for
Step 9
for j = 1 to K by 1 do

if equalities in (29) and (30) are satisfied then
Finish algorithm because Verification Theorem 1

guarantees that ūν j = uν j and ūσ j = uσ j are ε-optimal
strategies.

else
Repeat steps 1–9.

end if
end for

A. Practical example realizing numerical algorithm

We use in this numerical example real data from Poland
from 8 May 2021 and use them to repeat the steps presented
in the numerical algorithm in Section VI: V (t ) = 6 142 989
(which is 16.16% of the whole population) having anti-

FIG. 4. Basic reproduction number R0 for the best strategies
given above.

bodies, S(t ) = 25 357 400 (which is 66.73% of the whole
population) susceptible, I (t ) = 2 829 196 (which is 7.44% of
the whole population) symptomatic and infectious, H (t ) =
17 155 (which is 0.04% of the whole population) hospitalized,
and F (t ) = 69 866 (which is 0.18% of the whole population),
fatality.

The coefficients δi and δh correspond to the situation in
Wuhan (see, e.g., [6]) because we were unable to calculate
them.

We take percentages only for the acceleration of the
numerical calculations. Hence we have the following initial
conditions: V (0) = 0.1616, R(0) = 0.0942, S(0) = 0.6673,
I (0) = 0.0744, H (0) = 0.0004, F (0) = 0.0018, and C(0) =
0, where V (0) + R(0) + S(0) + I (0) + H (0) + F (0) = 1
(which means 100% of the population).

(1) Take T = 1 (which means one year), ε = 0.1, δi =
0.01, δh = 0.3 and fix

x0 = (V (0), R(0), S(0), I (0), H (0), F (0),C(0)).

(2.1) Take M = 5 of the fixed three strategies
uν j = {v j (t ), γa j (t ), γi j (t )}, t ∈ [0, 1], j = 1, . . . , 5 for
player uν such that v j (t ) ∈ (0, 0.6), γa j (t ) ∈ (0, 1.7),
γi j ∈ (0, 1.3) and for M = 5 of the twelve fixed
strategies u∼ν = {κ (t ), r1(t ), r2(t ), r3(t ), s1(t ), γr (t ), ϕ(t ),
c(t ), c1(t ), c2(t ), c3(t ), c4(t )}, t ∈ [0, 1], such that κ (t ) ∈
(0, 1.1), r1(t ) ∈ (0, 1), r2(t ) ∈ (0, 0.4), r3(t ) ∈ (0, 0.2),
s1(t ) ∈ (0, 2.8), γr (t ) ∈ (0, 1), ϕ(t ) ∈ (0, 0.7), c(t ) ∈
(0, 1.6), c1(t ) ∈ (0, 0.1), c2(t ) ∈ (0, 0.6), c3(t ) ∈ (0, 1.5),

FIG. 5. Part of the population having antibodies for the best
strategies given above.
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TABLE I. Suspected ε-optimal strategies, for which functional (17) is maximized.

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1) [1, 1.1) [1.1, 1.2]

v 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000
γa 1.1000 1.1500 1.2000 1.2500 1.3000 1.3500 1.4000 1.4500 1.5000 1.5500 1.6000 1.6500
γi 1.0000 1.0250 1.0500 1.0750 1.1000 1.1250 1.1500 1.1750 1.2000 1.2250 1.2500 1.2750
κ 0.7500 0.7600 0.7700 0.7800 0.7900 0.8000 0.8100 0.8200 0.8300 0.8400 0.8500 0.8600
r1 0.6000 0.6100 0.6200 0.6300 0.6400 0.6500 0.6600 0.6700 0.6800 0.6900 0.7000 0.7100
r2 0.1000 0.1050 0.1100 0.1150 0.1200 0.1250 0.1300 0.1350 0.1400 0.1450 0.1500 0.1550
r3 0.0500 0.0510 0.0520 0.0530 0.0540 0.0550 0.0560 0.0570 0.0580 0.0590 0.0600 0.0610
s1 2.3000 2.2750 2.2500 2.2250 2.2000 2.1750 2.1500 2.1250 2.1000 2.0750 2.0500 2.0250
γr 0.8000 0.8050 0.8100 0.8150 0.8200 0.8250 0.8300 0.8350 0.8400 0.8450 0.8500 0.8550
ϕ 0.5000 0.5050 0.5100 0.5150 0.5200 0.5250 0.5300 0.5350 0.5400 0.5450 0.5500 0.5550
c 1.5000 1.4750 1.4500 1.4250 1.4000 1.3750 1.3500 1.3250 1.3000 1.2750 1.2500 1.2250
c1 0.0500 0.0475 0.0450 0.0425 0.0400 0.0375 0.0350 0.0325 0.0300 0.0275 0.0250 0.0225
c2 0.5000 0.4800 0.4600 0.4400 0.4200 0.4000 0.3800 0.3600 0.3400 0.3200 0.3000 0.2800
c3 1.0000 0.9750 0.9500 0.9250 0.9000 0.8750 0.8500 0.8250 0.8000 0.7750 0.7500 0.7250
c4 0.8000 0.7500 0.7000 0.6500 0.6000 0.5500 0.5000 0.4500 0.4000 0.3500 0.3000 0.2500

c4(t ) ∈ (0, 0.9) (see [27] for all of the tested strategies) solve
five times the system of differential equations (1)–(7) with the
initial condition fixed in step 1.

(2.2) Take M = 5 of the fixed twelve strategies
uσ j = {κ j (t ), r1 j (t ), r2 j (t ), r3 j (t ), s1 j (t ), γr j (t ), ϕ j (t ), c j (t ),
c1 j (t ), c2 j (t ), c3 j (t ), c4 j (t )}, t ∈ [0, 1], j = 1, . . . , 5 for
player uσ such that κ j (t ) ∈ (0, 1.1), r1 j (t ) ∈ (0, 1),
r2 j (t ) ∈ (0, 0.4), r3 j (t ) ∈ (0, 0.2), s1 j (t ) ∈ (0, 2.8), γr j (t ) ∈
(0, 1), ϕ j (t ) ∈ (0, 0.7), c j (t ) ∈ (0, 1.6), c1 j (t ) ∈ (0, 0.1),
c2 j (t ) ∈ (0, 0.6), c3 j (t ) ∈ (0, 1.5), c4 j (t ) ∈ (0, 0.9) and for
M = 5 of the fixed three strategies u∼σ = {v(t ), γa(t ), γi(t )},
t ∈ [0, 1], such that v(t ) ∈ (0, 0.6), γa(t ) ∈ (0, 1.7),
γi ∈ (0, 1.3) (see [27] for all of the tested strategies) solve
five times the system of differential equations (1)–(7) with the
initial condition fixed in step 1.

(3.1) For strategies from step 2.1 and from (8) we
have R01(T ) = 0.9485, R02(T ) = 0.8672, R03(T ) = 0.7988,
R04(T ) = 0.7404, and R05(T ) = 0.6899.

(3.2) For strategies from step 2.2 and from (8) we
have R01(T ) = 0.6899, R02(T ) = 0.7240, R03(T ) = 0.7581,
R04(T ) = 0.7922, and R05(T ) = 0.8262.

(4.1) For strategies found in step 2.1, for suitable
R0 j (T ), j = 1, . . . , 5, found in step 3.1, calculate∫ T

0 (V u∼ν

1 (t ) + Cu∼ν

1 (t ) + ‖(uν1(t ), u∼ν (t ))‖) = 4.8652,∫ T
0 (V u∼ν

2 (t ) + Cu∼ν

2 (t ) + ‖(uν2(t ), u∼ν (t ))‖) = 4.9772,∫ T
0 (V u∼ν

3 (t ) + Cu∼ν

3 (t ) + ‖(uν3(t ), u∼ν (t ))‖) = 5.1013,∫ T
0 (V u∼ν

4 (t ) + Cu∼ν

4 (t ) + ‖(uν4(t ), u∼ν (t ))‖) = 5.2279,∫ T
0 (V u∼ν

5 (t ) + Cu∼ν

5 (t ) + ‖(uν5(t ), u∼ν (t ))‖) = 5.3602, where
Vj and Cj , j = 1, . . . , 5, are solutions of (9) found in step
2.1. For these values J (xu∼ν

1 , uν1) = 5.8137, J (xu∼ν

2 , uν2) =
5.8444, J (xu∼ν

3 , uν3) = 5.9001, J (xu∼ν

4 , uν4) = 5.9683, and
J (xu∼ν

5 , uν5) = 6.0501.
(4.2) For strategies found in step 2.2, for suitable

R0 j (T ), j = 1, . . . , 5, found in step 3.2, calculate∫ T
0 (V u∼σ

1 (t ) + Cu∼σ

1 (t ) + ‖(uσ 1(t ), u∼σ (t ))‖) = 5.3602,∫ T
0 (V u∼σ

2 (t ) + Cu∼σ

2 (t ) + ‖(uσ 2(t ), u∼σ (t ))‖) = 5.7288,∫ T
0 (V u∼σ

3 (t ) + Cu∼σ

3 (t ) + ‖(uσ 3(t ), u∼σ (t ))‖) = 5.9033,

∫ T
0 (V u∼σ

4 (t ) + Cu∼σ

4 (t ) + ‖(uσ 4(t ), u∼σ (t ))‖) = 6.0707,∫ T
0 (V u∼σ

5 (t ) + Cu∼σ

5 (t ) + ‖(uσ 5(t ), u∼σ (t ))‖) = 6.2371,
where Vj and Cj , j = 1, . . . , 5, are solutions of (9)
found in step 2.2. For these values J (xu∼σ

1 , uσ 1) =
6.0501, J (xu∼σ

2 , uσ 2) = 6.4528, J (xu∼σ

3 , uσ 3) = 6.6614,
J (xu∼σ

4 , uσ 4) = 6.8629, and J (xu∼σ

5 , uσ 5) = 7.0633.
(5.1) For strategies found in step 2.1, the maximal value of

the functional among those found in step 4.1 is J (xu∼ν

5 , uν5) =
6.0501. Strategies which correspond to the maximal value
of the functional given above are given in Table I. These
strategies are suspected ε-optimal.

(5.2) For strategies found in step 2.2, the minimal
value of the functional among those found in step 4.2
is J (xu∼σ

1 , uσ 1) = 6.0501. Strategies which correspond to
the minimal value of the functional given above are
given in Table II. These strategies are suspected ε-
optimal.

(6.1) Choose a set Pν = {p j ∈ R7 : −0.0001 � pi
j �

0.0001, pi coordinate of p j}, take a discreet set Pd
ν = {pi

j ∈
R : −0.0001 � pi

j < 0.0001, j = 1, 2, 3}, i = 1, . . . , 7, such
that Pd

ν ⊂ Pν, and take the following vectors:

p1 = (−0.0001,−0.0001,−0.0001,−0.0001,−0.0001,

− 0.0001,−0.0001),

p2 = (−0.00001,−0.00001,−0.00001,−0.00001,

− 0.00001,−0.00001,−0.00001),

p3 = (0.0001, 0.0001, 0.0001, 0.0001,

× 0.0001, 0.0001, 0.0001),

p j ∈ Pd
ν , j = 1, 2, 3.

(6.1.1) Having suspected strategies found in step 5.1 and
vectors p j , j = 1, 2, 3, we build a set v j (t, p j ) = vs(t )p1 j p2 j ,
γa j (t, p j ) = γ s

a (t )p5 j p6 j , γi j (t, p j ) = γ s
i (t )p7 j p1 j , where

p1 j, . . . , p7 j are coordinates of the vectors p j ∈ Pν .
(6.1.2) Having suspected strategies found in step 5.1 and

vectors p j , j = 1, 2, 3, we build a set κ j (t, p j ) = κs(t )p1 j p2 j ,
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TABLE II. Suspected ε-optimal strategies, for which functional (18) is minimized.

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1) [1, 1.1) [1.1, 1.2]

v 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000
γa 1.1000 1.1500 1.2000 1.2500 1.3000 1.3500 1.4000 1.4500 1.5000 1.5500 1.6000 1.6500
γi 1.0000 1.0250 1.0500 1.0750 1.1000 1.1250 1.1500 1.1750 1.2000 1.2250 1.2500 1.2750
κ 0.7500 0.7600 0.7700 0.7800 0.7900 0.8000 0.8100 0.8200 0.8300 0.8400 0.8500 0.8600
r1 0.6000 0.6100 0.6200 0.6300 0.6400 0.6500 0.6600 0.6700 0.6800 0.6900 0.7000 0.7100
r2 0.1000 0.1050 0.1100 0.1150 0.1200 0.1250 0.1300 0.1350 0.1400 0.1450 0.1500 0.1550
r3 0.0500 0.0510 0.0520 0.0530 0.0540 0.0550 0.0560 0.0570 0.0580 0.0590 0.0600 0.0610
s1 2.3000 2.2750 2.2500 2.2250 2.2000 2.1750 2.1500 2.1250 2.1000 2.0750 2.0500 2.0250
γr 0.8000 0.8050 0.8100 0.8150 0.8200 0.8250 0.8300 0.8350 0.8400 0.8450 0.8500 0.8550
ϕ 0.5000 0.5050 0.5100 0.5150 0.5200 0.5250 0.5300 0.5350 0.5400 0.5450 0.5500 0.5550
c 1.5000 1.4750 1.4500 1.4250 1.4000 1.3750 1.3500 1.3250 1.3000 1.2750 1.2500 1.2250
c1 0.0500 0.0475 0.0450 0.0425 0.0400 0.0375 0.0350 0.0325 0.0300 0.0275 0.0250 0.0225
c2 0.5000 0.4800 0.4600 0.4400 0.4200 0.4000 0.3800 0.3600 0.3400 0.3200 0.3000 0.2800
c3 1.0000 0.9750 0.9500 0.9250 0.9000 0.8750 0.8500 0.8250 0.8000 0.7750 0.7500 0.7250
c4 0.8000 0.7500 0.7000 0.6500 0.6000 0.5500 0.5000 0.4500 0.4000 0.3500 0.3000 0.2500

r1 j (t, p j ) = rs
1(t )p2 j p3 j, r2 j (t, p j ) = rs

2(t )p3 j p4 j, r3 j (t, p j )
= rs

3(t )p4 j p5 j, s1 j (t, p j ) = ss
1(t )p6 j p7 j, γr j (t, p j ) = γ s

r (t )
p7 j p1 j, ϕ j (t, p j ) = ϕs(t )p1 j p2 j, c j (t, p j ) = cs(t )p2 j p3 j,

c1 j (t, p j ) = cs
1(t )p3 j p4 j, c2 j (t, p j ) = cs

2(t )p4 j p5 j, c3 j

(t, p j ) = cs
3(t )p5 j p6 j, c4 j (t, p j ) = cs

4(t )p6 j p7 j which
consists of the suspected strategies and according to (14)
u∼ν

s = us
σ .

(6.1.3) Fix initial conditions zu∼ν
j = x0 j , j = 1, 2, 3, and

solve differential equation (19) for the 15 strategies found
above.

(6.2) Choose a set Pσ = {p j ∈ R7 : −0.0001 � pi
j �

0.0001, pi coordinate of p j}, take a discreet set Pd
σ = {pi

j ∈
R : −0.0001 � pi

j < 0.0001, j = 1, 2, 3}, i = 1, . . . , 7, such
that Pd

σ ⊂ Pσ , and take the following vectors:

p1 = (−0.0001,−0.0001,−0.0001,−0.0001,−0.0001,

− 0.0001,−0.0001),

p2 = (−0.00001,−0.00001,−0.00001,−0.00001,−0.00001,

− 0.00001,−0.00001),

p3 = (0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001),

p j ∈ Pd
σ , j = 1, 2, 3.

(6.2.1) Having suspected strategies found in step 5.2
and vectors p j , j = 1, 2, 3, we build a set κ j (t, p j ) =
κs(t )p1 j p2 j, r1 j (t, p j ) = rs

1(t )p2 j p3 j, r2 j (t, p j ) =
rs

2(t )p3 j p4 j, r3 j (t, p j ) = rs
3(t )p4 j p5 j, s1 j (t, p j ) =

ss
1(t )p6 j p7 j, γr j (t, p j ) = γ s

r (t )p7 j p1 j, ϕ j (t, p j ) =

ϕs(t )p1 j p2 j, c j (t, p j ) = cs(t )p2 j p3 j, c1 j (t, p j ) =
cs

1(t )p3 j p4 j, c2 j (t, p j ) = cs
2(t )p4 j p5 j, c3 j (t, p j ) =

cs
3(t )p5 j p6 j, c4 j (t, p j ) = cs

4(t )p6 j p7 j , where p1 j, . . . , p7 j
are coordinates of the vectors p j ∈ Pσ .

(6.2.2) Having suspected strategies found in step 5.2 and
vectors p j , j = 1, 2, 3, we build a set v j (t, p j ) = vs(t )p1 j p2 j ,
γa j (t, p j ) = γ s

a (t )p5 j p6 j , γi j (t, p j ) = γ s
i (t )p7 j p1 j , which

consists of the suspected strategies and according to (13)
u∼σ

s = us
ν .

(6.2.3) Fix initial conditions zu∼σ
j = x0 j , j = 1, 2, 3, and

solve differential equation (20) for 15 strategies found above.
(7.1) For fixed initial conditions −pν

0 jWν j (0, pν
0 j ) = x0 j ,

j = 1, 2, 3, where x0 j are the same vectors chosen in step
2.1, and pν

0 j are the same vectors chosen in step 6.1, for the
strategies uν j (t, p j ), u∼ν

j (t, p j ) found in step 6.1 and yν = 1,
solve differential equation (25).

(7.2) For fixed initial conditions −pσ
0 jWσ j (0, pσ

0 j ) = x0 j ,
j = 1, 2, 3, where x0 j are the same vectors chosen in step
2.2, and pσ

0 j are the same vectors chosen in step 6.2, for the
strategies uσ j (t, p j ), u∼σ

j (t, p j ) found in step 6.2 and yσ = 1,
solve differential equation (26).

(8.1) Having solutions zu∼ν
j found in step 6.1 and for Wν j ,

j = 1, 2, 3, from step 7.1, check inequality (29) (see [27]). For
vectors p1, p2, and p3 given above we have zν j + p jWν j <

0.67, j = 1, 2, 3, which shows that equality (29) holds with
accuracy 0.67.

(8.2) Having solutions zu∼σ
j found in step 6.2 and for Wσ j ,

j = 1, 2, 3, from step 7.2, check inequality (30) (see [27]). For

TABLE III. Interpretation of the results.

v γa γi κ r1 r2 r3 s1 γr ϕ c c1 c2 c3 c4

R0 ↘ × ↗ ↗ × × × × ↘ × × × × × × ×
V ↗ ↗ × ↗ ↗ × ↗ × ↗ ↗ ↘ ↗ ↗ ↗ × ↗
H ↘ × ↘ ↘ ↘ × ↘ × ↘ ↗ × × × × × ×
F ↘ × ↘ × ↘ × ↘ ↘ × × × × × × × ×
C ↘ ↘ ↘ ↘ ↘ × ↘ × ↘ × ↗ ↘ ↘ ↘ ↘ ↘
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vectors p1, p2, and p3 given above we have zσ j + p jWσ j <

0.67, j = 1, 2, 3, which shows that equality (30) holds with
accuracy 0.67.

(9) Because equalities (29) and (30) are satisfied, we finish
this algorithm.

VII. INTERPRETATION OF THE RESULTS

It is worth asking how to choose the strategies to minimize
the basic reproduction number, the part of the population
being hospitalized, fatality cases, and costs of the pandemic
and how to maximize part of the population having antibodies.

Based on multiple tests done in MATLAB, we see that de-
creasing strategy s1(t ) or increasing strategies γa(t ) or γi(t )
causes a decrease in the basic reproduction number R0(t ).
The other strategies have no effect on R0(t ), because these
strategies are not included in (8) which allows us to compute
R0(t ).

To increase the part of the population having antibodies, we
should increase strategies v(t ), γi(t ), κ (t ), r2(t ), s1(t ), γr (t ),
c(t ), c1(t ), c2(t ), or c4(t ) or decrease strategy ϕ(t ). Changing
strategies γa(t ), r1(t ), or c3(t ) has no effect on class V .

We can decrease the part of the population being hospital-
ized by minimizing strategies γa(t ), γi(t ), κ (t ), r2(t ), or s1(t )
or maximizing strategy γr (t ). Changing the other strategies
has no effect on class H .

Decreasing strategies γa(t ), κ (t ), r2(t ), or r3(t ) causes a
decrease in fatality cases. The other strategies do not affect
class F .

We are also interested in minimizing costs of the pandemic.
We do this by decreasing strategies v(t ), γa(t ), γi(t ), κ (t ),
r2(t ), s1(t ), c(t ), c1(t ), c2(t ), c3(t ), or c4(t ) or increasing
strategy ϕ(t ). Strategies r1(t ), r3(t ), and γr (t ) have no effect
on class C.

We enclose the above considerations in Table III. As we
see, the basic reproduction number R0 decreases, when only
strategy s1(t ) decreases (symbol ↘) and when γa(t ) or γi(t )
increase (symbol ↗). In a similar way we interpret the growth
of population V having antibodies and the decreasing fraction
of the population being hospitalized, cases, and pandemic
costs. The symbol × means that changing the given strategy
has no effect on R0, V , H , F , or C.

It is worth noticing that the values of the strategies se-
lected above confirm natural intuition because, e.g., we expect
growth of the population having antibodies as the values for
strategy v(t ) increase. We expect also that pandemic costs are
lower when we decrease strategies regarding costs, that is,
c(t ), c1(t ), c2(t ), c3(t ), or c4(t ).

It may be interesting to compare our results with these
from [2,24]. We consider in our paper M sets of the strategies
which evolve in time (see the graph in [27], how best strate-
gies change in time). This situation resembles a stochastic

FIG. 6. Comparison values for the part of the population having
antibodies V for the best and average strategies.

approach from the two papers cited above. Therefore, we
averaged all tested strategies and using them we studied the
behavior part of the population having antibodies and the
basic reproduction number. As we see in Fig. 6, using the
average strategies gives a smaller number of the population
having antibodies (throughout the period considered) com-
pared to using the best strategies.

Similarly, we have worse results for the basic reproduction
number when we use averaged strategies. As we see in Fig. 7,
R0 is less than one in the ninth month for averaged strategies,
while R0 < 1 is definitely faster (in the third month) when
we use our best strategies instead of the averaged. The basic
reproduction number is smaller in all time periods for the best
strategies obtained thanks to our game.

We present [27] five sets of the tested strategies for which
functional (17) is maximized and also five sets of strategies for
which functional (18) is minimized. We present also results
for the verification theorem and a graph of the strategies which
change in time.

FIG. 7. Comparison values of the basic reproduction number R0

for the best and average strategies.
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