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Quantum heat engines are often discussed under the weak-coupling assumption that the interaction between
the system and the reservoirs is negligible. Although this setup is easier to analyze, this assumption cannot be
justified on the quantum scale. In this study, a quantum Otto cycle model that can be generally applied without
the weak-coupling assumption is proposed. We replace the thermalization process in the weak-coupling model
with a process comprising thermalization and decoupling. The efficiency of the proposed model is analytically
calculated and indicates that, when the contribution of the interaction terms is neglected in the weak-interaction
limit, it reduces to that of the earlier model. The sufficient condition for the efficiency of the proposed model not
to surpass that of the weak-coupling model is that the decoupling processes of our model have a positive cost.
Moreover, the relation between the interaction strength and the efficiency of the proposed model is numerically
examined by using a simple two-level system. Furthermore, we show that our model’s efficiency can surpass
that of the weak-coupling model under particular cases. From analyzing the majorization relation, we also find a
design method of the optimal interaction Hamiltonians, which are expected to provide the maximum efficiency
of the proposed model. Under these interaction Hamiltonians, the numerical experiment shows that the proposed
model achieves higher efficiency than that of its weak-coupling counterpart.
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I. INTRODUCTION

Constructing and analyzing heat engines is one of the
fundamental themes in thermodynamics. In classical thermo-
dynamics, it is a universal principle, rigorously shown by
Carnot, that no heat engine operating between two reser-
voirs can exceed the efficiency limit ηC = 1 − Tc/Th, where
Tc and Th denotes the temperatures of the cold and hot
reservoirs, respectively. The Carnot limit assumes that heat
engines operate at the macroscopic scale, where fluctuations
and quantum effects do not come into play. Recently, the
notion of thermodynamics has been applied to mesoscopic
systems, such as protein motors and biochemical clocks,
which are described by stochastic processes. In the meso-
scopic regime, thermodynamic quantities, e.g., entropy, work,
and heat, become stochastic and the second law of thermo-
dynamics does not necessarily hold due to fluctuations [1,2].
Moreover, heat engines have been studied in microscopic
systems, where the quantum effects play fundamental roles
[3–24]. Quantum extensions of the Carnot and Otto cycles,
the most fundamental heat engines in thermodynamics, are
summarized in Refs. [3–5]. Additionally, various heat engines
that utilize quantum effects, such as measurement, coherence,
and entanglement, have been proposed [6–9]. In particular,
the achievable efficiency of quantum heat engines has been
theoretically proven to possibly exceed the classical efficiency
limit [4,10–13]. For instance, the classical Carnot limit is
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violated in heat engines using squeezed reservoirs [10–12],
although this phenomenon does not violate the second law of
thermodynamics. This fact indicates that quantum resources
can be used to enhance heat engines. Currently, research on
the experimental realization of quantum heat engines is ongo-
ing [12,25–29] and quantum heat engines have already been
implemented in various physical platforms, such as trapped
ions and nuclear magnetic resonance (see Ref. [30] for a
review).

In many quantum heat engine models, the interaction be-
tween the system and the reservoirs is assumed to be weak to
ensure that their interaction is negligible. This approximation
facilitates the theoretical analysis, because the thermal equi-
librium state can be regarded as the product state of the system
and the reservoir. However, this assumption cannot be justified
in systems where quantum behavior appears, i.e., the effects of
the interaction cannot be negligible inevitably in the quantum
scale. That is because the ratio of the surface to the volume is
large when the volume of the system is very small [31,32].
In recent years, theories do not assume weak coupling but
consider the contribution of the interaction [31–41]. One rep-
resentative method is the reaction coordinate mapping [42].
In this method, a reaction coordinate is introduced to account
for the contributions of the interactions between a system and
reservoirs. After this mapping, the strongly coupled system
and reservoirs can be treated as if the reaction coordinate cou-
ples to the residual environments weakly. Despite the method
being applicable to arbitrary quantum systems, it has a re-
striction that the reservoirs, consisting of harmonic oscillators,
must be linearly coupled to the system. We propose herein a
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more general treatment applicable to anharmonic or nonlinear
baths [43–45].

In this study, we construct a quantum Otto cycle model
without making the approximation that the interaction be-
tween the system and the reservoirs is negligible. This model
can be applied generally: The cycle is analyzed by using
density operators throughout to ensure that the model does
not specify the details of the system and the reservoirs, except
that the decoupling processes are assumed to be realized under
the Schrödinger equation. To confirm the consistency, the
proposed model is shown to agree with the existing model
in the weak-coupling limit. In addition, the sufficient condi-
tion is derived for ηstr � ηweak, where ηstr and ηweak are the
efficiencies of our model (strong coupling) and the existing
model (weak coupling), respectively. This inequality holds for
positive costs to decouple the system from the two reservoirs.
In the numerical experiment, the interaction provides a detri-
mental effect to the strong-coupling model. Furthermore, the
efficiency of the strong-coupling model is visually demon-
strated to be lower than that of the weak-coupling model.

Although the relation ηstr � ηweak is primarily satisfied, we
also suggest the possibility that the efficiency of the proposed
model can be higher than that of the existing weak-coupling
counterpart. This insight is obtained by considering the ma-
jorization relation, which is originally a mathematical concept
but plays a significant role in thermodynamics, especially in
resource theory (see Refs. [46,47] for a review). Finally, we
propose a design method to realize the optimal interaction
Hamiltonians, which are expected to provide the maximum
efficiency, and the reversal of efficiency ηstr > ηweak is nu-
merically demonstrated to be realized under these interaction
Hamiltonians.

II. WEAK-COUPLING MODEL

This section reviews the widely discussed quantum Otto
cycle model. In this model, the interaction between the system
and the reservoirs is assumed to be negligible. We call this
the “weak-coupling model” to clearly distinguish it from the
model described in the next section.

Consider a quantum system S and two heat reservoirs Bh

and Bc, whose inverse temperatures are βh and βc, respectively
(βh < βc). The Hamiltonian of the total system is expressed as
follows:

Htot = HS + Hh
B + Hc

B + Hh
SB + Hc

SB. (1)

HS , Hh
B , and Hc

B are the self-Hamiltonians of S, Bh, and Bc,
respectively, and Hi

SB corresponds to the interaction between S
and Bi (i = h, c). By assuming that the two reservoirs are both
in Gibbs states, the states of the reservoirs can be expressed as

ρ i
B = e−βiH i

B

Zi
B

(i = h, c), (2)

where Zi
B = Tr[e−βiH i

B ] is the partition function.
In this model, the cycle consists of the following four

processes (see Fig. 1): (A) adiabatic compression, (B) hot
isochoric thermalization, (C) adiabatic expansion, and (D)
cold isochoric thermalization. The state change of the system

(A) compression

(B) thermalization

(D) thermalization

(C) expansion

bathbath

FIG. 1. Four processes in the weak-coupling model. The state of
the two reservoirs is constant and the state of the system transitions as
follows: (A) Adiabatic compression: ρ

c,eq
S → ρh

S . (B) Hot isochoric
thermalization: ρh

S → ρ
h,eq
S . (C) Adiabatic expansion: ρ

h,eq
S → ρc

S .
(D) Cold isochoric thermalization: ρc

S → ρ
c,eq
S .

in each process is described, and the transferred heat and the
exerted work during these processes are calculated below.

A. Process

Process A: Adiabatic compression. In this process, the
system does not interact with the reservoirs. The Hamiltonian
of the system is initialized to Hc

S = ∑
i Ei|ψi〉〈ψi|, where each

Ei is an energy eigenvalue of Hc
S , and |ψi〉 is the corresponding

eigenvector. We assume that no degeneracy occurs in the
eigenvalues and consider the initial state of the system to be
the Gibbs state at inverse temperature βc:

ρ
c,eq
S = e−βcHc

S

Zc
S

=
∑

i

pi|ψi〉〈ψi|, (3)

where Zc
S = Tr[e−βcHc

S ] and pi = e−βcEi/Zc
S .

HS is dependent on a controllable external parameter λ.
The initial value of λ is λi, which corresponds to Hc

S . During
this process, λ is varied from λi to λ f , and, consequently, HS

changes from Hc
S to Hh

S . The state change of the system in
this process can be expressed by a unitary operator Ucom =
T exp{−i

∫
HS (t )dt}, where T is the time-ordering operator.

If the change in λ is sufficiently slow, the time-evolution
induced by Ucom does not change the probability distribution
{pi}i [9]. The final state of the system can be expressed as

ρh
S = Ucom ρ

c,eq
S U †

com =
∑

i

pi|φi〉〈φi|, (4)

where |φi〉 = Ucom|ψi〉 and |φi〉 is the eigenvector of Hh
S

corresponding to the energy eigenvalue εi of Hh
S . Here, the

eigenvalue Ei of Hc
S and the eigenvalue εi of Hh

S have a
one-to-one correspondence, and no reversal of the magnitude
relationship between eigenvalues and no degeneracy during
this process are assumed.

Because the system does not interact with the reservoirs,
no heat flows into the system during this process. Therefore,
we regard the change in internal energy of the system as the
work performed on the system, which is given by

Wcom = Tr
[
Hh

S ρh
S

] − Tr
[
Hc

S ρ
c,eq
S

]
. (5)

Process B: Hot isochoric thermalization. In this process,
the Hamiltonian of the system is constant at Hh

S . A weak in-
teraction exists between the system and the hot reservoir. The
reservoir is assumed to be sufficiently large such that its state
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does not change throughout this process. After a sufficiently
long time, the state of the system converges to the Gibbs state
at inverse temperature βh [6]. The final state of the system can
be expressed as

ρ
h,eq
S = e−βhHh

S

Zh
S

=
∑

i

qi|φi〉〈φi|, (6)

where Zh
S = Tr[e−βhHh

S ] and qi = e−βhεi/Zh
S . Each εi is an

eigenvalue of Hh
S and |φi〉 is the corresponding eigenvector,

which is equal to that used in Eq. (4).
Here, we note that there is a crucial approximation in this

model that the interaction between the system and the reser-
voir is ignored. More precisely, the final state of the system
should be the Gibbs state, considering the interaction Hamil-
tonian Hh

SB. However, in this model, the contribution of Hh
SB

is neglected by assuming that the interaction is sufficiently
weak; that is

e−βh(Hh
S +Hh

B+Hh
SB )

Z
� e−βhHh

S

Zh
S

⊗ e−βhHh
B

Zh
B

= ρ
h,eq
S ⊗ ρh

B. (7)

Because the Hamiltonian is constant throughout this pro-
cess, the work performed on the system is equal to zero.
Therefore, the change in internal energy of the system can
be regarded as the heat transferred from the reservoir to the
system, which is given by

Qin = Tr
[
Hh

S ρ
h,eq
S

] − Tr
[
Hh

S ρh
S

]
. (8)

Process C: Adiabatic expansion. Similar to Process A, in
Process C, no interaction occurs between the system and the
reservoirs. The parameter λ is varied from λ f to λi sufficiently
slowly. Consequently, the Hamiltonian of the system changes
from Hh

S to Hc
S . Uexp, the time-evolution operator of this pro-

cess, is equal to U †
com [7]. Therefore, the final state can be

expressed as follows:

ρc
S = Uexp ρ

h,eq
S U †

exp =
∑

i

qi|ψi〉〈ψi|, (9)

where qi is equal to that in Eq. (6) and |ψi〉 is equal to that in
Eq. (3).

Since the system does not interact with the reservoirs, no
heat flows into the system and the work performed on the
system is equal to the change in internal energy of the system;
this is expressed as

Wexp = Tr
[
Hc

S ρc
S

] − Tr
[
Hh

S ρ
h,eq
S

]
. (10)

Process D: Cold isochoric thermalization. In this process,
the Hamiltonian of the system is constant at Hc

S and the system
weakly interacts with the cold reservoir. Similar to Process B,
after a sufficiently long time, the state of the system converges
to the Gibbs state at inverse temperature βc, i.e., the final state
is ρ

c,eq
S . Here, the contribution of the interaction Hamiltonian

Hc
SB is neglected.

Because the Hamiltonian does not change during this pro-
cess, the work performed on the system is zero and the
decrease in internal energy of the system is considered as the
heat transferred into the cold reservoir, which is given by

Qout = Tr
[
Hc

S ρc
S

] − Tr
[
Hc

S ρ
c,eq
S

]
. (11)

B. Efficiency

With Qin [Eq. (8)] and Wout = −(Wcom + Wexp), the heat
absorbed by the system from the hot reservoir and the net
work performed by the system during one cycle, the efficiency
of the weak-coupling model is defined as

ηweak = Wout

Qin
. (12)

For the cycle to operate as a heat engine, we assume Qin >

Qout > 0. Because Wcom + Qin + Wexp − Qout = 0, we can
rewrite ηweak as

ηweak = Qin − Qout

Qin
= 1 − Qout

Qin
. (13)

Using the von Neumann entropy S(ρ) := −Tr[ρ ln ρ] and the
quantum relative entropy D(ρ||σ ) := Tr[ρ ln ρ] − Tr[ρ ln σ ],
the heat transferred between the system and the reservoirs can
be expressed as follows (see Appendix A):

βhQin = 
S − D
(
ρh

S

∣∣∣∣ρh,eq
S

)
, (14)

βcQout = 
S + D
(
ρc

S

∣∣∣∣ρc,eq
S

)
, (15)

where 
S = S(ρh,eq
S ) − S(ρh

S ) = S(ρc
S ) − S(ρc,eq

S ). Conse-
quently, we can express ηweak as

ηweak = 1 − βh

βc


S + D
(
ρc

S

∣∣∣∣ρc,eq
S

)

S − D

(
ρh

S

∣∣∣∣ρh,eq
S

) . (16)

Because the terms expressed by the quantum relative entropy
are positive under the condition Qin > Qout > 0, the following
inequality holds:

ηweak < 1 − βh

βc
= ηC . (17)

Therefore, the efficiency of the weak-coupling model does
not exceed ηC , which is the efficiency limit of classical heat
engines.

III. STRONG-COUPLING MODEL

In the weak-coupling model, the interaction Hamiltonians
are assumed to be negligible. However, in quantum systems,
this assumption is often unrealistic because the surface area of
such systems is not insignificant compared with their volume
[31,32]. In this section, we develop a quantum Otto cycle
model without applying the weak-coupling assumption. We
call this the “strong-coupling model” to distinguish it from
the weak-coupling model.

The strong-coupling model consists of the following six
processes (see Fig. 2): (A) adiabatic compression, (B-1)
hot isochoric thermalization, (B-2) decoupling from the hot
reservoir, (C) adiabatic expansion, (D-1) cold isochoric ther-
malization, and (D-2) decoupling from the cold reservoir.
Despite a few differences in details, this division is similar
to the model proposed in Ref. [34].

A. Process

Process A: Adiabatic compression. This process is equiva-
lent to Process A in the weak-coupling model. No interaction
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(B-1) thermalization

(D-1) thermalization

bath

bath

(C) expansion

(A) compression
bath

bath

(B-2) decoupling

(D-2) decoupling

FIG. 2. Six processes in the strong-coupling model. While en-
tangling with the reservoirs as appropriate, the state of the system
transitions as follows: (A) Adiabatic compression: ρ

c,eq
S → ρh

S . (B-
1) Hot isochoric thermalization: ρh

S ⊗ ρh
B → ρh

SB. (B-2) Decoupling
from hot reservoir: ρh

SB → ρ
h,eq
S ⊗ ρh

B. (C) Adiabatic expansion:
ρ

h,eq
S → ρc

S . (D-1) Cold isochoric thermalization: ρc
S ⊗ ρc

B → ρc
SB.

(D-2) Decoupling from cold reservoir: ρc
SB → ρ

c,eq
S ⊗ ρc

B.

occurs between the system and the reservoirs. Therefore,
no heat flows into the system. The state of the system
changes from ρ

c,eq
S to ρh

S , and the work Wcom = Tr[Hh
S ρh

S ] −
Tr[Hc

S ρ
c,eq
S ] is done on the system during the process.

Process B-1: Hot isochoric thermalization. In this process,
the Hamiltonian of the system is constant at Hh

S . First, the
system is coupled to the hot reservoir, which is represented by
switching on the interaction Hamiltonian Hh

SB. We assume that
this operation does not require work because the reservoir is
in the Gibbs state initially. We also assume the coupling oper-
ation completes instantaneously to ensure that the states of the
system and the reservoir do not change before and after cou-
pling. These assumptions are also accepted in Refs. [34,35].
From these assumptions, Tr[Hh

SB(ρh
S ⊗ ρh

B)] = 0 holds. Hh
SB is

the Hamiltonian corresponding to the interaction between the
system and the hot reservoir and is constant in this process.
We note that Hh

SB is not necessarily weak, which is a differ-
ence from the weak-coupling model. After a sufficiently long
time, the compound system S + Bh converges to the Gibbs
state at inverse temperature βh [33,34]. The final state can be
expressed as follows:

ρh
SB = e−βh (Hh

S +Hh
B+Hh

SB )

Zh
SB

, (18)

where Zh
SB = Tr[e−βh (Hh

S +Hh
B+Hh

SB )].
Similar to Process B of the weak-coupling model, the work

performed on the system vanishes. Therefore, the change in
internal energy of the system is equal to the heat transferred
from the reservoir, which is

Qh
th = Tr

[(
Hh

S ⊗ IB
)
ρh

SB

] − Tr
[
Hh

S ρh
S

] + Tr
[
Hh

SBρh
SB

]
= Tr

[
Hh

S

(
ρ̃h

S − ρh
S

)] + Tr
[
Hh

SBρh
SB

]
. (19)

Here, IB is the identity operator and ρ̃h
S is the reduced state

of ρh
SB, i.e., ρ̃h

S = TrB[ρh
SB]. Using Qh

th, the work performed on

the system can be written as

W h
th = Tr

[
Hh

S

(
ρ̃h

S − ρh
S

)] + Tr
[
Hh

SBρh
SB

] − Qh
th = 0. (20)

With the von Neumann entropy and the quantum relative
entropy, we can rewrite Qh

th as follows (see Appendix A):

βhQh
th = S

(
ρ̃h

S

) − S
(
ρh

S

)
− {

D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρh

B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

)}
. (21)

This expression is useful for the calculation of the efficiency.
Process B-2: Decoupling from hot reservoir. Next, we con-

duct an operation to detach the system from the hot reservoir.
As in Ref. [38], we consider the situation where the decou-
pling and the thermalization proceed simultaneously, i.e., the
decoupling operation is sufficiently slow and the state of the
compound system S + Bh is the Gibbs state throughout this
process. The initial state is ρh

SB and the final state is ρ
h,eq
S ⊗ ρh

B.
Here, we impose a restriction that this process can be realized
under the Schrödinger equation. From this restriction, the time
evolution of the compound system is unitary and the following
equality holds:

S
(
ρ

h,eq
S ⊗ ρh

B

) = S
(
ρh

SB

)
. (22)

Hereafter, we refer to this restriction as “unitary restriction.”
We point out that the interaction Hamiltonian is not constant
during this process; its initial value is Hh

SB and the final value is
zero, and it varies appropriately to realize the desired unitary
transformation.

The appropriate definition of work and heat is an open
question in the field of quantum thermodynamics and the
efficiency of quantum heat engine is largely dependent the
definition. In this study, we introduce the definition of heat
proposed in Ref. [38], which is valid when the compound
system evolves under the Schrödinger equation. Using this
definition, the heat transferred into the system can be calcu-
lated as follows (see Appendix B):

βhQh
d = S

(
ρ

h,eq
S

) − S
(
ρ̃h

S

) + D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρ̃h

B

)
, (23)

where ρ̃h
B = TrS[ρh

SB]. We define the work performed on the
system as the difference between the change in internal energy
of the system and Qh

d , which is

W h
d = Tr

[
Hh

S

(
ρ

h,eq
S − ρ̃h

S

)] − Tr
[
Hh

SBρh
SB

] − Qh
d . (24)

We note that the state change of the system ρh
S → ρ

h,eq
S

involves both work and heat in the strong-coupling model,
whereas only heat transfer occurs in the weak-coupling model.
This is a fundamental difference between both models.

Process C: Adiabatic expansion. This process is completely
equivalent to Process C of the weak-coupling model. The state
of the system changes from ρ

h,eq
S to ρc

S without interaction
with the reservoirs. No heat flows into the system and the work
performed on the system is Wexp = Tr[Hc

S ρc
S] − Tr[Hh

S ρ
h,eq
S ].

Process D-1: Cold isochoric thermalization. In this pro-
cess, the Hamiltonian of the system is constant at Hc

S . First,
the system is coupled to the cold reservoir, and we assume
Tr[Hc

SB(ρc
S ⊗ ρc

B)] = 0 as in Process B-1. Hc
SB corresponds to

the interaction between the system and the cold reservoir, and
it is constant in this process. We emphasize that Hc

SB is not
necessarily negligible. After a sufficiently long time, the state
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of the compound system S + Bc transitions to the Gibbs state
at inverse temperature βc. The final state is

ρc
SB = e−βc(Hc

S +Hc
B+Hc

SB )

Zc
SB

, (25)

where Zc
SB = Tr[e−βc (Hc

S +Hc
B+Hc

SB )].
Similar to Process B-1, the work performed on the system

is zero. Therefore, the change in internal energy of the system
can be regarded as Qc

th, the heat transferred into the system
during this process. Qc

th is given by

Qc
th = Tr

[(
Hc

S ⊗ IB
)
ρc

SB

] − Tr
[
Hc

S ρc
S

] + Tr
[
Hc

SBρc
SB

]
= Tr

[
Hc

S

(
ρ̃c

S − ρc
S

)] + Tr
[
Hc

SBρc
SB

]
, (26)

where ρ̃c
S = TrB[ρc

SB]. We note that Qc
th is calculated with the

flow into the system in a positive direction, despite the positive
energy actually being transferred from the system to the cold
reservoir. Using Qc

th, the work performed on the system can be
written as

W c
th = Tr

[
Hc

S

(
ρ̃c

S − ρc
S

)] + Tr
[
Hc

SBρc
SB

] − Qc
th = 0. (27)

Similar to Qh
th, another expression for Qc

th can be obtained as
follows:

βcQc
th = S

(
ρ̃c

S

) − S
(
ρc

S

)
− {

D
(
ρc

SB

∣∣∣∣ρ̃c
S ⊗ ρc

B

) + D
(
ρc

S ⊗ ρc
B

∣∣∣∣ρc
SB

)}
. (28)

Process D-2: Decoupling from cold reservoir. Similar to
Process B-2, in this process, the system is decoupled from
the cold reservoir sufficiently slowly, and the thermalization
proceeds simultaneously. The compound system S + Bc is the
Gibbs state at inverse temperature βc throughout this process.
The final state is ρ

c,eq
S ⊗ ρc

B. Here, we impose the unitary
restriction as in Process B-2, i.e., this process can be realized
under the Schrödinger equation and the following equality
holds:

S
(
ρ

c,eq
S ⊗ ρc

B

) = S
(
ρc

SB

)
. (29)

By adopting the same definition of heat as in Process B-2,
the heat the system absorbs from the cold reservoir can be
calculated as follows:

βcQc
d = S

(
ρ

c,eq
S

) − S
(
ρ̃c

S

) + D
(
ρc

SB

∣∣∣∣ρ̃c
S ⊗ ρ̃c

B

)
, (30)

where ρ̃c
B = TrS[ρc

SB]. The work performed on the system
is defined as the difference between the change in internal
energy of the system and Qc

d :

W c
d = Tr

[
Hc

S

(
ρ

c,eq
S − ρ̃c

S

)] − Tr
[
Hc

SBρc
SB

] − Qc
d . (31)

B. Efficiency

Similar to the weak-coupling model, we define the effi-
ciency of the strong-coupling model as

ηstr = W ′
out

Q′
in

, (32)

where Q′
in is the sum of the heat the system absorbs from

the hot reservoir in Processes B-1 and B-2 and W ′
out is

the net work the system performs during one cycle. Hence,
W ′

out = −(Wcom + W h
th + W h

d + Wexp + W c
th + W c

d ) and Q′
in =

Qh
th + Qh

d . Additionally, Q′
out = −(Qc

th + Qc
d ) denotes the heat

transferred from the system to the cold reservoir. Similar to
the weak-coupling model, we assume Q′

in > Q′
out > 0. We can

derive

W ′
out = Qh

th + Qh
d + Qc

th + Qc
d

= Q′
in − Q′

out, (33)

and we can rewrite ηstr as

ηstr = Q′
in − Q′

out

Q′
in

= 1 − Q′
out

Q′
in

. (34)

Moreover, from Eqs. (21) and (23), Q′
in can be calculated as

follows:

βhQ′
in = S

(
ρ

h,eq
S

) − S
(
ρh

S

) − {
D

(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρh

B

) − D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρ̃h

B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

)}
= S

(
ρ

h,eq
S

) − S
(
ρh

S

) − {
D

(
ρ̃h

B

∣∣∣∣ρh
B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

)}
. (35)

Here, we used the following relation:

D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρh

B

) − D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρ̃h

B

) = {−S
(
ρh

SB

) + S
(
ρ̃h

S

) − Tr
[
ρ̃h

B ln ρh
B

]} − {−S
(
ρh

SB

) + S
(
ρ̃h

S

) − Tr
[
ρ̃h

B ln ρ̃h
B

]}
= Tr

[
ρ̃h

B ln ρ̃h
B

] − Tr
[
ρ̃h

B ln ρh
B

]
= D

(
ρ̃h

B

∣∣∣∣ρh
B

)
. (36)

Similarly, from Eqs. (28) and (30), we obtain

βcQ′
out = S

(
ρc

S

) − S
(
ρ

c,eq
S

) + {
D

(
ρ̃c

B

∣∣∣∣ρc
B

) + D
(
ρc

S ⊗ ρc
B

∣∣∣∣ρc
SB

)}
. (37)

Thus, using 
S = S(ρh,eq
S ) − S(ρh

S ) = S(ρc
S ) − S(ρc,eq

S ), ηstr can be expressed as

ηstr = 1 − βh

βc


S + {
D

(
ρ̃c

B

∣∣∣∣ρc
B

) + D
(
ρc

S ⊗ ρc
B

∣∣∣∣ρc
SB

)}

S − {

D
(
ρ̃h

B

∣∣∣∣ρh
B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

)} . (38)
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This expression resembles ηweak in Eq. (16). Equation (38) is the main result of this study. From the non-negativity of the
quantum relative entropy and the condition Q′

in > Q′
out > 0, we obtain

ηstr < 1 − βh

βc
= ηC, (39)

i.e., similar to the weak-coupling model, the efficiency of our strong-coupling model does not exceed the classical limit ηC .

C. Weak-coupling limit

Here, we show that our strong-coupling model agrees with the weak-coupling model in the limit of weak interaction. When
we add a condition that the interaction Hamiltonians are negligible in the strong-coupling model, the final state of Process B-1
is approximated as follows:

ρh
SB = e−βh (Hh

S +Hh
B+Hh

SB )

Zh
SB

� e−βh (Hh
S +Hh

B )

Zh
S Zh

B

= e−βhHh
S

Zh
S

⊗ e−βhHh
B

Zh
B

= ρ
h,eq
S ⊗ ρh

B. (40)

Consequently, ρ̃h
S = TrB[ρh

SB] = ρ
h,eq
S and ρ̃h

B = TrS[ρh
SB] = ρh

B hold. Therefore, we can rewrite the heat exchanged between the
system and the hot reservoir as

Qh
th= Tr

[
Hh

S

(
ρ̃h

S − ρh
S

)] + Tr
[
Hh

SBρh
SB

] � Tr
[
Hh

S

(
ρ

h,eq
S − ρh

S

)]
, (41)

βhQh
d = S

(
ρ

h,eq
S

) − S
(
ρ̃h

S

) + D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρ̃h

B

)
� S

(
ρ

h,eq
S

) − S
(
ρ

h,eq
S

) + D
(
ρ

h,eq
S ⊗ ρh

B

∣∣∣∣ρh,eq
S ⊗ ρh

B

)
= 0. (42)

From Eqs. (41) and (42), we obtain Q′
in = Qh

th + Qh
d � Tr[Hh

S (ρh,eq
S − ρh

S )] = Qin. By similar calculations, we can show Q′
out �

Qout and W ′
out � Wout. These relations mean the cycle of the strong-coupling model agrees with that of the weak-coupling model

in the limit of weak interaction. Furthermore, the following calculation shows that ηstr in Eq. (38) agrees with ηweak in the same
limit:

ηstr = 1 − βh

βc


S + {
D

(
ρ̃c

B

∣∣∣∣ρc
B

) + D
(
ρc

S ⊗ ρc
B

∣∣∣∣ρc
SB

)}

S − {

D
(
ρ̃h

B

∣∣∣∣ρh
B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

)}

� 1 − βh

βc


S + {
D

(
ρc

B

∣∣∣∣ρc
B

) + D
(
ρc

S ⊗ ρc
B

∣∣∣∣ρc,eq
S ⊗ ρc

B

)}

S − {

D
(
ρh

B

∣∣∣∣ρh
B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh,eq
S ⊗ ρh

B

)}

= 1 − βh

βc


S + D
(
ρc

S

∣∣∣∣ρc,eq
S

)

S − D

(
ρh

S

∣∣∣∣ρh,eq
S

)
= ηweak. (43)

These discussions support the consistency of the proposed strong-coupling model with the weak-coupling model. Thus, our
model can be considered to be a valid extension of the existing weak-coupling model.

D. Comparison of efficiencies

In this section, we compare the efficiency of the two models discussed previously. From Eqs. (16) and (38), we derive the
sufficient condition for ηstr � ηweak. First, from the non-negativity of the quantum relative entropy, we obtain D(ρ̃h

B||ρh
B) +

D(ρh
S ⊗ ρh

B||ρh
SB) � D(ρh

S ⊗ ρh
B||ρh

SB). We set d := D(ρh
S ⊗ ρh

B||ρh
SB) − D(ρh

S ||ρh,eq
S ), and by examining the sign of d as the

following calculation, we explore the magnitude relation between the efficiencies of the two models:

d := D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

) − D
(
ρh

S

∣∣∣∣ρh,eq
S

)

= −S
(
ρh

S ⊗ ρh
B

) − Tr

⎡
⎣(

ρh
S ⊗ ρh

B

)
ln

e−βh

(
Hh

S +Hh
B+Hh

SB

)
Zh

SB

⎤
⎦ + S

(
ρh

S

) + Tr

[
ρh

S ln
e−βhHh

S

Zh
S

]
= ln

Zh
SB

Zh
S Zh

B

= βh
{
F

(
ρ

h,eq
S ⊗ ρh

B

) − F
(
ρh

SB

)}
. (44)
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Here, we introduced the free energy F (ρ) := − 1
β

ln Z , defined
for an arbitrary Gibbs state. β is the inverse temperature and
Z is the partition function. Thus, if F (ρh,eq

S ⊗ ρh
B) � F (ρh

SB)
holds, we obtain d � 0 and D(ρ̃h

B||ρh
B) + D(ρh

S ⊗ ρh
B||ρh

SB) �
D(ρh

S ||ρh,eq
S ). Similarly, we also obtain D(ρ̃c

B||ρc
B) + D(ρc

S ⊗
ρc

B||ρc
SB) � D(ρc

S||ρc,eq
S ) under the condition that F (ρc,eq

S ⊗
ρc

B) � F (ρc
SB). From the two inequalities, we can derive the

following relation:

ηstr = 1 − βh

βc


S + {
D

(
ρ̃c

B

∣∣∣∣ρc
B

) + D
(
ρc

S ⊗ ρc
B

∣∣∣∣ρc
SB

)}

S − {

D
(
ρ̃h

B

∣∣∣∣ρh
B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

)}
� 1 − βh

βc


S + D
(
ρc

S

∣∣∣∣ρc,eq
S

)

S − D

(
ρh

S

∣∣∣∣ρh,eq
S

) = ηweak. (45)

Eventually, the fact that both F (ρh,eq
S ⊗ ρh

B) � F (ρh
SB) and

F (ρc,eq
S ⊗ ρc

B) � F (ρc
SB) are satisfied is the sufficient condi-

tion for ηstr � ηweak. Furthermore, because the von Neumann
entropy of the compound system is constant throughout the
decoupling processes due to the unitary restriction, the change
in free energy is equal to the change in internal energy, i.e.,

F
(
ρ

h,eq
S ⊗ ρh

B

) − F
(
ρh

SB

)
= Tr

[
Hh

S

(
ρ

h,eq
S − ρ̃h

S

)]+Tr
[
Hh

B

(
ρh

B − ρ̃h
B

)]−Tr
[
Hh

SBρh
SB

]
,

(46)

F
(
ρ

c,eq
S ⊗ ρc

B

) − F
(
ρc

SB

)
= Tr

[
Hc

S

(
ρ

c,eq
S − ρ̃c

S

)] + Tr
[
Hc

B

(
ρc

B − ρ̃c
B

)] − Tr
[
Hc

SBρc
SB

]
.

(47)

Therefore, using 
Eh
d and 
Ec

d to denote the right sides of
Eqs. (46) and (47), the fact that both 
Eh

d � 0 and 
Ec
d � 0

are satisfied also expresses the sufficient condition for ηstr �
ηweak. We can interpret this condition that if positive costs
exist on the two decoupling processes, the strong-coupling
model has a lower efficiency than the weak-coupling model.

E. Reversal of efficiency

This section shows that the efficiency of the strong-
coupling model may exceed that of the weak-coupling model
in particular case. In this section, only high temperature reser-
voir side is discussed. However, the same is true for the low
temperature side. An arbitrary interaction Hamiltonian can be
expressed as follows:

Hh
SB = U h†

d

(
Hh

S + Hh
B

)
U h

d + aI − (
Hh

S + Hh
B

)
, (48)

where the unitary matrix U h
d represents Process B-2 in the

strong-coupling model and a = Tr[(Hh
S + Hh

B )(ρh
S ⊗ ρh

B)] −
Tr[(Hh

S + Hh
B )U h

d (ρh
S ⊗ ρh

B)U h†
d ]. This interaction Hamilto-

nian satisfies the restriction Tr[Hh
SB(ρh

S ⊗ ρh
B)] = 0 and the

unitary restriction: The eigenvalue distribution of Hh
S + Hh

B +
Hh

SB is equal to that of Hh
S + Hh

B except for the shift of the
constant a. The essential difference between the two models
is whether the interaction Hamiltonians are considered. Tak-
ing the interaction Hamiltonian into account is equivalent to
considering any U h

d and transforming it by Eq. (48).
Next, we present the construction of U h

d which achieves
the relation d = D(ρh

S ⊗ ρh
B||ρh

SB) − D(ρh
S ||ρh,eq

S ) < 0. As de-

scribed in the previous section, examining the sign of d
helps determine the magnitude relation between ηweak and
ηstr , and the relation d < 0 indicates that the efficiency of the
strong-coupling model can be higher than the weak-coupling
counterpart [compare Eq. (38) with Eq. (16)]. We use the
following notations: ρh

B = ∑
i q′

i |φ′
i〉 〈φ′

i |, |�i j〉 = |φi〉 ⊗ |φ′
j〉,

and let {εi}i and {ε′
i}i to be the eigenvalues of Hh

S and Hh
B ,

respectively. The value of d can be calculated as follows:

d := D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

) − D
(
ρh

S

∣∣∣∣ρh,eq
S

)
= D

(
U h

d

(
ρh

S ⊗ ρh
B

)
U h †

d

∣∣∣∣ρh,eq
S ⊗ ρh

B

)
− D

(
ρh

S ⊗ ρh
B

∣∣∣∣ρh,eq
S ⊗ ρh

B

)
= −Tr

[
U h

d

(
ρh

S ⊗ ρh
B

)
U h †

d ln
(
ρ

h,eq
S ⊗ ρh

B

)]
+ Tr

[(
ρh

S ⊗ ρh
B

)
ln

(
ρ

h,eq
S ⊗ ρh

B

)]
= βh

∑
i, j

∑
k,l

piq
′
j (εk + ε′

l )| 〈�kl |U h
d |�i j〉 |2

− βh

∑
i, j

piq
′
j (εi + ε′

j ). (49)

For any real vectors a and b, the following relation holds:
a�b � a�

↑ b↓, where a↑ and b↓ are vectors of the elements of
a sorted in ascending order and b sorted in descending order,
respectively. Here, let E be a vector of (εi + ε′

j ) values ordered
from smallest to largest and P be a vector of piq′

j values,
which is ordered corresponding to E. Using these vectors, the
second term of Eq. (49) can be expressed as the inner product
of them and the following holds:∑

i, j

piq
′
j (εi + ε′

j ) = E�P � E�P↓, (50)

where P↓ is a vector of P in descending order. Thus, if we take
U h

d as the following form, d < 0 is satisfied:

U h
d =

∑
(m,n)∈M

|�n〉 〈�m| , (51)

where M is the set of (m, n), which is a correspondence of
indices before and after P is sorted to P↓. This U h

d can be
interpreted as a permutation matrix under the orthonormal
basis {|�n〉}n and hence it is unitary. Under this U h

d , the value
of d is as follows:

d = βh(E�P↓ − E�P) � 0. (52)

This mean that such U h
d can induce the reversal of efficiency,

ηstr > ηweak.
Furthermore, the U h

d constructed by Eq. (51) provides the
minimum value of d . For any U h

d , the first term in Eq. (49) can
be expressed as

βh

∑
i, j

∑
k,l

piq
′
j (εk + ε′

l )
∣∣ 〈�kl |U h

d |�i j〉
∣∣2 = βhE�AP. (53)

Here, A = (| 〈�m|U h
d |�n〉 |2) is a doubly stochastic matrix. In

general, a doubly stochastic matrix A generates majorization
relation [46,47]: For any real vector x, Ax ≺ x. From this
property, we can rigorously prove the inequality

E�AP � E�P↓ (54)
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for any doubly stochastic matrix A (see Appendix C). There-
fore, the U h

d in Eq. (51) is optimal for minimizing the value of
d .

This implies that the efficiency of the strong-coupling
model can exceed that of the weak-coupling model, although
this does not necessarily realize because of ignoring the con-
tribution from the term D(ρ̃h

B||ρh
B). In the following section,

we demonstrate numerically that the reversal of the efficiency
is achieved in the prepared simple two-level system.

IV. EXAMPLE

In this section, the strong-coupling model is applied to
a simple two-level system, and its efficiency is numerically
computed. We represent the state of the reservoirs by the
general density operators and do not specify the details of the
reservoirs. We introduce a parameter θ to control the strength
of the interaction and examine the relationship between θ and
ηstr . In addition, we analytically calculate the efficiency of the
weak-coupling model and compare it with ηstr . Furthermore,
we design the interaction Hamiltonians by using Eqs. (48)
and (51) and investigate the efficiency of the strong-coupling
model under such interaction Hamiltonians.

Consider a two-level system S. Using the computational
basis |0〉 = (1, 0)�, |1〉 = (0, 1)� and the other orthonormal
basis |±〉 = 1√

2
(1,±1)�, we set Hc

S and Hh
S as

Hc
S = Ec

g |0〉〈0| + Ec
e |1〉〈1|, Hh

S = Eh
g |+〉〈+| + Eh

e |−〉〈−|.
(55)

{Ec
g , Ec

e } and {Eh
g , Eh

e } are the energy eigenvalues of Hc
S and

Hh
S , respectively. Let {εc

i }i and {εh
i }i be the eigenvalues of

the Hamiltonians of the cold and hot reservoirs, and these
Hamiltonians are assumed to be diagonalized in the compu-
tational basis. Then, we generate two unitary operators Uj

( j = c, h; same hereafter) randomly based on Haar measure-
ment [48,49] and calculate the Hermitian operators Hj such
that Uj = exp(iHj ). By introducing a parameter θ ∈ [0, 1], we
construct the interaction Hamiltonians by substituting U j

d =
exp(iHjθ ) into Eq. (48). These specify the strong-coupling
model and various quantities, such as heat and efficiency, can
be calculated using them. We note that the strong-coupling
model is equivalent to the weak-coupling model when θ = 0
and as θ increases, we can consider the model with stronger
interactions.

We conduct this operation repeatedly. Figure 3 shows each
of the efficiencies as functions of θ , together with ηweak,
which can be calculated analytically (see Appendix D). The
blue dashed line represents ηweak, which is constant for all θ

because ηweak is calculated neglecting the interaction. The red
lines represent ηstr. In the range where θ is small, ηweak and
ηstr are very close. This is consistent with the fact that the
strong-coupling model agrees with the weak-coupling model
in the limit of weak interaction. As the interaction becomes
stronger, the efficiency of the strong-coupling model de-
creases. Although the inequality ηstr � ηweak has been shown
to be violated, our numerical calculation empirically shows
that this inequality holds in most cases in the prepared two-
level system model.

Finally, we demonstrate that the efficiency of the strong-
coupling model exceeds that of the weak-coupling model

Interaction strength

E
ff

ic
ie

n
cy

0.000 0.005 0.010 0.015 0.020

0.42

0.44

0.46

0.48

0.50

weak coupling

FIG. 3. Relationship between interaction strength θ and effi-
ciency for the two quantum Otto cycle models. The interaction
Hamiltonians of the strong-coupling model are generated repeatedly
and the efficiency for each is plotted. The parameters are set as fol-
lows: βc = 2.0, βh = 0.5, Ec

g = 0.6, Ec
e = 1.4, Eh

g = 2Ec
g , Eh

e = 2Ec
e ,

{εc
i }i ∈ {0.5, 1.5, . . . , 15.5}, {εh

i }i ∈ {2.0, 3.0, . . . , 17.0}. θ is varied
from 0 to 0.02. The blue dashed line represents ηweak = 0.5, the effi-
ciency of the weak-coupling model. The red lines show the transition
of the efficiency of the strong-coupling model with a change in θ . The
efficiencies of both models for small θ are close. As θ increases, ηstr

decreases.

under specific interaction Hamiltonians. We prepare the ex-
actly same system and reservoirs as used in the above
experiment and fluctuate the eigenvalues of the hot reservoir.
Using these quantum states, we generate U c

d and U h
d described

in Eq. (51) and construct interaction Hamiltonians by Eq. (48),
which are optimal to minimize the value of d calculated in
Eq. (49) and lead to the reversal of the efficiency ηstr > ηweak.
Then, the efficiency of this model ηstr can be calculated nu-
merically.

We repeat this operation and collect the value of ηstr . In
Fig. 4, the pink histogram shows the distribution of ηstr and
the blue dashed line represents the efficiency of the weak-
coupling model ηweak = 0.5. We can see the efficiency of
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FIG. 4. Distribution of the efficiency of the strong-coupling
models, which are generated 1000 times under the interaction Hamil-
tonian designed from Eqs. (48) and (51). The parameters are set as in
Fig. 3. However, each eigenvalue of the hot reservoir is fluctuated
by a uniform random value in [−0.3, 0.3]. The blue dashed line
represents ηweak = 0.5, the efficiency of the weak-coupling model.
Most values of ηstr are higher than ηweak.
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the strong-coupling model ηstr exceeds the value of ηweak in
most cases. This is consistent with the fact that the designed
interaction Hamiltonian using Eqs. (48) and (51) can realize
the reversal of the efficiency ηstr > ηweak. Yet, the reversal
does not occur in rare cases despite the use of the designed
interaction Hamiltonian. This is because the contribution of
the term D(ρ̃h

B||ρh
B) was neglected when we defined d in

Eq. (49) to compare the efficiency of the two model.

V. CONCLUSION

In this study, we developed a quantum Otto cycle model,
considering the interaction between the system and the reser-
voirs, which is neglected in the existing weak-coupling model.
We emphasize that the proposed model does not specify the
details of the system and the reservoirs, and thus, it can
be generally applied. We confirmed that our strong-coupling
model agrees with the weak-coupling model in the limit
of weak interaction. The efficiencies of both models were
expressed in closed form and we derived the sufficient con-
dition for ηstr � ηweak. This condition is satisfied when the
decoupling processes introduced to the strong-coupling model
have positive costs. Using numeric calculations, we demon-
strated that ηstr � ηweak in the range of weak interaction, and
that when the interaction is not negligible, ηstr is lower than

ηweak in the prepared system. These results indicate that our
strong-coupling model can be regarded as a reasonable ex-
tension of the existing weak-coupling model. Furthermore,
by more detailed analysis, we suggested the possibility of
the reversal of the efficiency ηstr > ηweak. We presented a
design method to realize the optimal interaction Hamiltonians,
which are expected to provide the maximum efficiency of the
strong-coupling model. We also confirmed numerically that
the strong-coupling model achieved higher efficiency com-
pared with the weak-coupling model under the interaction
Hamiltonians generated by the proposed method. These are
interesting and unique results for our treatment.

We hope that the present work will contribute to the
development of a strong-coupling thermodynamics theory.
Additionally, our study is expected to enhance the under-
standing of quantum correlation because incorporating the
interaction terms is synonymous with considering the quan-
tum correlation between the system and the reservoirs. Thus,
we anticipate that this study contributes to several quantum
thermodynamics fields, not just quantum heat engines.
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APPENDIX A: HEAT TRANSFERRED IN THERMALIZATION PROCESS

The heat transferred in the thermalization processes can be expressed by the von Neumann entropy and the quantum relative
entropy. Here, we derive the expressions in both the weak-coupling model and the strong-coupling model.

In the weak-coupling model, the quantum relative entropy D(ρh
S ||ρh,eq

S ) can be calculated as

D
(
ρh

S

∣∣∣∣ρh,eq
S

) = Tr
[
ρh

S ln ρh
S

] − Tr
[
ρh

S ln ρ
h,eq
S

]
= S

(
ρ

h,eq
S

) − S
(
ρh

S

) + Tr
[
ρ

h,eq
S ln ρ

h,eq
S

] − Tr
[
ρh

S ln ρ
h,eq
S

]
= 
S + Tr

[(
ρ

h,eq
S − ρh

S

)(−βhHh
S − ln Zh

S

)]
= 
S − βh

(
Tr

[
Hh

S ρ
h,eq
S

] − Tr
[
Hh

S ρh
S

])
= 
S − βhQin, (A1)

where 
S = S(ρh,eq
S ) − S(ρh

S ). From this relation, we obtain Eq. (14). Furthermore, the following relation holds:


S = βhQin + D
(
ρh

S

∣∣∣∣ρh,eq
S

)
. (A2)

This equality shows that the change in the von Neumann entropy of the system in the thermalization process can be divided into
two contributions: The heat flux and the entropy production [50]. Similarly, we can derive Eq. (15) from the following relation:

D
(
ρc

S

∣∣∣∣ρc,eq
S

) = S
(
ρ

c,eq
S

) − S
(
ρc

S

) − βc
(
Tr

[
Hc

S ρ
c,eq
S

] − Tr
[
Hc

S ρc
S

])
= −
S + βcQout. (A3)

Next, we describe the heat transferred in the thermalization processes of the strong-coupling model. D(ρh
SB||ρ̃h

S ⊗ ρh
B) and

D(ρh
S ⊗ ρh

B||ρh
SB) can be calculated as follows:

D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρh

B

) = Tr
[
ρh

SB ln ρh
SB

] − Tr
[
ρ̃h

S ln ρ̃h
S

] − Tr
[
ρ̃h

B ln ρh
B

]
= −S

(
ρh

SB

) + S
(
ρ̃h

S

) + S
(
ρh

B

) + Tr
[(

ρh
B − ρ̃h

B

)
ln ρh

B

]
= −S

(
ρh

SB

) + S
(
ρ̃h

S

) + S
(
ρh

B

) − βhTr
[
Hh

B

(
ρh

B − ρ̃h
B

)]
, (A4)

D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

) = −S
(
ρh

S ⊗ ρh
B

) − Tr
[(

ρh
S ⊗ ρh

B

)
ln ρh

SB

]
= −S

(
ρh

S

) − S
(
ρh

B

) + S
(
ρh

SB

) + Tr
[(

ρh
SB − ρh

S ⊗ ρh
B

)
ln ρh

SB

]
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= S
(
ρh

SB

) − S
(
ρh

S

) − S
(
ρh

B

) + Tr
[(

ρh
SB − ρh

S ⊗ ρh
B

){ − βh
(
Hh

S + Hh
B + Hh

SB

) − ln Zh
SB

}]
= S

(
ρh

SB

) − S
(
ρh

S

) − S
(
ρh

B

) − βh
{
Tr

[
Hh

S

(
ρ̃h

S − ρh
S

)] + Tr
[
Hh

B

(
ρ̃h

B − ρh
B

)] + Tr
[
Hh

SBρh
SB

]}
. (A5)

From these two equalities, we obtain

D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρh

B

) + D
(
ρh

S ⊗ ρh
B

∣∣∣∣ρh
SB

) = S
(
ρ̃h

S

) − S
(
ρh

S

) − βh
{
Tr

[
Hh

S

(
ρ̃h

S − ρh
S

)] + Tr
[
Hh

SBρh
SB

]}
, (A6)

and, therefore, Eq. (21) holds. By the same calculations for the low temperature side, we can derive Eq. (28).

APPENDIX B: HEAT TRANSFERRED
IN DECOUPLING PROCESS

In this section, we introduce the definition of heat pro-
posed in Ref. [38] and calculate the heat transferred in the
decoupling processes of the strong-coupling model. We dis-
cuss Process B-2 and calculate only Qh

d . However, Qc
d can be

calculated in the same way.
ρ represents the state of the compound system S + Bh in

Process B-2. ρS and ρB are the reduced states: ρS = TrB[ρ]
and ρB = TrS[ρ], respectively. We define the heat transferred
from the reservoir to the system during an infinitesimal time
dt as dQ = −iTr[[H eff

S , Htot]C]dt . Here, H eff
S is the effective

Hamiltonian of the system, defined as H eff
S = Htot − H eff

B ,
where H eff

B = − 1
βh

ln ρB. Htot is the Hamiltonian of the com-
pound system, including the interaction. C = ρ − ρS ⊗ ρB

corresponds to the quantum coherence of ρ. Using these defi-
nitions, dQ can be rewritten as follows:

dQ = −iTr
[[

H eff
S , Htot

]
C

]
dt

= −iTr
[[ − H eff

B , Htot
]
C

]
dt

= −i
1

βh
Tr[[IS ⊗ ln ρB, Htot]C]dt . (B1)

On the other hand, the infinitesimal change in von Neumann
entropy of ρS can be calculated as follows:

dSS = −dTr[ρS ln ρS]

= −dTr[ρ(ln ρS ⊗ IB)]

= −Tr[(ln ρS ⊗ IB)dρ]

= iTr[[Htot, ρ](ln ρS ⊗ IB)]dt

= iTr[[ln ρS ⊗ IB, Htot]ρ]dt

= iTr[[ln ρS ⊗ IB, Htot]C]dt . (B2)

We used the von Neumann equation dρ = −i[Htot, ρ]dt for
the fourth line above and [ln ρS ⊗ IB, ρS ⊗ ρB] = 0 for the
last line. Therefore, we can derive the following relation:

dSS − βhdQ = iTr[[ln(ρS ⊗ ρB), Htot]C]dt

= iTr[[ln(ρS ⊗ ρB), Htot]ρ]dt

= iTr[ln(ρS ⊗ ρB)[Htot, ρ]]dt

= −Tr[ln(ρS ⊗ ρB)dρ]

= −dTr[ρ ln(ρS ⊗ ρB)]. (B3)

By integrating both sides of Eq. (B3) from the initial state
ρh

SB to the final state ρ
h,eq
S ⊗ ρh

B, the following relation is

obtained:

S
(
ρ

h,eq
S

) − S
(
ρ̃h

S

) − βhQh
d

= −Tr
[(

ρ
h,eq
S ⊗ ρh

B

)
ln

(
ρ

h,eq
S ⊗ ρh

B

)]
+ Tr

[
ρh

SB ln
(
ρ̃h

S ⊗ ρ̃h
B

)]
= −Tr

[
ρh

SB ln ρh
SB

] + Tr
[
ρh

SB ln
(
ρ̃h

S ⊗ ρ̃h
B

)]
= −D

(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρ̃h

B

)
βhQh

d = S
(
ρ

h,eq
S

) − S
(
ρ̃h

S

) + D
(
ρh

SB

∣∣∣∣ρ̃h
S ⊗ ρ̃h

B

)
. (B4)

This is equal to Eq. (23). Note that we used the restriction
S(ρh,eq

S ⊗ ρh
B) = S(ρh

SB) for the second line in the relation
above. By the same calculations, we can derive Eq. (30).

APPENDIX C: MAJORIZATION RELATION

Here, we review the general properties of majorization
relation and provide the rigorous proof for Eq. (54) in the main
text.

Let x, y ∈ Rn. x↓ := (x↓
1 , . . . , x↓

n )� and y↓ :=
(y↓

1 , . . . , y↓
n )� are defined as the vectors of sorted elements

of x, y such that x↓
1 � · · · � x↓

n and y↓
1 � · · · � y↓

n . We say x
majorizes y when the following two conditions are satisfied:

∀ k ∈ {1, 2, . . . , n},
k∑

i=1

y↓
i �

k∑
i=1

x↓
i , (C1)

n∑
i=1

xi =
n∑

i=1

yi, (C2)

and this relation is written by y ≺ x. Moreover, if a square
matrix A = (ai j ) satisfies ai j � 0 and

∑
i ai j = ∑

j ai j = 1,
A is a doubly stochastic matrix. In general, n × n doubly
stochastic matrix A holds Ax ≺ x for any n-dimensional real
vector [46,47].

Next is the proof for the following proposition: For
any n-dimensional real vectors w, x, y such that w1 �
· · · � wn, x1 � · · · � xn and y1 � · · · � yn, if y ≺ x, then
w�y � w�x. First, when n = 2, this inequality is satis-
fied: From x1 − y1 = y2 − x2 � 0, w�y − w�x = w1(y1 −
x1) + w2(y2 − x2) = (w2 − w1)(x1 − y1) � 0. Next, we as-
sume that for some n the inequality holds. Then, for
(n + 1)-dimensional vectors w, x, y, the same inequality is

044127-10
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satisfied:

w�y − w�x =
n+1∑
i=1

wi(yi − xi )

=
n∑

i=1

wi(yi − xi ) + wn+1(yn+1 − xn+1)

�
n∑

i=1

wi(yi − xi ) + wn(yn+1 − xn+1)

= w′�y′ − w′�x′

� 0. (C3)

Here, w′ = (w1, . . . ,wn)�, x′ = (x1, . . . , xn)� and y′ =
(y1, . . . , yn−1, yn + yn+1 − xn+1) are n-dimensional real vec-
tors. We note that when y ≺ x, y′ ≺ x′ is also satisfied. From
the supposition of mathematical induction, the last inequality
of Eq. (C3) holds. Therefore, for any n, w�y � w�x.

Using this proposition, we can prove the Eq. (54) briefly.
Recall that E and P↓ are real vectors whose elements are
ordered ascending and descending order, respectively. A is a
doubly stochastic matrix. Equation (54) is shown as below:

E�AP � E�(AP)↓ � E�P↓, (C4)

where (AP)↓ is a vector of AP in descending order. The last
inequality of Eq. (C4) is from the proposition proved above,
because (AP)↓ ≺ P↓ follows immediately from AP ≺ P.

APPENDIX D: ANALYTICAL CALCULATION
OF EFFICIENCY

This section fully describes the calculation of the efficiency
of the weak-coupling model prepared for the simulation.
We signify the probability distributions of ρ

c,eq
S and ρ

h,eq
S as

follows:

pc
g = e−βcEc

g

Zc
S

, pc
e=

e−βcEc
e

Zc
S

, ph
g = e−βhEh

g

Zh
S

, ph
e = e−βhEh

e

Zh
S

.

(D1)

Using these values, the von Neumann entropy and the quan-
tum relative entropy can be calculated as


S − D
(
ρh

S

∣∣∣∣ρh,eq
S

)
= S

(
ρ

h,eq
S

) − S
(
ρh

S

) + S
(
ρh

S

) + Tr
[
ρh

S ln ρ
h,eq
S

]
= (

pc
g − ph

g

)
ln ph

g + (
pc

e − ph
e

)
ln ph

e

= (
pc

g − ph
g

)(−βhEh
g − ln Zh

S

)
+ (

pc
e − ph

e

)( − βhEh
e − ln Zh

S

)
= βh

{(
ph

g − pc
g

)
Eh

g + (
ph

e − pc
e

)
Eh

e

}
, (D2)


S + D
(
ρc

S

∣∣∣∣ρc,eq
S

)
= S

(
ρc

S

) − S
(
ρ

c,eq
S

) − S
(
ρc

S

) − Tr
[
ρc

S ln ρ
c,eq
S

]
= (

pc
g − ph

g

)
ln pc

g + (
pc

e − ph
e

)
ln pc

e

= (
pc

g − ph
g

)( − βcEc
g − ln Zc

S

)
+ (

pc
e − ph

e

)( − βcEc
e − ln Zc

S

)
= βc

{(
ph

g − pc
g

)
Ec

g + (
ph

e − pc
e

)
Ec

e

}
. (D3)

We used pc
g + pc

e = ph
g + ph

e = 1 for the last line of both cal-
culations. Thus, from Eq. (16), we can rewrite ηweak as

ηweak = 1 −
(
ph

g − pc
g

)
Ec

g + (
ph

e − pc
e

)
Ec

e(
ph

g − pc
g

)
Eh

g + (
ph

e − pc
e

)
Eh

e

. (D4)

By setting Eh
g = 2Ec

g and Eh
e = 2Ec

e , we obtain

ηweak = 1 − 1

2
= 1

2
. (D5)
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