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Distorted stability pattern and chaotic features for quantized prey-predator-like dynamics
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Nonequilibrium and instability features of prey-predator-like systems associated to topological quantum do-
mains emerging from a quantum phase-space description are investigated in the framework of the Weyl-Wigner
quantum mechanics. Reporting about the generalized Wigner flow for one-dimensional Hamiltonian systems,
H(x, k), constrained by ∂2H/∂x ∂k = 0, the prey-predator dynamics driven by Lotka-Volterra (LV) equations is
mapped onto the Heisenberg-Weyl noncommutative algebra, [x, k] = i, where the canonical variables x and k
are related to the two-dimensional LV parameters, y = e−x and z = e−k . From the non-Liouvillian pattern driven
by the associated Wigner currents, hyperbolic equilibrium and stability parameters for the prey-predator-like
dynamics are then shown to be affected by quantum distortions over the classical background, in correspondence
with nonstationarity and non-Liouvillianity properties quantified in terms of Wigner currents and Gaussian
ensemble parameters. As an extension, considering the hypothesis of discretizing the time parameter, nonhyper-
bolic bifurcation regimes are identified and quantified in terms of z − y anisotropy and Gaussian parameters. The
bifurcation diagrams exhibit, for quantum regimes, chaotic patterns highly dependent on Gaussian localization.
Besides exemplifying a broad range of applications of the generalized Wigner information flow framework, our
results extend, from the continuous (hyperbolic regime) to discrete (chaotic regime) domains, the procedure for
quantifying the influence of quantum fluctuations over equilibrium and stability scenarios of LV driven systems.
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I. INTRODUCTION

The Lotka-Volterra (LV) equations for prey-predator sys-
tems [1,2] were originally proposed as the setup for a classical
deterministic description for the ecological equilibrium of
competitive populations. Due to their accessible mathematical
properties, species coexistence chains could be straightfor-
wardly described by phase-space closed orbits parametrized
by a nonlinear Hamiltonian expressed in terms of the dimen-
sionless one-dimensional x − k phase space by [3]

H(x, k) = a x + k + a e−x + e−k = ε, (1)

where x and k variables are correlated with the numbers
of prey and predator species, y and z, by y = e−x and z =
e−k , respectively, and ε is an arbitrary constant. On the
phenomenological perspective, while noticing that natural en-
vironments generally consist of heterogeneous domains which
affect the behavior of microscopic biosystems, homogeneous
prey-predator-like distributions in the domain space are just
hypothetical. In nature, macroscopic and microscopic species
are closely linked to their environment conditions, which
define growth directives to the categories of populations.
Equivalent rate of growth of species can coexist with dif-
ferent strategies related to additional degrees of freedom,
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even if, for instance, the environment is homogeneous. Such
aspects, once expressed in terms of phenomenological param-
eters, can turn the stable coexistence of species into unstable
scenarios.

Generically, a stable classical setup as described by the
Hamiltonian Eq. (1) can be modified in order to encom-
pass more complex prey-predator-like configurations which
include, for instance, extinction and revival mechanisms [3,4],
perpetual coexistence [5], competition-induced chaos [6–8],
and microscopic molecular dynamics for symbiotic synchro-
nization [9,10].

Specifically for microscopic systems, mechanisms that
drive both quantum fluctuations and nonlinear effects may be
admitted, even if a theoretical connection with crude biochem-
ical and biological evolutionary modeling is still unveiled.
In fact, prey-predator-like oscillations, competition-induced
chaos, and symbiotic synchronization are examples of such
microscopic behavior which have been identified experimen-
tally [6,8–11]. They can be regarded as a motivation for
considering the quantization of LV systems and possibly to
respond to how and at which scales classical macroscopic and
quantum microscopic evolution coexist and if quantum effects
arise at measurable scales. The answer for these questions
can also be relevant, for instance, in the investigation of the
above quoted stability criteria for microbiological commu-
nities [11,12], or even in the analysis of stochastic system
dynamics [13–15] and in the description of phase transitions
in finite microscopic systems [16]. Therefore, despite the clas-
sical background driven by LV equations, the inclusion of both
quantumlike and instability triggers must be considered, in
particular, in the scope of equilibrium and stability analysis
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For macroscopic (nonquantized) ecosystems [4,5,17–19],
a quantitative description, either in terms of the hyperbolic
equilibrium description [20–22], for a presumed continuous
variable dynamics, or in terms of chaos pattern classification,
by the Hopf bifurcation analysis (if the predator-prey dy-
namics is not covered by the hyperbolic equilibrium regime)
is already admitted. Otherwise, for microscopic organisms
or biosystems, the understanding of the transition between
classical and quantum regimes demands the inclusion of sys-
tematic and operative procedures which are still incipient
[3,23,24].

In the framework considered here, nonequilibrium and
instability properties are associated to topological quantum
domains which emerge from a quantum phase-space descrip-
tion of the prey-predator-like dynamics [23]. Generically, for
one-dimensional Hamiltonian systems [cf. Eq. (1)], quantum
features associated to phase-space patterns, stationary behav-
ior, and information fluxes are straightforwardly quantified in
terms of Wigner currents and related properties [24–30].

The classical dynamics is given by the equations of motion
obtained from Hamiltonian Eq. (1), i.e.,

dx/dτ = {x,H}PB = 1 − e−k, (2)

dk/dτ = {k,H}PB = e−x − 1, (3)

where τ is the dimensionless time and the prey-predator z − y
system mapped into z �→ e−k and y �→ e−x can be exactly
evaluated in terms of phase-space coordinates through the
Weyl-Wigner (WW) framework [3]. This procedure allows
for an effective quantum description for the system [23].
Equilibrium and stability conditions affected by quantum
distortions over the classical background can then be theo-
retically connected to stationarity and Liouvillianity drivers
[24–30]. These quantum features can then be quantified in
terms of Wigner currents and ensemble parameters.

Conceptually, the collective behavior depicted from phase-
space effective quantum trajectories are interpreted as
averaged-out results of the space-time evolution of the species
distributions. Quantum deviations from classical patterns and
their effects on the time evolution of the prey-predator number
of species can then be evaluated. In fact, the WW framework
allows for identifying how classical and quantum evolution
coexists at different scales and how prey-predator quantum
analog effects emerge [3,31].

Considering that the prey-predator equilibrium regime is
driven by an autonomous system of ordinary differential
equations, our analysis here is focused on verifying if the
conditions for equilibrium and stability criteria are met. As
it will be verified, the quantum distortions over the classical
pattern, once convoluted by Gaussian ensembles [3], produce
evident hyperbolic and nonhyperbolic equilibrium and insta-
bility patterns which can all be quantified with tools of the
WW framework.

Having set the goals of our work, the outline of the
manuscript is as follows. Section II is concerned with the
foundations of the generalized WW framework [23], which
result in the quantum driven phase-space trajectories given
in terms of Wigner currents. Stationarity and Liouvillian-
ity quantifying operators obtained in the context of the
extended Wigner framework for nonlinear Hamiltonians,

H(x, k) = K(x) + V (k), are recovered [23] and the mathe-
matical structure for obtaining the corresponding statistically
convoluted Gaussian ensemble exact solutions is reexamined.
Nonequilibrium and instability features of prey-predator-like
competition systems associated to topological quantum do-
mains emerging from such a quantum phase-space description
are investigated in Sec. III. Since the equilibrium regime is
generated by an autonomous system of ordinary differential
equations from the WW phase space, the quantitative cor-
respondence of stationarity and Liouvillianity with stability
properties in terms of hyperbolic equilibrium parameters is
discussed. Equilibrium and stability quantifiers can thus be
obtained for quantum Gaussian ensembles when they are
dynamically driven by the corresponding Winger currents.
Furthermore, emergent topological phases due to the diffu-
sive appearance of unstable vortices and saddle points in the
phase space, as an effect of quantum distortions over the
classical background, are also identified. Finally, considering
the hypothesis of discretizing the time parameter, beyond
the hyperbolic regime, nonhyperbolic bifurcation patterns are
identified in Sec. IV, being described in terms of species
anisotropy and Gaussian localization parameters. Our conclu-
sions are drawn in Sec. V, where the bridges between classical
and quantum descriptions of prey-predator-like systems are
evinced, and a consistent interpretation on the meaning of
quantum distortions is provided.

II. QUANTUM DRIVEN PHASE-SPACE TRAJECTORIES

The WW phase-space framework [25–27] encompasses
all the quantum features (see the Appendix) through a
quasiprobability distribution function of canonical coordi-
nates of position, x, and momentum, k, through the so-called
Wigner function, W (x, k). Since it is associated with the
quantum density matrix operator, ρ̂ = |ψ〉〈ψ |, through its
Weyl transform one has

ρ̂ → W (x, k) = π−1
∫ +∞

−∞
dw exp [2 i k w]

× ψ (x − w) ψ∗(x + w), (4)

written in a dimensionless form, where the Planck constant,
h̄, has been set equal to 1. Correspondingly, the probability
flux evolves according to the continuity equation written as
[24,26–28,30]

∂τW + ∂xJx + ∂kJk = ∂τW + ∇ξ · J = 0, (5)

where the time, τ , is also dimensionless. For generic Hamil-
tonians in the form of H(x, k) = K(k) + V (x), the associated
Wigner currents are straightforwardly given by [23]

Jx(x, k; τ ) = +
∞∑

η=0

(
i

2

)2η 1

(2η + 1)!

× [
∂

2η+1
k K(k)

]
∂2η

x W (x, k; τ ), (6)

Jk (x, k; τ ) = −
∞∑

η=0

(
i

2

)2η 1

(2η + 1)!

× [
∂2η+1

x V (x)
]
∂

2η

k W (x, k; τ ) (7)
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to account for the quantum backreaction through the η > 1
contributions from the corresponding series expansions. Once
truncated at η = 0, currents Eqs. (6) and (7) yield the classical
Liouvillian regime [26,27].

For phase-space coordinates identified by ξ = ξxx̂ + ξk k̂,
stationarity and Liouvillianity can be locally quantified by di-
vergence operators given by ∇ξ · J and ∇ξ · w, respectively
[24,28,30]. These are mutually connected by a parametric
definition of a quantum-analog velocity, w, implicitly given
in terms of the vector currents, J = wW ,1 which has the
classical limit, w → vξ (C), consistently described by the vec-
tor velocity vξ (C) = ξ̇ = (ẋ, k̇) ≡ (∂kH, −∂xH). From those
definitions, the associated stationarity and Liouvillianity di-
vergence operators are given respectively by

∇ξ · J =
∞∑

η=0

(−1)η

22η(2η + 1)!

{[
∂2η+1

x V (x)
]
∂

2η+1
k W

− [
∂

2η+1
k K(k)

]
∂2η+1

x W
}

(8)

and

∇ξ · w =
∞∑

η=0

(−1)η

22η(2η + 1)!

{[
∂

2η+1
k K(k)

]
∂x

[
1

W ∂2η
x W

]

− [
∂2η+1

x V (x)
]
∂k

[
1

W ∂
2η

k W
]}

, (9)

from which stationary and classical patterns are recovered by
∇ξ · J = 0 and ∇ξ · w = 0, respectively [28].

From this point, replacing the Wigner distribution,
W (x, k; τ ), by a Gaussian one,2

Gα (x(τ ), k(τ )) ≡ Gα (x, k) = α2

π
exp[−α2(x2 + k2)], (10)

into Eqs. (6) and (7), allows for writing [23]

∂2η+1
χ Gα (x, k) = (−1)2η+1α2η+1 H2η+1(αχ )

× Gα (x, k), for χ = x, k, (11)

where Hn(αχ ) are the Hermite polynomials of order n.
Also considering the auxiliary derivatives for K(k) and

V (x) obtained from Eq. (1) as

∂2η+1
x K(k) = δη0 − e−k, (12)

∂
2η+1
k V (x) = a(δη0 − e−x ), (13)

1From which it can be noticed that ∇ξ · J = W ∇ξ · w + w ·
∇ξW .

2For the classical to quantum transition viewed by the statistical
point of view, the classical analog of the second-order moments of
position and momentum coordinates, which define the Heisenberg
uncertainty principle, should consistently satisfy the same constraints
of position and momentum quantum observables. This procedure is
isomorphic to the implementation of Gaussian ensembles (or states)
[26,37] in the sense that, in both cases, the same statistics is repro-
duced.

the Gaussian convoluted prey-predator dynamics can thus be
described in terms of Wigner currents written in the form of
[3]

∂xJ α
x (x, k) = −2

[
α2 x − sin(α2 x) e

α2

4 −k
]
Gα (x, k), (14)

∂kJ α
k (x, k) = +2a

[
α2 k − sin(α2 k) e

α2

4 −x
]
Gα (x, k), (15)

which correspond to the convergent expression for the series
expansions, Eqs. (6) and (7), since the convergent contribu-
tions

∞∑
η=0

H2η+1(αχ )
s2η+1

(2η + 1)!
= sinh(2s αχ ) exp[−s2] (16)

have been found [3,23]. Finally, from the above results, and af-
ter a straightforward integration, the quantum analog Wigner
velocity components are given by

wα
x (x, k) = 1 − i

√
π

2α
e−(k−α2x2 ){ERF[α(x − i/2)]

−ERF[α(x + i/2)]}, (17)

wα
k (x, k) = −a

{
1 − i

√
π

2α
e−(x−α2k2 ){ERF[α(k − i/2)]

−ERF[α(k + i/2)]}
}

, (18)

written in terms of Gaussian error functions, ERF[. . . ].
The above results for the Wigner flow pattern can all

be constrained by the form of J α = w Gα (x, k), with w =
(wα

x , wα
k ), which, besides yielding analytical results for com-

ponents of the Wigner current, J , bring up the topological
properties of the Wigner flow and their consequences to the
prey-predator-like dynamics, as will be discussed in the fol-
lowing.

Results for Gaussian ensembles

The phase-space prey-predator Gaussian ensemble Wigner
flow pattern evaluated in terms of the Gaussian parameter, α,
from α2 = 1/2 to 10 is depicted in Fig. 1. The plots are for the
stationarity quantifier (first column), ∇ξ · J , for the Wigner
flux (second column), J , and for the Liouvillian quantifier
(third column), ∇ξ · w, which is superposed by the normal-
ized quantum velocity field (red arrows), w/|w|. In a kind
of diffusive behavior, discretized quantum domains emerge
for (highly) peaked Gaussian envelopes, which in Fig. 1 is
evaluated from α2 = 10 
 1 (first row) to α2 = 1/2 � 0 (last
row). Quantum features are indeed suppressed for smoothly
peaked Gaussian envelopes. For α2 � 1, the quasistation-
ary quantum pattern approaches the classical regime and the
quantum effects are seen as a small displacement of the
equilibrium coordinates, (x, k) ∼ (0, 0), for quasiclosed or-
bits. The green-yellow color scheme qualitatively depicts the
intensity of the Wigner current from maximal (yellow) to
minimum (green) values. In fact, it shows that the probability
flux pushes the equilibrium points away from (x, k) ∼ (0, 0)
as α increases. In both the first and second columns, additional
green and orange contour lines are respectively evinced for
Jx = 0 and Jk = 0 to depict the boundaries for the reversal
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FIG. 1. First column: stationarity quantifier, ∇ξ · J , for the
Gaussian ensemble. The color scheme depicts quasistable (darker re-
gions) and unstable (lighter) regions. Increasing values of α localizes
the quantum distortions, which result into evinced nonstationarity
(unstable) domains. Blue and orange contour lines are for Jx = 0
and Jk = 0, respectively. Second column: corresponding Wigner
flux, J . The vector plot scheme is modulated by |J |1/4 and the
green-yellow color scheme depicts the intensity of the Wigner current
from maximal (yellow) to minimum (green). The quantum critical
points are identified by orange-blue crossing lines, for J (2)

x = J (2)
k =

0. Third column: Liouvillianity quantifier, ∇ξ · w, superposed by
the normalized quantum velocity field (red arrows), w/|w|. The
divergence values, ∇ξ · w, are depicted through the background
color scheme, from darker regions, ∇ξ · w ∼ 0, to lighter regions,
∇ξ · w > 0. All the results are for α2 = 10 (first row), 8, 6, 4, 2, 1,
and 1/2 (last row) and for the x (horizontal axis) and k (vertical axis)
isotropic case (a = 1), with k, x ∈ [−3/2, +3/2] (unnecessary print
values are suppressed from the axis to have clearer visual effect).
Classical trajectories are shown as a collection of background black
lines.

of the Wigner flow in the x and k direction, respectively.
For increasing values of α, which correspond to more peaked
Gaussian distributions (from lower to upper rows), the quan-
tum distortions emerge as (counter)clockwise vortices [with
winding number equal to (−) + 1], as well as separatrix in-
tersections and saddle points (with winding number equal
to 0), i.e., flow stagnation points which are all identified by
orange-blue crossing lines, where J (2)

x = J (2)
k = 0. The con-

traflux fringes [bounded by blue (orange) lines] destroy the
closed orbit patterns since they emerge to compensate the re-
tarded evolution of the quantum flux and introduce discretized
quantum domains. These can be identified by the Liouvillian
quantifier (third column), which clearly depicts Wigner quan-
tum distorted velocities (red arrows), w. The Wigner function
and current patterns define a kind of phase transition driven
by α as the definitive imprint of the classical to quantum tran-
sition. The phase transition is identified by the emergence of
multiple stagnation points, with J (2)

x = J (2)
k = 0, for multiple

quantum domains connected by the topological features of the
Wigner flow.

III. HYPERBOLIC STABILITY

The stagnation points which are identified in the phase-
space Wigner flow (cf. Fig. 1) can be evaluated in terms of
the Gaussian parameter, α, which implicitly accounts for the
contributions due to the quantum fluctuations over the classi-
cal background, according to the magnitude of the Gaussian
localization, which, for α = 0, reproduces the classical limit
of Eqs. (17) and (18). The effects depicted in Fig. 1, which
emerge from increasing α values, can be identified through
the phase-space evolution of additional quantum mechanically
emerging equilibrium points which replace the unique clas-
sical equilibrium point, (x, k) ∼ (0, 0). The rows in Fig. 2
depict three different frame views for the behavior of the
phase-space stagnation points in terms of α, for 0 � α � 3.2.

The equilibrium point (flux) surrounding envelope is de-
fined by |w| < 0.006 and the plots are exhibited for a = 4
(first row), a = 1 (second row), and a = 1/4 (third row).
As it will be explained in the following, according to the
so-called hyperbolic equilibrium criteria, for 0 < α � 1.825,
the anisotropy parameter, a, drives the stability regime for
the attractor focus and node points. For a > 1, one has sta-
ble regimes, as it appears for the convergent behavior of
the equilibrium points for a = 4 (first row). Conversely, for
a < 1, one has unstable regimes, as it appears for the diffusive
behavior of the equilibrium points for a = 1/4 (third row).
The spreading behavior of the Gaussian ensemble, which runs
from red bubble saddle-point islands to the blue enveloped
focus, corresponding to decreasing values of α, recovers a
quasiclassical pattern, for which the quantum imprint is found
only for the small displacement [from (x, k) ∼ (0, 0)] of the
attractor equilibrium points. The blue region corresponds to
the hyperbolic equilibrium regime and can be described, for
instance, through a perturbative analysis [31].

In fact, for clarifying the above statements, one should
turn attention to the definition of the equilibrium points of a
two-dimensional dynamical system. In the context of the clas-
sical phase-space dynamics, they correspond to the solutions
of a system of ordinary differential equations with stationary
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FIG. 2. Region plot scheme for the phase-space evolution of stagnation points in the phase space, x − k. The plots show how the attractors
(blue regions) are affected by the magnitude of the Gaussian spreading parameter α, for 0 � α � 3.2. The equilibrium point (flux) surrounding
envelope is defined by |w| < 0.006 and the plots are exhibited for (a) a = 4 (first row), (b) a = 1 (second row), and (c) a = 1/4 (third
row). For 0 < α � 1.825, the anisotropy parameter, a, drives the stability regime for attractor focus and node points. For a > 1 one shall
have stable regimes, as it appears for the convergent behavior of the equilibrium points for a = 4 (first row). Conversely, for a < 1 one shall
unstable regimes, as it appears for the diffusive behavior of the equilibrium points for a = 1/4 (third row). Results are for the Wigner flow in
correspondence with Fig. 1. Local effects compensate each other when sliced views of the Wigner flux for fixed α are considered, i.e., either
when two vortices of opposite winding numbers match each other or when saddle points (white to red regions) mutually annihilate each other.
The portraits are the same for different angle views.
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behavior. Therefore, the equilibrium is geometrically defined
by ξ̇ = 0 (i.e., vx(C) = vk(C) = 0), which has a straightforward
quantum correspondence expressed in terms of the quantum
velocity, w, by wx = wk = 0. The equilibrium point solutions,
in both classical and quantum descriptions, correspond to
the phase-space stagnation points. For a continuous system
reduced to an equivalent discretized iterative system, they cor-
respond to the so-called fixed points of the equation system.
Considering the effective quantum dynamics described by the
behavior of the phase-space velocities as

wx = Jx(x, k; t )/W (x, k, ; t ) ≡ f (x, k),

wk = Jx(x, k; t )/W (x, k, ; t ) ≡ g(x, k), (19)

the so-called hyperbolic stability of the equilibrium points is
established by the features of the Jacobian matrix identified
by

j(x, k) =
[
∂x f (x, k) ∂k f (x, k)
∂xg(x, k) ∂kg(x, k)

]
, (20)

which defines an approximated linear stability by means of
its eigenvalues so that equilibrium and stability conditions
can be naturally stratified into subclassifications, through the
trace, Tr[. . . ], and the determinant, det[. . . ], of j(x, k), when
all derivatives are evaluated at the equilibrium point, ξe =
(xe, ke), obtained from f (xe, ke) = g(xe, ke) = 0.

To summarize, j(xe, ke) has all the eigenvalues with nega-
tive real parts for asymptotically stable systems. For unstable
systems, at least one eigenvalue of j(xe, ke) has a positive
real part. Likewise, the Jacobian matrix establishes the con-
ditions for the so-called hyperbolic equilibrium if all their
corresponding eigenvalues have nonzero real parts. Finally, if
at least one eigenvalue of the Jacobian matrix at equilibrium
points, j(xe, ke), has a zero real part, then the equilibrium
is not hyperbolic and the robustness of equilibrium and
stability conditions requires another criterion [21]. Topolog-
ically, through the observation of the vector field distribution,
w(x, k), at ξe = (xe, ke), the hyperbolic equilibrium and sta-
bility features are as follows: saddle points, which correspond
to unstable configurations, for real eigenvalues with opposite
signs, divergent (unstable) nodes, for both real eigenvalues
with positive signs, convergent (stable) nodes, for both real
eigenvalues with negative signs, divergent (unstable) focus,
for both complex eigenvalues with positive real parts, and
convergent (stable) focus, for both complex eigenvalues with
negative real parts.

According to the above criteria, one notices that focus and
node stabilities are defined by trace properties as

Tr[ j(xe, ke)] = ∇ξ · w|ξe
> 0 → instability,

Tr[ j(xe, ke)] = ∇ξ · w|ξe
< 0 → stability, (21)

when

det[ j(xe, ke)] = ∂x f
∣∣
ξe

∂kg
∣∣
ξe

−∂k f
∣∣
ξe

∂xg
∣∣
ξe

> 0 → for focus and nodes

(22)

and
det[ j(xe, ke)] = ∂x f

∣∣
ξe

∂kg
∣∣
ξe

−∂k f
∣∣
ξe

∂xg
∣∣
ξe

< 0 → for saddle points.

(23)

Focus and nodes are also separated by the threshold value,
[ j] = Tr[ j]2 − 4 det[ j] = 0, with

[ j(xe, ke)] > 0 for nodes,

[ j(xe, ke)] < 0 for focus. (24)

Since the hyperbolic equilibrium admits small linear per-
turbations over the system of equations, the phase-space
portrait qualitatively does not deviate from the steady state
configuration. Hence the local phase portrait of a nonlin-
ear system can be perturbatively mapped by its linearized
version, which equivalently accounts for eventual short dis-
placements of the fixed points (cf. the Hartman-Grobman
theorem [20]). Conversely, several types of nonhyperbolic
equilibrium patterns result into local bifurcations, which may
change stability, suppress the fixed point features, or even
split them into several equilibrium points, as it is qualitatively
depicted in Fig. 2.

Turning back to the results from Fig. 2, which correspond
to Eqs. (17) and (18), the equilibrium point classifications
are covered by the hyperbolic equilibrium criterium only for
α � 1.825, where short displacements from classical con-
figurations (α ∼ 0) are evinced by the blue region. Despite
approaching classical-like closed orbits, they are perturbed by
a quantum vortex distortion which emerges from surrounding
values of x and k and destroys the (classical) closed orbit
pattern. These features can be noticed from the Poincaré
maps for time intervals set as a quarter of the orbit period,
T/4, as depicted in Fig. 3 for α = 0 (first row), α = 1/2
(second row), and α = 3/4 (third row), all under the hyper-
bolic regime. The Poincaré maps of any continuous dynamical
system show successive points of the phase-space trajectory
computed by means of the integration of the original contin-
uous system. From Fig. 3, it can be noticed that the relevant
deviations from the closed orbit regime emerge due to tiny
anisotropic perturbations, which were introduced by setting
a = 1.01 (first column) and a = 0.99 (third column). For the
isotropic configuration, with a = 1, since Tr[ j(xe, ke)] = 0
[cf. Eqs. (17) and (18)], classical (α = 0) and quantum (α =
0) closed orbits are not affected. Correspondingly, stable and
unstable attractor behaviors are noticed from the plots for
a = 1.01 > 1 (first column) and a = 0.99 < 1 (third column),
respectively.

The complete hyperbolic equilibrium pattern is summa-
rized by the results from Fig. 4: phase-space saddle points
are identified by α � 1.825, obtained from det[ j(xe, ke)] <

0, focus and node points are identified by α � 1.825,
from det[ j(xe, ke)] > 0, and the attractor regimes, for
[ j(xe, ke)] > 0, are all defined and identified in terms of
the anisotropy factor, a, which also sets the threshold for
closed orbit stability at a = 1. For increasing values of α, the
saddle points which emerge from the lighter white patterns
indicated in Fig. 2 naturally contribute to the subsequent dif-
fusive appearance of unstable vortices and additional saddle
points that completely annihilate the classical pattern, where
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(a)

(b)

(c)

(d)

FIG. 3. Poincaré maps for (a) α = 0 (first row), (b) α = 1/2 (second row), (c) α = 3/4 (third row), and (d) α = 1 (fourth row), and for
a = 1.01 (first column), a = 1 (second column), and a = 0.99 (third column).

the red bubble regions correspond to the quantum drivers for
the pattern depicted in the first rows of Fig. 1. However, in this
case, the hyperbolic equilibrium classification corresponds to
an extrapolation from the perturbative regime.

Interestingly, out of the continuous hyperbolic equilibrium
domain, the multifocal vortex and saddle-point patterns of the
quantum regime depicted by Fig. 2 have a chaotic counterpart
in the discrete domain. If discreteness is admitted for the
driver of prey-predator oscillation evolution, turning the LV
system into a iterative discrete map, such chaotic features
emerge from a single bifurcation pattern of the classical back-
ground, which is chaotically affected by quantum fluctuations,
as it shall be discussed in the next section.

IV. DISCRETIZED SYSTEMS—BIFURCATION
MAPS AND CHAOTIC FEATURES

Deterministic chaos is associated to nonlinearity in Hamil-
tonian systems and its pattern emerges when a dynamical

system depends, in a sensitive way, on its previous state. Cir-
cumstantially, it is manifested by the discretization of the time
evolving coordinate. The minimum complexity of a chaotic
system can be described by the bifurcation theory, through
which changes onto the topological structure of a dynamical
system can be addressed [20–22]. That is the case of the
phase-space prey-predator-like dynamical system investigated
here, when one considers that time evolves through discretized
steps.

According to the established theoretical grounds [20–22],
a local bifurcation occurs when a parameter change causes the
stability of an equilibrium (or fixed point) to change. In con-
tinuous systems, it is driven by the real part of an eigenvalue of
an equilibrium configuration passing through zero. It results
into the bifurcation point, for which the equilibrium is non-
hyperbolic. In a discrete version of both the classical and the
quantum modified Gaussian convoluted LV equations, one can
read {x(t ), k(t )} �→ {xn, kn} for t �→ n/, with  arbitrarily
large. Considering the results obtained in the previous section,
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FIG. 4. Extrapolated hyperbolic pattern for effective quantum
prey-predator system from Eqs. (17) and (18) as function of the α

and the anisotropy parameter a.

and the natural deviations from the hyperbolic domain, Fig. 5
depicts the bifurcation map for the prey-predator classical
pattern as function of the anisotropy parameter a.

One notices that the bifurcation emerge for a = 1 such
that for a > 1 a twofold degeneracy of the equilibrium point
can be identified. Accordingly, under the influence of quan-
tum fluctuations driven by the Gaussian parameter α, the
bifurcation at a = 1 can be correlated with the results for
the Poincaré map from Fig. 3, as depicted by Fig. 6. For
increasing values of α, the behavior of the stability points for
the anisotropy parameter a = 0.99 (<1) and a = 1.01 (>1)
exhibits a two-dimensional chaotic pattern which can be in-
distinctly extended for any value of a > 1 and a < 1, where
disorder increases with increasing values of α. Conversely,

for α � 1, in the first and second rows of Fig. 6 (a � 1),
just a tiny deviation from the classical equilibrium point, i.e.,
(xe, ke) ∼ (0, 0), is noticed. Likewise, in the third and fourth
rows of Fig. 6 (a � 1), the classical bifurcation pattern is
slightly affected by quantum corrections at α � 1.

The topological changes in the phase-space portrait of the
system define the classification of bifurcations, which by itself
is extensively analyzed in the literature [20–22] and is out of
the scope of such a preliminary analysis. From the disorder
pattern numerically obtained, it can be noticed that increasing
values of α contribute to “accelerate” the bifurcation pattern
with respect to the anisotropy parameter, a, where the relative
a distance between successive bifurcations decreases as it
is favored by the introduction of quantum distortions. From
such results, one can realize that, for the prey-predator-like
dynamics, the chaotic behavior is increasingly induced by
quantum distortions.

V. CONCLUSIONS

The Wigner flow framework for addressing the role of
quantum fluctuations on the hyperbolic equilibrium con-
figurations of prey-predator-like systems, as well as for
understanding their relations with the triggers for chaotic pat-
terns, has been evaluated. First, in the broad range context
covered by the Wigner framework for nonlinear Hamiltonians
like H = K(k) + V (x), a consistent map of hyperbolic stabil-
ity conditions for prey-predator-like systems was provided.
Throughout the results obtained here, quantum fluctuations
over the prey-predator-like classical background have been
shown to affect the pattern of hyperbolic equilibrium of their
quantum analogs. Conversely, the combination of the hyper-
bolic stability quantifiers with the Wigner features is shown to
be relevant in distinguishing quantum fluctuations from non-
linear effects when they cannot be systematically investigated
through the Schrödinger framework.

From a theoretical perspective, the results obtained in
Sec. III could be read as the macroscopic emergence of
quantum distortions over the classical pattern. The quan-
tum analog noncommutative property related to phase-space
coordinates, [x, k] = 0, is reflected by the nonextinction hy-

(a) (b)

FIG. 5. (a) (Left) Bifurcation pattern for the discrete classical evolution of the mapped prey-predator chain, x and k, as function of the
anisotropy localization parameter a. Red points are for the evolution of the equilibrium points for the x coordinate and blue points are for
the evolution of the equilibrium points for the k coordinate. Results are for t �→ n/ with  = 5000 and n = 1, 2, . . . , 5 × 105. (b) (Right)
Once mapped into the prey-predator scheme, z �→ e−k and y �→ e−x , the discretized pattern introduces the possibility of the prey (predator)
extinction hypothesis, as the blue curve approaches zero for increasing values of a (> 1).
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FIG. 6. Bifurcation maps for (a) a = 0.97, (b) 0.99, (c) 1.01, and (d) 1.03 as function of the Gaussian localization parameter α. Red points
are for the evolution of the equilibrium points for the x coordinate and blue points are for the evolution of the equilibrium points for the
k coordinate. Increasing values of α contribute to a complete disorder behavior which destroys classical prey-predator bifurcation patterns.
Results are for t �→ ε and t �→ εn with ε = 5 × 10−4 and n = 0, 1, 2, . . . .

pothesis parametrized by minimal phase-space elementary
unity, δx δk ∼ 1. As a matter of fact, in quantum mechanics,
position and momentum operators have their noncommutative
nature expressed by the Moyal star-product definition which,
by the way, recovers the WW formalism. If x and k measure-

ments affect each other, the quantum analog of the uncertainty
principle is expressed by δx δk � 1 in correspondence with
[x, k] = i. Paradigmatically, if the LV maps the prey-predator
species oscillation, it is realized as a suppression of any
deterministic species evolution parametrized either by y(τ )
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and z(τ ) or by y(z) ↔ z(y). However, the Wigner frame-
work circumvents the deterministic solution by exhibiting a
semiclassical (averaged-out) solution from which the quan-
tum imprints can be detected via the hyperbolic equilibrium
pattern as well as onto Poincaré maps and bifurcation maps
(for time discretization). From a nondeterministic perspec-
tive, competitive species, in analogy with interacting quantum
states [32], have their existence predictability—which should
be related to a measurement operation—associated to a quan-
tum statistical ensemble description. In fact, that is the case
of the prey-predator-like dynamics considered here, where
a Gaussian (single- or multiparticle) phase-space probability
distribution is considered. Such an analysis is consistent with
the framework where several competitive microbiological and
biochemical systems [33,34] face environmental effects [35]
and complex and self-organizing hierarchical mechanisms
[36] included in their dynamics by means of quantum-based
treatments supported by fundamental single- and multiparticle
quantum mechanics.

Finally, when the above analysis is extrapolated to nonhy-
perbolic bifurcation regimes, the values probed or approached
asymptotically by prey-predator anisotropy and Gaussian lo-
calization parameters, a and α, allowed for the complete
visualization of the bifurcation theory and the correspondence
between classical and effective quantum regimes.

To conclude, our results show that the LV system, as a
particular example of a broad class of nonlinear Hamiltonian
systems, once admitted as a map of prey-predator dynamics
sensitive to quantum mechanical corrections and equilib-
rium theory analysis, exhibits measurable patterns which,
in the context of the WW phase-space framework, can be
detected either microscopically by the identification of quan-
tum topological phases or macroscopically by time evolved
averaged-out statistical imprints—aspects that, of course, may
deserve a fine-tuning phenomenological analysis.
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APPENDIX: WW QUASIPROBABILITY DISTRIBUTION

The WW formalism is thought of as the bridge between op-
erator methods and path integral techniques[38–40] encoded
by a Weyl transform operation defined by

OW (q, p) = 2
∫ +∞

−∞
ds exp [2 i p s/h̄] 〈q − s|Ô|q + s〉

= 2
∫ +∞

−∞
dr exp [−2 i q r/h̄] 〈p − r|Ô|p + r〉,

(A1)

where an arbitrary quantum operator is identified by Ô. For the
case where Ô is identified as a density matrix operator, ρ̂ =
|ψ〉〈ψ |, the Weyl transformed operator, OW (q, p), results in
the so-called Wigner quasiprobability distribution

function,

h−1ρ̂ → W (q, p) = (π h̄)−1
∫ +∞

−∞
ds exp [2 i p s/h̄]

× ψ (q − s) ψ∗(q + s). (A2)

This is interpreted as the Fourier transform of the off-diagonal
elements of the associated density matrix, ρ̂, where h = 2π h̄
is the Planck constant. As a mandatory constraint, it presumes
a consistent probability distribution interpretation constrained
by the normalization condition over ρ̂, that is Tr{q,p}[ρ̂] = 1.

Equation (A2) was proposed by Wigner’s seminal work
[25] when accounting for quantum corrections to TD equi-
librium states. Without affecting the predictive power of
QM, and preserving the symmetries of the Heisenberg-Weyl
group of translations, the Wigner phase-space quasidistribu-
tion function is therefore associated with a density operator
ρ̂, in the form of an overlap integral, Eq. (A2). The reason
for the quasidistribution nomenclature is due to the point that
the Wigner function’s most elementary property is concerned
with its marginal distributions, which return position and mo-
mentum distributions upon integrations over the momentum
and position coordinates, respectively,

|ψ (q)|2 =
∫ +∞

−∞
d pW (q, p) ↔ |ϕ(p)|2 =

∫ +∞

−∞
dq W (q, p).

(A3)
In fact, strictly connected with the Hilbert space features of
the Schrödinger QM, the Fourier transform of the above ad-
dressed wave functions,

ϕ(p) = (2π h̄)−1/2
∫ +∞

−∞
dq exp [i p q/h̄] ψ (q), (A4)

is the property that suppresses the coexistence of positive-
definite position and/or momentum probability distributions.

Hence the connection of the Wigner function to the matrix
operator QM, through Eqs. (A1) and (A2), allows for com-
puting the expected values of quantum observables described
by generic operators, Â, evaluated through an overlap integral
over the infinite volume described by the phase-space coordi-
nates, q and p, as [25,27]

〈O〉 =
∫ +∞

−∞
d p

∫ +∞

−∞
dq W (q, p) AW (q, p). (A5)

This corresponds to the trace of the product between ρ̂ and
Ô, Tr{q,p}[ρ̂Ô]. In addition, the statistical aspects evinced
from the definition of W (q, p) admit extensions from pure
states to statistical mixtures, through which the replacement
of OW (q, p) by W (q, p) into Eq. (A5) leads to the quantum
purity computed through an analogous of the trace operation,
Tr{q,p}[ρ̂2], i.e.,

Tr{q,p}[ρ̂2] = 2π h̄
∫ +∞

−∞
d p

∫ +∞

−∞
dq W (q, p)2, (A6)

which satisfies the pure state constraint, Tr{q,p}[ρ̂2] =
Tr{q,p}[ρ̂] = 1.

Finally, flow properties of the Wigner function, W (q, p) →
W (q, p; t ), can be, for instance, connected to the Hamiltonian
dynamics. In this case, a vector flux [24,28,30], J(q, p; t ),
decomposed into the phase-space coordinate directions, q̂ and
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p̂, as J = Jq q̂ + Jp p̂, reproduces a flow field connected to
the Wigner function dynamics through the continuity equa-
tion [24,26–28,30],

∂tW + ∂qJq + ∂pJp = 0, (A7)

where a shortened notation for partial derivatives, ∂a ≡ ∂/∂a,
has been used.

To connect the framework with prey-predator dynamics,
all the above quantities have been more properly writ-
ten in terms of dimensionless variables, x = (m ω h̄−1)1/2q
and k = (m ω h̄)−1/2 p. In this case, one should have the
dimensionless Hamiltonian H = (h̄ω)−1H (q, p) = K(k) +

V (x), with V (x) = (h̄ω)−1V (q) = (h̄ω)−1V ((m ω h̄−1)−1/2x)
and K(k) = (h̄ω)−1K (p) = (h̄ω)−1K ((m ω h̄)1/2k), where m
is a mass scale parameter and ω is an arbitrary angular fre-
quency. Therefore, the Wigner function can be cast into the
dimensionless form of W (x, k; ωt ) ≡ h̄W (q, p; t ), with h̄ ab-
sorbed by d p dq → h̄ dx dk integrations,

W (x, k; τ ) = π−1
∫ +∞

−∞
dw exp (2 i k w)

×ψ (x − w; τ ) ψ∗(x + w; τ ), (A8)

with w = (m ω h̄−1)1/2s and τ = ωt , as it appears in Eq. (4)
with τ suppressed from notation.
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