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Thermodynamic bounds for diffusion in nonequilibrium systems with multiple timescales
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We derive a thermodynamic uncertainty relation bounding the mean squared displacement of a Gaussian pro-
cess with memory, driven out of equilibrium by unbalanced thermal baths and/or by external forces. Our bound
is tighter with respect to previous results and also holds at finite time. We apply our findings to experimental and
numerical data for a vibrofluidized granular medium, characterized by regimes of anomalous diffusion. In some
cases our relation can distinguish between equilibrium and nonequilibrium behavior, a nontrivial inference task,
particularly for Gaussian processes.
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I. INTRODUCTION

The relation between dynamical properties of a system and
its thermodynamics plays a central role in modern nonequi-
librium statistical physics. In systems composed by many
interacting particles, it is common to observe different phe-
nomena occurring at different timescales, the paradigmatic
example being the several regimes of structural relaxation in
undercooled liquids [1]. This complex dynamics usually gives
place to a mean squared displacement (MSD) of some fluctu-
ating observable which shows several nondiffusive regimes.
For instance, the diffusion of particles in liquids often dis-
plays transient subdiffusive or flat MSD corresponding to
cage effects. Interestingly, these regimes are also observed
in liquidlike systems realized by replacing molecules with
macroscopic spheres, in the context of dense vibrofluidized
granular materials, both in simulations and in experiments
[2–5]. Additionally, these systems can display novel phenom-
ena such as a superdiffusive transient regime after the cage
stage and before the final asymptotic standard diffusion [6].
While the molecular liquid case is typically at thermal equi-
librium (even if under sudden quench the relaxation time may
diverge and shift the system into nonequilibrium), a vibrated
granular medium is intrinsically out of equilibrium, even if
stationary, because of the presence of several energy flows
from and into the system (friction, inelastic collisions, ex-
ternal energy pumping, etc.). In principle, however, diffusion
properties are not evidently related to the status of equilibrium
or nonequilibrium [7]. It is therefore important to explore
the existence of physical constraints that could restrict the
possible behaviors of the MSD and relate certain observations
to the thermodynamic status of the system [8].

Recently, an important step in building a bridge between
anomalous dynamical regimes and thermodynamic proper-
ties has been done exploiting the thermodynamic uncertainty
relations (TURs) [9,10]. These relations, valid for quite a
large class of stochastic processes, also demonstrated through

several different routes [11–14], typically take the form

〈�θ (t )2〉
〈θ (t )〉2

� 2

〈S(t )〉 , (1)

where �θ (t ) = θ (t ) − 〈θ (t )〉, and θ (t ) = ∫ t
0 dt ′ ω(t ′) is an

integrated current over a time t , while S(t ) is the entropy
produced by the system in the same time interval. Here and
throughout the paper we fix kb = 1. Identifying θ (t ) as the
displacement of a particle with velocity ω(t ) and multiplying
both sides of (1) for 〈θ (t )〉2, one obtains a straightforward
application to the MSD, which has been applied to the case of
overdamped systems with two dynamical regimes, one being
anomalous and one being standard [15]. In particular, it has
been shown that the TUR implies a minimum (or maximum)
time of validity for the super- (or sub-) diffusion.

The application of this kind of result to nonequilibrium
systems with multiple characteristic timescales requires a
more general and effective bound, which is the purpose of
the present paper. Here we show how to extend TURs for
underdamped dynamics to the case of systems with multi-
ple timescales and multiple baths, such as active liquids and
vibrofluidized granular media. We obtain a general formula
to bound the MSD in time, with the interesting and unex-
pected result that only a part of the entropy production enters
the bound, making it tighter than that one would get using
the whole entropy production. We present analytical results
within the framework of Markovian continuous linear systems
that can emerge from the Markovianization of systems with
memory, representing, therefore, a very general tool for the
study of coarse-grained variables in presence of hydrody-
namic backflow [16,17] and in out-of-equilibrium many-body
systems [18–20], including driven macroscopic dissipative
systems such as granular materials [21] and active matter
[22]. We recall that general thermodynamic bounds for under-
damped dynamics still represent an open problem [12,23–25],
while a TUR for non-Markovian system has been previously
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derived for a very general class of memory kernels but always
assuming thermal equilibrium with a single thermostat [26].

Our results are successfully applied to numerical and
experimental data coming from two different systems of in-
teracting particles where an intruder is immersed in a vibrated
granular fluid [4,27]. Remarkably, our approach also shows
that, in the zero driving limit, we obtain a TUR for the spon-
taneous diffusion that in fact can be tested with systems in
the absence of an external bias, allowing one to distinguish
between equilibrium and nonequilibrium behavior.

II. THE MODEL

We consider a set of n + 1 coupled dynamical variables,
each in contact with a different thermal bath. The first variable
represents the main observable, possibly subject to a constant
external force, while the other n variables are auxiliary vari-
ables, representing memory terms. This kind of model can
describe the underdamped dynamics of a tracer in a fluid when
a separation of timescales allows one to obtain an effective
generalized Langevin equation (GLE) for the slow variable
[28], or systems with feedback control [29–32]. Defining the
vectors X = {ω,�1, . . . , �n}, ξ = {ξ0, ξ1, . . . , ξn}, and F =
{Fext, 0, . . . , 0}, the dynamics is described by the coupled
equations:

Ẋ = ÂX + B̂ξ + F, (2)

where ξi are uncorrelated white noises with zero mean and
unit variance, while the two matrices Â and B̂ are given by

Â =

⎛
⎜⎜⎝

−1/τ 1/b1 . . . 1/bn

−a1b1 −1/τ1 0 0
... 0 . . . 0

−anbn 0 0 −1/τn

⎞
⎟⎟⎠, (3)

B̂ = diag
(√

2q/τ ,

√
2q1a1b2

1/τ1, . . . ,

√
2qnanb2

n/τn
)
. (4)

Here the τis, the bis, and the ais are positive parameters
with the dimension of time, time, and inverse squared time,
respectively. We consider ω odd and the �is even under time
reversal. With this choice the fluctuating entropy production
takes the form of heat exchanges over effective temperatures
(see Appendix A 2). We also propose a physical interpretation
of the time-reversal symmetries in Appendix A 4. We note that
Â is an arrowhead matrix, namely, it has nonzero elements
only in the first row, in the first column, and in the principal
diagonal. This form has a physical meaning: The auxiliary
variables describe the memory in the system, and each one has
a characteristic relaxation time τi and is coupled with the main
observable only. The above equations are indeed equivalent to
the following GLE [19]:

ω̇(t ) = −
∫ t

−∞
γ (t − t ′)ω(t ′)dt ′ + ηs(t ) + Fext, (5)

γ (t ) = 2

τ
δ(t ) +

n∑
k=1

ake− t
τk , (6)

〈ηs(t )ηs(t
′)〉 = 2q

τ
δ(|t − t ′|) +

n∑
k=1

qkake− |t−t ′ |
τk , (7)

and the auxiliary variables are

�k = −bk

∫ t

−∞
dt ′e− t−t ′

τk

⎡
⎣akω(t ′) −

√
2qkak

τk
ξk (t ′)

⎤
⎦. (8)

Interestingly, a memory kernel, which is a sum of a few expo-
nential decays can approximate also nonexponential kernels,
such as power-law decays typical of several transport phenom-
ena in dense systems [33] (see also Appendix E). We recall
here that the use of exponential memory kernels to describe
the diffusion of an intruder in a complex fluid is motivated
by a typical approximation done for Brownian motion at high
densities when the coupling with hydrodynamic modes decay-
ing exponentially in time is taken into account [27,34].

We point out that this model is built in such a way to
recover the fluctuation-dissipation relation of the second kind
〈ηs(t )ηs(t ′)〉 = qγ (|t − t ′|) if all the thermostats are at the
same temperature qk = q. With this condition (and Fext =
0), thermodynamic equilibrium is properly described. In the
Fokker-Planck formalism this is equivalent to a null irre-
versible current [35] (see also Appendix A 3). The solution
for the stationary probability distribution function is a mul-
tivariate Gaussian P(X ) ∝ exp(−�X β̂�X/2), where �X =
X − 〈X〉 and β̂ is the inverse of the covariance matrix σi j =
〈�Xi�Xj〉. Note that thanks to the linearity of the model, β̂

and σ̂ do not depend on Fext. Such a distribution is canonical
(βi j ∝ δi j/q) at equilibrium (see Appendix A 1). We remark
that the model has two different sources of nonequilibrium:
The coupling with different thermal baths (i.e., when q, qk are
different) and the external force Fext. Interestingly, the second
ingredient triggers an average drift 〈X〉 �= 0, while the first
one does not.

The entropy production rate (EPR) [36] of the model in the
steady state reads (see A 2 for details)

〈Ṡ〉 = 〈Ṡ〉ext + 〈Ṡ〉th, (9)

where we defined an external contribution due to the pres-
ence of forcing 〈Ṡ〉ext = 1

q 〈ω〉Fext +∑i(
1
q − 1

qi
) 〈ω〉〈�i〉

bi
and

one 〈Ṡ〉th =∑i
1
bi

( 1
q − 1

qi
)σ0i due only to the coupling with

baths at different temperatures. This last term is positive be-
cause it is the only contribution in the absence of the external
driving [37]. The mean values of the dynamical variables in
the steady state are

〈ω〉 = Fextτ

1 + τ
∑

k τkak
, 〈�i〉 = −τiaibi〈ω〉, (10)

which implies that 〈Ṡ〉ext is proportional to F 2
ext.

III. TUR IN THE LARGE TIME LIMIT

We start by considering the bound for the diffusion coef-
ficient of the tracer obtained from the TUR [9,11], valid for
overdamped dynamics in the large time limit of the stationary
state,

lim
t→∞

〈�θ (t )2〉
t

� 2〈ω〉2

〈Ṡ〉 , (11)

where �θ (t ) is defined as in Eq. (1). In our model all the terms
of the above inequality can be explicitly computed. Indeed,
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we can relate the spectrum and the diffusion coefficient with
the Wiener-Khinchin theorem S00(0) = limt→∞〈�θ (t )2〉/t ,
where the spectral matrix is defined as the Fourier transform
of the stationary correlation matrix:

Ŝ ( f ) ≡
∫ +∞

−∞
dte−i f t σ̂ (t ) = (Â + iÎ f )−1B̂B̂T (ÂT − iÎ f )−1,

(12)
where σi j (t − s) = 〈�Xi(t )�Xj (s)〉, and Î is the identity ma-
trix. Inverting the arrowhead matrix Â [38], we get (see
Appendix A 5)

S00(0) = [Â−1B̂B̂T (ÂT )−1]00 = Deq

[
1 + τ

∑
k

qk

q akτk

1 + τ
∑

k akτk

]
,

(13)

where Deq = 2qτ/(1 + τ
∑

k akτk ) is the diffusion coefficient
when qi = q ∀ i. Then, using Eqs. (9) and (10), we have

2〈ω〉2

〈Ṡ〉ext
= Deq

[
1 + τ

∑
k akτk

1 + τ
∑

k
q
qk

akτk

]
. (14)

From this expression we arrive to the following relation (see
Appendix A 6 for details):

lim
t→∞

〈�θ (t )2〉
t

� 2〈ω〉2

〈Ṡ〉ext
� 2〈ω〉2

〈Ṡ〉 . (15)

This shows that in our model a bound tighter than that of
Eq. (11) can be obtained by considering in the EPR the contri-
bution 〈Ṡ〉ext only. Below we extend this result to finite times.

As an additional remark, we note that completely ignoring
the presence of thermostats with different temperatures can
imply a violation of the associated inequality. Indeed, defining
the contribution associated with the drift 〈Ṡ〉drift = 〈ω〉Fext/q,
one can verify that the inequality S00(0) � 2〈ω〉2/〈Ṡ〉drift =
Deq is violated if

∑
k (qk − q)akτk < 0.

IV. TUR AT FINITE TIMES

To derive the general finite-times expression of a TUR with
a tighter bound, we can proceed as in [13]. We consider a
fictive h dynamics (generating 〈· · · 〉h averages over a distri-
bution Ph) that coincides with the original one as h = 0 and
write the Cramér-Rao inequality for an unbiased estimator 


of a function ψ (h):

Varh(
[�t ])

[∂h〈
[�t ]〉h]2
� 1

IF(h)
. (16)

Here �t is the stochastic trajectory of duration t along which
the estimator is evaluated and IF is the Fisher informa-
tion [39]. Thus we have 〈
[�t ]〉h = ψ (h), and we require
that (∂h〈
[�t ]〉h)|h=0 = 〈
[�t ]〉, so that the left-hand side of
Eq. (16) calculated in h = 0 coincides with the uncertainty
of the generalized current 〈
[�t ]〉. Note that this condition
depends both on how the current is defined and on the choice
of the fictive dynamics [12,24].

To derive the TUR with the tighter bound, we intro-
duce a perturbation to Eq. (2) in the form hV , where V =
{〈ω〉/τ,−〈�1〉/τ1, . . . ,−〈�n〉/τn}. With this choice, evalu-
ating the Cramér-Rao inequality for h = 0 in the stationary

state, we get (see Appendix B for details)

〈�θ (t )2〉
(〈ω〉t )2

� 2

�Sext (t ) + I , (17)

where

I = 2
∫

dX
[∂hPh(X )]2|h=0

P(X )
, (18a)

�Sext(t ) =
∫ t

0
dt ′
[

〈ω〉2

τq
+
∑

i

〈�i〉2

τiqiaib2
i

]
= 〈Ṡ〉extt .

(18b)

The above expression coincides with the definition of 〈Ṡ〉ext

below Eq. (9) (see Appendix B 2). We then obtain the follow-
ing TUR for the MSD, also valid at finite times in the steady
state, that is consistent with the improved bound discussed for
large times, Eq. (15):

〈�θ (t )2〉 � 2〈ω〉2t2

〈Ṡ〉extt + I
. (19)

Exploiting the linearity of the model we can easily obtain Ph

from which we compute the explicit form of the nonextensive
term:

I = 2〈ω〉2β00. (20)

It is important to note that 〈ω〉2 simplifies in the right-hand
side of the TUR (19), making it independent of Fext, as the
left-hand side. Thus for Fext → 0, the bound remains finite,
at variance with the weaker bound obtained from the total
EPR 〈Ṡ〉. Equation (19) therefore also works in the case of
force-free diffusion, as shown in the following. We remark
that even if the model is linear, an analytical form for the
MSD when n > 1 can be quite involved [16]. A bound with
a simple functional form as the one provided by formula (19)
can be, therefore, precious. It is interesting to consider also
the consequence of some lack of information in the modeling
procedure: for instance, one could overlook the different ther-
mostats and could be tempted to use the asymptotic bound
considering just 〈Ṡ〉drift for the whole available time range
(which is appealing as it is simpler and does not require
estimating I). We denote this case as the “incomplete bound”
(IB) and discuss its consequences in the following examples.

V. TRACER DYNAMICS IN A DENSE GRANULAR
MEDIUM

In order to illustrate the validity of our results and to show
their relevance in physical systems, we apply them in the case
of diffusion in driven granular fluids. We consider the case
n = 1, that has been shown to describe the behavior of a mas-
sive tracer in a moderately dense granular medium [27]. In this
conditions the MSD of the tracer can exhibit a subdiffusive
behavior at intermediate times due to the caging effect of the
surrounding grains. We compare the bound (19) with MSD of
this kind obtained in experiments [4] and molecular dynamics
simulations [27]. In the experiment, the tracer diffuses in a
system of steel spheres confined in a three-dimensional (3D)
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box vertically driven by an electrodynamic shaker, while nu-
merical simulations consider the two-dimensional (2D) case
of hard dissipative disks coupled to a spatially homogeneous
thermostat. We use the 2D form of Eq. (2) with a1 = α

ττ1
and

b1 = τ obtaining the same model used in [27]. The mean
values 〈ω〉 = τFext/(1 + α) and 〈�1〉 = −α〈ω〉 appear in the
EPR:

〈Ṡ〉 = 1

q
〈ω〉Fext −

[
q1 − q

τqq1

]
α〈ω〉2 +

[
q1 − q

τqq1

]
σ̂01. (21)

The comparison of the bounds discussed above with the
MSD measured in experiments and simulations is shown in
Fig. 1(a). Here we see that the bound from Eq. (19) (dashed
lines) is close (from below) to the data at all timescales.
The IB (dot-dashed lines) is obtained neglecting the different
thermostats. Two possible situations may appear: (i) the IB is
valid at late times but (as expected) violated at short times (see
curves for the 2D simulations), (ii) it is violated also in the
diffusive regime (see data for the 3D experiment). The differ-
ence between these two conditions depends on the interplay of
characteristic times and temperatures. Since data come from
force-free diffusion, we used the bound in the limit Fext → 0,
which is meaningful for Eq. (19) while trivial for Eq. (11).
This is the reason why we don’t compare our bound with that
obtained from the standard TUR in Fig. 1(a).

The bound on the extent of nondiffusive regimes of our
model is discussed in Appendix D. We stress that a valid TUR
without the hypothesis of velocity relaxation is necessary in
this class of model because, contrary to what happens in [15],
the MSD predicted by our model always exhibits a ballistic
regime at short times. Then, in order to correctly bound the
extent of anomalous diffusion, we need a thermodynamic
bound that is not simply linear in time.

VI. FORBIDDEN EQUILIBRIUM REGIMES

The derived bound Eq. (19) holds on a class of models
for which the analytical expression of many thermodynamic
quantities is available [16,35]. Thus it is important to specify
for which practical purpose one can exploit our bound. In view
of this, here we show how Eq. (19) can be used to directly
infer nonequilibrium signatures from data. We consider the
right-hand side of Eq. (19) at equilibrium and we refer to it as
Beq(t ). We equate all the thermostats in Eqs. (14) and (13) and
take σ̂ diagonal in Eq. (20), obtaining

Beq(t ) ∼ 〈�θ (t )2〉 ∼
{〈�ω2〉t2 t � I/〈Ṡ〉ext

Deqt t 
 I/〈Ṡ〉ext.
(22)

Note that I/〈Ṡ〉 is always well defined at equilibrium since
the quadratic dependence on Fext cancels out. Provided that
the system is in equilibrium, Eq. (22) shows that the MSD and
the bound coincide in both the short and long time limit, while
for intermediate times the inequality holds. This observation
allows one to exclude the occurrence of certain transient
anomalous diffusion regimes at equilibrium or, equivalently,
to ensure that certain forms of MSD are compatible only with

FIG. 1. MSD of a large intruder immersed in a vibrated granular
fluid at moderate density (a) and at high density (b). In both cases
the bounds are calculated with the numerical values of the model
parameters obtained by fitting the data. Details on the fitting proce-
dure are given in Appendix C. In panel (b), the equilibrium guess is
constructed by connecting the two slopes of the ballistic and the dif-
fusive regime following what we would expect at equilibrium from
Eq. (22). The inset shows an MSD [same experimental data of panel
(a)] whose form is compatible with thermodynamic equilibrium.

nonequilibrium dynamics. This test for equilibrium compati-
bility can be done by connecting the two slopes of the ballistic
and diffusive regimes of a given MSD in a log-log plot and
considering this curve as a lower bound from an equilibrium
guess. Indeed, given the functional form of the bound Eq. (19)
and knowing that it reduces to an equality at short and long
times if qi = q ∀ i [Eq. (22)], an MSD coming from an
equilibrium dynamics is expected to lie above the constructed
curve at all times. Then, when any tract of the MSD is found
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to lie below the lower bound from the equilibrium guess, then
one can deduce that if the dynamics follows Eqs. (2) and (4),
the observed MSD is not compatible with thermodynamic
equilibrium. To illustrate this application, we consider the
case n = 2 that can describe the anomalous diffusion of a
tracer in a dense granular system with very slow characteristic
times. We take a1 = α

ττ1
, a2 = ε2

ττ2
, and b1 = b2 = τ , where

ε = τ/τ2. For ε → 0 and keeping finite the amplitude of
the noise ξ2, we obtain the same model described in [5]. As
we can see in Fig. 1(b), this model can properly reproduce the
experimental data of the MSD, characterized by a surprising
superdiffusive regime after the cage subdiffusion. Its origin
relies on the presence of a slow collective motion of the
granular medium due to the interplay of disorder and friction
[6,40]. As evident from Fig. 1(b), the behavior of the MSD is
not compatible with the bound guessed from the equilibrium
condition (22). Then we can conclude that the underlying
dynamics is out of equilibrium without performing any further
analysis. In order to complete the picture, we show in the
inset of Fig. 1(b) the application of this procedure to the
experimental data of Fig. 1(a), which come from a less dense
system where the slow collective motion and the consequent
superdiffusive regime do not appear. In this case the MSD al-
ways lies above the equilibrium guess, so we cannot draw any
conclusion on the nonequilibrium properties of the dynamics
without estimating the model’s parameters.

We point out that the proposed test for equilibrium com-
patibility is especially relevant in the recent debate on the
possibility to deduce the nonequilibrium character of a system
from partial observation [8], in particular, recalling that the
time series of a scalar Gaussian process [in our case ω(t )] is
always symmetric under time reversal [41,42].

VII. CONCLUSIONS

TURs represent an impressive result with manifold ap-
plications, from the evaluation of the entropic cost for the
precision ratio of currents [43], to the estimation of entropy
production [44] in nonequilibrium systems, to the identi-
fication of limits on the temporal regimes of anomalous
diffusion [15]. Considering a class of generalized Langevin
equations with several exponential timescales and uniform ex-
ternal force, we have derived a bound for the MSD [Eq. (19)]
which improves the one obtained through the standard TUR
[Eq. (11)]. Indeed, our bound is tighter, valid at all times,
and useful also for freely diffusing particles. The class of
linear models we considered can describe the coupling be-
tween relevant degrees of freedom in many-body interacting
systems. This allowed us to test our results on experimental
and numerical data of a tracer diffusing in a granular medium.
Moreover, we showed how to use this bound as an immediate

tool for inferring nonequilibrium properties of the dynamics
from the shape of the MSD. Our approach can be extended to
other nonequilibrium systems where several sources of dissi-
pation are present, such as fluids of active particles or driven
mixtures. We also recall that linearly coupled equations are
the natural framework of linear irreversible thermodynamics,
valid (at small perturbations) also for periodically forced sys-
tems [45]. The generalization of our results to nonlinear cases
such as particles subjected to periodic potentials or nonlinear
frictional forces represents a promising perspective.
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APPENDIX A: DETAILS OF CALCULATIONS
FOR THE GENERAL MODEL

In this section we report the calculations necessary to
obtain some relevant quantities that are used in the main
text. For clarity reasons we rewrite here the definition
of the general model. We consider the multivariate linear
stochastic differential equation (SDE) Ẋ = ÂX + B̂ξ + F,
where X = {ω,�1, . . . , �n}, ξ = {ξ0, ξ1, . . . , ξn}, and F =
{Fext, 0, . . . , 0}. The interaction and the noise matrices are
give by

Â =

⎛
⎜⎜⎝

−1/τ 1/b1 . . . 1/bn

−a1b1 −1/τ1 0 0
... 0 . . . 0

−anbn 0 0 −1/τn

⎞
⎟⎟⎠, (A1)

B̂ = diag
(√

2q/τ ,
√

2q1a1b2
1/τ1, . . . ,

√
2qnanb2

n/τn
)
. (A2)

All the model parameters are assumed to be positive. As in
the main text, we define �X = X − 〈X〉, β̂ = σ̂−1, and σi j =
〈�Xi�Xj〉.

1. Stationary probability distribution function

The stationary probability distribution function of
the model is the multivariate Gaussian [35] P(X ) ∝
exp(− 1

2�X β̂�X ). To have an explicit expression of that, one
has to solve the following equation for the covariance matrix
σ̂ :

Âσ̂ + σ̂ ÂT = −B̂B̂T . (A3)

The solution of such a matrix equation for our model in
the general case is cumbersome. Here we report the explicit
solution for n = 1:

σ̂ = 1

(1 + a1ττ1)(τ + τ1)

(
a1q1τ

2τ1 + q
(
τ + τ1 + a1ττ 2

1

)
a1b1ττ1(q1 − q)

a1b1ττ1(q1 − q) a1b1
[
a1qττ 2

1 + q1(τ + τ1 + a1τ
2τ1)
]
)

. (A4)

Our model is built in such a way to have thermodynamic
equilibrium if qi = q ∀i and Fext = 0. In such a condition we

expect the equilibrium probability distribution function to be
canonical (i.e., β̂

eq
i j ∝ δi j/q). Now we check that by Eq. (A3).
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We assume σ̂
eq
i j = ciδi j and substitute it into Eq. (A3) with

qi = q:

(Âσ̂ eq + σ̂ eqÂT )i j = Ai jc j + ciA
T
i j = −(Beq

ii

)2
δi j . (A5)

For i = j = 0 we have c0 = −B2
00/A00 = 2q, while if i = j �=

0 one has ci = −(Beq
ii )2/Aii = 2qaib2

i . With this solution, is
easy to verify that the left-hand side of Eq. (A5) is always zero
if i �= j. The equilibrium probability distribution function is
then given by

Peq(X ) ∝ exp

[
− 1

2q

(
ω2 +

n∑
i=1

�2
i

aib2
i

)]
. (A6)

2. Entropy production

We consider the entropy production of the general model
defined according to the Lebowitz and Spohn functional. We
use the relation reported in [19] that expresses the entropy
production as the product of reversible and irreversible com-
ponents of the drift in the Langevin equation. Since we are
interested in the entropy production in the stationary state, we

only consider the term that is extensive in time. We obtain

�S(t ) = log
Prob

({ω(s),�1(s), . . . �n(s)}τ0
)

Prob
({−ω(t − s),�1(t − s), . . . , �n(t − s)}t

0

)
(A7)

= 1

Dω

∫ t

0
ds
[
Airr

ω (ω̇(s) − Arev
ω )
]

+
n∑

i=1

1

D�i

∫ t

0
ds
[
Airr

�i
(�̇i(s) − Arev

�i
)
]
, (A8)

where Dω = q/τ, D�i = qiaib2
i /τi, and

Arev
ω =

n∑
i=1

�i(s)

bi
+ Fext, Airr

ω = −ω(s)

τ
,

Arev
�i

= −aibiω(s), Airr
�1

= −�i(s)

τi
, (A9)

having used the fact that ω is odd and the �is are even under
time reversal (see Appendix A 4 below). Therefore, for the
entropy production in the stationary state, we obtain

�S(t ) = 1

Dω

∫ t

0
ds

(
−ω(s)

τ

)[
ω̇(s) −

n∑
i=1

�i(s)

bi
− Fext

]
+

n∑
i=1

1

D�i

∫ t

0
ds

(
−�i(s)

τi

)
[�̇i(s) + aibiω(s)] (A10)

= 1

Dω

[
−δω2

2τ
+ 1

τ

∫ t

0
ds ω(s)

(
n∑

i=1

�i(s)

bi
+ Fext

)]
+

n∑
i=1

1

D�i

[
−δ�2

i

2τi
− aibi

τi

∫ t

0
ds ω(s)�i(s)

]
(A11)

= −δt (ω2)

2q
−

n∑
i=1

δt
(
�2

i

)
2qiaib2

i

+ 1

q

∫ t

0
ds ω(s)Fext +

n∑
i=1

1

bi

∫ t

0
ds

(
1

q
− 1

q1

)
ω(s)�i(s), (A12)

where we introduced the notation δt (z) = z(t ) − z(0). Consid-
ering that in the stationary state we expect 〈�S(t )〉 = 〈Ṡ〉t , the
average entropy production rate is then

〈Ṡ〉 = 1

q
〈ω〉Fext +

n∑
i=1

1

bi

(
1

q
− 1

qi

)
〈ω〉〈�i〉

+
n∑

i=1

1

bi

(
1

q
− 1

qi

)
σ0i, (A13)

which coincides with the expression reported in Eq. (9) of
the main text. It is also important to note that Eq. (A12) is
consistent with thermodynamic interpretation for which, at
equilibrium, the only contribution to the fluctuating entropy
production is the work done by the thermal bath. Indeed,

rescaling the auxiliary variables as �̃i = �i/

√
aib2

i , one ob-
tains

�Seq(t ) = −δt (ω2)

2q
−

n∑
i=1

δt
(
�̃2

i

)
2q

, (A14)

which is evidently zero when averaged on the stationary
state. The interpretation of the above expression as the total
fluctuating work done by the thermostats is consistent with
the equilibrium probability distribution function [Eq. (A6)].

3. Equilibrium condition for the Fokker-Planck equation

The Fokker-Planck equation associated with Eq. (2) reads

∂t P(X , t ) = −∇ · [Jrev(X , t ) + Jirr(X , t )], (A15)

where

J irr
i (X , t ) =

[
Airr

i (X , t ) − 1

2
B2

ii∂Xi

]
P(X , t ) (A16)

J rev
i (X , t ) = Arev

i (X , t )P(X , t ). (A17)

From Eqs. (A2) and (A9) it is easy to check that, as we expect,
the probability distribution function given by Eq. (A6) makes
the irreversible current J irr

i (X , t ) equal to zero when qi = q ∀i.

4. Symmetry under time reversal of the auxiliary variables

The calculations done so far assume the auxiliary variables
to be even under time reversal. This is a forced choice if
we want to obtain the correct thermodynamic interpretation
expressed by Eq. (A14). Nevertheless, this choice may seem
unphysical because in our model the �is and ω can have the
same physical dimensions (see Appendix C below), so one
expects them to follow the same symmetry under time rever-
sal. Here we want to provide an argument that clarifies why
considering even �is is actually reasonable from a physical
point of view. Let us consider a particular case of our general
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FIG. 2. Evolution of ω and �1, the arrow width corresponds to
vector magnitude. (a) Directed trajectories of ω and �1: the auxiliary
variable increases the intruder’s velocity. We consider a limit in
which �1 is not perturbed by the intruder to ease the readability of the
cartoon. (b) Reversed trajectories with both the variables considered
odd under time reversal. Here the auxiliary field would naturally
increase the intruder’s velocity, so the observed slowing down is
entirely originated by the action of noise. (c) Reversed trajectories
considering ω odd and �1 even under time reversal. The auxiliary
variable increases the intruder’s velocity with the same probability.

model where n = 1, q = q1, α = 0, Fext = 0, and τ1 
 τ . The
equations of motion then read

ω̇ = − 1

τ
(ω − �1) +

√
2q

τ
ξ0, �̇1 = 0. (A18)

These equations represent the diffusion of an intruder (ω)
in a fluid with a local velocity field (�1) that relaxes on
timescales much larger than τ . If the two variables have the
same(opposite) sign, the velocity field fastens(slows down)
the intruder. Being a subcase of the general model with q = q1

(i.e., thermodynamic equilibrium), we expect for the trajecto-
ries of {ω(t ),�1(t )} to have the same probability under time
reversal. In Fig. 2 we show one possible directed evolution of
the two variables and the comparison between time-reversal
operations where �1 is considered odd or even. It is clear that
the case in which �1 is odd (b) requires a (very improbable)
realization of the noise that is able to slow down ω despite the
positive contribution of �1. On the contrary, it is reasonable
to think that the reversed trajectories with even �1 (c) can
be obtained with a realization of the noise that has the same
probability of the directed one. The conclusion we draw from
this cartoon is that we must consider auxiliary variables as
external fields. Thus we do not change their sign under time
reversal, even if they have the same physical dimension of a
velocity and they are influenced by the intruder dynamics.

5. Diffusion coefficient

To obtain a general expression of the diffusion
coefficient of our model, limt→∞〈�θ (t )2〉/t = S00(0) =
[Â−1B̂B̂T (ÂT )−1]00, one needs to invert the arrowhead matrix
ÂT . We first perform the matrix product and get

[Â−1B̂B̂T (ÂT )−1]00 =
∑

k j

A−1
0 j B2

j jδ jkA−1
0k =

∑
k

(
A−1

0k Bkk
)2

,

(A19)
where the sums run from 0 to n + 1 and δ jk is the Kronecker
delta. From Ref. [38] we know that

det(A)A−1
00 = (−1)n

n∏
j=1

1

τ j
, det(A)A−1

0k = (−1)n τk

bk

n∏
j=1

1

τ j
,

det(A) = (−1)n+1
n∏

j=1

1

τ j

[
1

τ
+

n∑
i=1

aiτi

]
, (A20)

and with some algebraic manipulation we arrive at

S00(0) = Deq

[
1 + τ

∑
k

qk

q akτk

1 + τ
∑

k akτk

]
, (A21)

which coincides with Eq. (13) of the main text.

6. TUR in the large time limit

The TUR valid at large times reported in Eq. (15) of the
main text has been derived by directly evaluating the quanti-
ties involved in it from the general model:

lim
t→∞

〈�θ (t )2〉
t

� 2〈ω〉2

〈Ṡ〉ext
� 2〈ω〉2

〈Ṡ〉 . (A22)

The first inequality follows from verifying that[
1 + τ

∑
k

qk

q akτk

1 + τ
∑

k akτk

]
−
[

1 + τ
∑

k akτk

1 + τ
∑

k
q
qk

akτk

]

= τ
∑

k

akτk

qqk
(q − qk )2 + τ 2

∑
j>k

τ ja jτkak

qkq j
(q j − qk )2 � 0.

(A23)

The second inequality of (A22) is directly related to the
decomposition of the entropy production rate 〈Ṡ〉 = 〈Ṡ〉ext +
〈Ṡ〉th and the positivity of 〈Ṡ〉th. We recall that 〈Ṡ〉th =∑

i
1
bi

( 1
q − 1

qi
)σ̂0i � 0 follows from the fact that in the absence

of external force it is the only contribution to the entropy
production rate and that its expression does not depend on Fext

thanks to the linearity of the model.

APPENDIX B: UNDERDAMPED TUR
FROM CRAMÉR-RAO INEQUALITY

1. Relation with previously derived TUR

The derivation of the TUR in the large time limit has been
performed exploiting the fact that it is possible to derive an
explicit and compact expression for both the diffusion coeffi-
cient [Eq. (A21)] and the entropy production rate [Eq. (A13)]
in our model. Using the same procedure to derive a TUR valid
at all timescales is much more complicated, because (i) one
has to handle the general expression of the MSD of the model
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that is cumbersome, and (ii) one has to guess a time-dependent
functional form of the bound.

A TUR valid at all timescales for a general Langevin dy-
namics with a fully underdamped structure has been derived
in [24] following the method explained in [13]. By fully un-
derdamped we mean a system where one half of the degrees
of freedom is even under time reversal and is obtained as the
derivative of the other half that is odd under time reversal.
Such a TUR takes the following form:

Var(
(t ))
〈
(t )〉2

� 1

�S(t ) + I , (B1)

where 
(t ) is a generalized integrated current, �S(t ) is the
total entropy production, and I is a nonextensive term in time.
It is worth mentioning that (B1) represents an improvement
with respect the underdamped TUR derived in [12] because
it has the correct large time limit. With some calculations
(not shown) it is possible to show that the same TUR can
be derived also for our model that has a partial underdamped
structure (i.e., ω is odd and all the �is are even under time
reversal). Nevertheless, the above TUR in the large time limit
brings an inequality that can be improved by substituting
�S(t ) with �Sext(t ). As reported in the main text, one of the
main results of our work is the derivation of the following
TUR:

〈�θ (t )2〉
(〈ω〉t )2

� 2

�Sext(t ) + I . (B2)

It is valid at all times in the steady state and brings the
improved inequality (A22) in the large time limit.

2. Details of the derivation

In order to derive the TUR (B2) from the Cramér-Rao
inequality [Eq. (16) in the main text] we write the SDE of
our model with a perturbation depending on the parameter h:

dXi = f h
i (X )dt + BiidW (t ), (B3)

where dW (t ) is the increment of the Wiener process and

f h
i (X ) =

∑
j

Ai jXj + Fi + hVi. (B4)

We then apply the main results of Ref. [13]. Considering
initial conditions in the steady state, the Fisher information
takes the following form:

IF(h) = −〈∂2
h ln Ph(X )

〉
h +
〈∫ t

0
dt ′∑

i

(
∂h f h

i (X )

Bii

)2
〉

h

,

(B5)

where Ph(X ) is the probability distribution function of the per-
turbed process and 〈·〉h refers to averages on such a probabil-
ity. Since the system is linear and the h perturbation does not
depend on X , the stationary probability distribution associated
to the fictive dynamics is still a multivariate Gaussian with
the same covariance matrix but different average values 〈Xi〉h.
Thus, Ph(X ) ∝ exp[(X − 〈X〉h)T β̂(X − 〈X〉h)/2]. Moreover,
from Eq. (B4) one has ∂h f h

i (X ) = Vi. In order to make the
Cramér-Rao inequality fully explicit, we then need to com-
pute the average values 〈Xi〉h. With the specific choice done

in the main text V = {〈ω〉/τ,−〈�1〉/τ1, . . . ,−〈�n〉/τn}, the
following relations must be satisfied:

− 1

τ
〈ω〉h +

∑
i

〈�i〉h

bi
+ Fext + hV0 = 0, (B6a)

− 1

τi
〈�i〉h − aibi〈ω〉h − hVi = 0, (B6b)

from which we obtain 〈ω〉h = (1 + h)〈ω〉 and 〈�i〉h = 〈�i〉.
Substituting these relations in the Cramér-Rao inequality

for h = 0 we find the TUR (B2). Indeed, the Fisher informa-
tion becomes

IF(0) =
∫

dX
[∂hPh(X )]2|h=0

P(X )
+ 1

2

[
〈ω〉2

τq
+
∑

i

〈�i〉2

τiqiaib2
i

]
t

= 1

2
[I + 〈Ṡ〉extt]. (B7)

The relation between the first term of Eq. (B7) and Eq. (20)
of the main text follows from the direct evaluation of the
probability distribution’s derivative with respect h:

∫
dX

[∂hPh(X )]2|h=0

P(X )
=
〈[

1

2

∑
jn

β jn∂h
(
�X h

j �X h
n

)]2〉

= 〈ω〉2
∑

jn

β0nβ0 jσn j = 〈ω〉2β00,

(B8)

where we used �X h
j = (Xj − 〈Xj〉h) and ∂h�X h

j = 〈ω〉δ0 j .
Finally, using the relation between 〈ω〉 and 〈�i〉 [Eq. (10) of
the main text], we note that

〈ω〉2

τq
= 1

q
ωFext +

∑
i

〈ω〉〈�i〉
qbi

and
〈�i〉2

τiqiaib2
i

= −〈ω〉〈�i〉
qibi

.

(B9)
So, we find that the second term of Eq. (B7) is directly related
to the entropy production rate as expressed in Eq. (9).

APPENDIX C: FITTING PROCEDURE

In order to fit the model’s parameter, we used two distinct
methods for numerical and experimental data. In the numeri-
cal data, independent measurements of the autocorrelation and
the response function of the granular intruder are available
[27]. The model we used for them is defined by the following
matrices:

Â =
(−1/τ 1/τ

−α/τ1 −1/τ1

)
, B̂ =

(√
2q/τ 0

0
√

2q1ατ/τ 2
1

)
,

(C1)

so it counts five parameters τ , q, α, τ1, q1. A multibranch
fit of autocorrelation and response allows us to determine
the numerical value of such parameters without overfitting.
Regarding the experiments performed at moderate density
[reported in Fig. 1(a) of the main text], we still use (C1), but
here we have only data with which we can reconstruct the
autocorrelation, the MSD and the power spectral density of the
velocity (PSDV) in the steady state. These are all observables
that store the same amount of information in different ways.
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Indeed, knowing the autocorrelation function, we can obtain
the MSD with Kubo’s formula or the PSDV by a Fourier
transform. In a linear model with n + 1 variables, the autocor-
relation function is a sum of n + 1 exponential decays, each
one identified by an amplitude and a characteristic time. Thus
a fit of the autocorrelation or an equivalent observable alone
can be used to estimate a maximum of 2(n + 1) parameters. In
order to have four free parameters, we have fixed α = 1 before
doing the fit of the experimental data at moderate density. A
similar procedure has to be done to fit the experimental data
at high density [shown in Fig. 1(b) of the main text]. In this
case the matrices of the model are given by

Â =

⎛
⎜⎝ −1/τ 1/τ 1/τ

−α/τ1 −1/τ1 0
−ε2/τ2 0 −1/τ2

⎞
⎟⎠,

B̂ =

⎛
⎜⎝

√
2q/τ 0 0

0
√

2q1ατ/τ 2
1 0

0 0 ε3/2√2q2/τ2

⎞
⎟⎠. (C2)

Remembering that ε = τ/τ2, we have seven parameters τ , q,
α, τ1, q1, τ2, q2, and in order to not overfit, we fixed q = q1

before doing the fit.
With this fitting procedure we are able to reproduce the

MSD and the PSDV (not shown), but dealing with a large
number of parameters we know that there is probably an entire
region of the parameter space where we could find a good
agreement with the experimental data. In view of this, we
stress that the important point of our analysis is that there is
a set of parameters well reproducing our data for which is
important to take into account the correct terms of EPR in
the TURs. Nevertheless, it is also important to note that the
arbitrariness in the estimation of the model’s parameters from
data is a quite general issue. In light of this, we remark that
the last result presented in the main text (i.e., nonequilibrium
signatures in the shape of the MSD) does not require any fit of
the data.

APPENDIX D: EXTENT OF THE ANOMALOUS
DIFFUSION

Here we want to adapt the analysis done in [15] to the new
bound derived in the main text. Considering a regime where
the MSD behaves as 〈�θ (t )2〉 ∼ Kνtν we have that

Kνtν � C1t2

1 + C2t
∼
{

C1t2 t → 0
C1
C2

t t → ∞ , (D1)

where C1 = 2〈ω〉2/I and C2 = 〈Ṡ〉ext/I. The above inequality
is satisfied only for times that solve tν−2 + C2tν−1 − C1/Kν �
0. We can take ν = 0 for an example of the subdiffusive case
and ν = 2 for the superdiffusive one, obtaining

t∗
sub � 2

C2

(√
1 + 4C1

C2
2 K0

)−1

, t∗
super � 1

C2

(
C1

K2
− 1

)
. (D2)

FIG. 3. Comparison between a power-law decay f (t ) and two
approximations given by the sum of exponentials. See text for the
definition of the parameters.

We note that in the subdiffusive case, there is always a positive
time that prevents the extension of the subdiffusion after a
certain time. On the other hand, the superdiffusive case has
a meaningful bound only if K2 < C1, i.e., if the anomalous
diffusion coefficient is lower than the ballistic one of the
bound. Having in mind a log-log plot, it means that if the
superdiffusive regime K2t2 lays over the line C1t2 it can hold
for any positive times. In the opposite case the onset of such
a regime cannot occur before t∗

super. This is consistent with the
fact that the ballistic regime is always present in an under-
damped system for t ∼ 0. The bound applies to the anomalous
superdiffusive regimes that may appear at larger times, as the
one shown in Fig. 1(b) of the main text.

APPENDIX E: POWER-LAW DECAY AND SUM
OF EXPONENTIALS

It is interesting to realize that the choice of a memory
kernel, which is a sum of exponentials with different decay
rates, can reproduce physical situations where memory decays
as a power law, of course with a maximum time cutoff. We are
not able to provide a general theory, but visual examples con-
stitute an empirical proof. In Fig. 3 we compare the following
three decaying functions of time t :

f (x) = t−3/2, (E1)

f3(x) =
3∑

k=1

ak

τk
e−t/τk , (E2)

f6(x) =
6∑

k=1

ak

τk
e−t/τk , (E3)

with ak = τ
−1/2
k and τ ≡ {1, 10, 100, 0.01, 0.1, 1000}.

(E4)

A more systematic study about how to use exponential func-
tions to approximate power laws is also provided in [46].
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