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Several types of stochastic dynamics can be modeled as a continuous-time Markov jump process among a
finite number of sites. Within such framework, we face the problem of getting an upper bound on the average
residence time of the system in a given site β (i.e., the average lifetime of the site) if what we can observe is
only the permanence of the system in an adjacent site α and the occurrence of the transitions α → β. Supposing
to have a long time record of this partial monitoring of the network under steady-state conditions, we show that
an upper bound on the average time spent in the unobserved site can indeed be given. The bound is formally
proved, tested by means of simulations, and illustrated for a multicyclic enzymatic reaction scheme.
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I. INTRODUCTION AND SETUP

Several types of stochastic dynamics can be likely modeled
as a Markov jump process among a finite number of physical
states which we call “sites”. The markovian character lies in
the fact that the future evolution of the system only depends
on the actual state regardless of the past history. For instance,
several examples can be found in the (bio)chemical ambit [1],
where the discreteness may be intrinsic or could derive from
a coarse-graining procedure. It is worth mentioning the con-
formational motions of complex molecules [2], the discrete
representation of molecular motors and machines [3,4], the
stochastic kinetics in the configurational space of the numbers
of molecules [5], and the jumps of tagged molecular moieties
from species to species due to the occurrence of chemi-
cal reactions [6–9]. Discrete Markov models also lie at the
heart of the so-called “statistical kinetics” whose aim is mak-
ing inferences on the kinetic mechanism from the statistical
analysis of the single-molecule behavior [10]. Markov jump
processes also constitute the best platform to develop and test
connections between kinetics and thermodynamics, such as
the “thermodynamic uncertainty relations” [11–13] and the
“kinetic uncertainty relations” [14] for systems in nonequilib-
rium steady states. There is also an increasing interest for the
thermodynamic inferences that can be made for fully observed
[15,16] and partially observed [17,18] networks on the basis
of the waiting time distributions of specific transitions.

Within such a broad context, here we face a specific prob-
lem of pure kinetic type. First, let us fix the physical setup.
Let us consider a network constituted by a finite number of
sites. Each site fully specifies the actual state of the system,
meaning that no hidden variables affect the dynamics. The
system can jump among the sites according to the available
site-to-site connections, and the dynamics is a Markov jump
process. Some site-site connections may be absent whereas,
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if two sites are directly connected, the transition can be either
unidirectional or bidirectional. Let us assume that the jumps
are instantaneous and let ki→ j be the jump rate constant from
site i to site j (possibly equal to zero, if this transition is
not allowed). In the case of multiple channels for the i → j
transition, it is meant that ki→ j is the cumulative rate constant
given by the summation of the rates of the single processes.
There might be also “neutral jumps” in which the system does
not change site. A jump of this type, say i → i, would be asso-
ciated with a rate constant ki→i. Such neutral jumps, if present,
are irrelevant in our discussion. We assume that the jump rate
constants are fixed, and that the dynamics admits a unique
stationary distribution with occupation probabilities pss

i > 0.
This requires that the network is “irreducible” (strongly con-
nected), meaning that each site can be reached from any
other site through at least one pathway [19,20]. The stationary
state can be either a thermal equilibrium state (with reversible
transitions and fulfillment of detailed balance) or a nonequi-
librium steady state. Looking at the system’s evolution, what
we would see is an erratic dynamics because the time at which
the next jump takes place is a stochastic variable and because
the arrival site can be one among the reachable sites.

Let us consider the “average residence time” of the sys-
tem in a given site. We call “residence time” the time of
permanence in the site, i.e., the time between the jump into
the site and the instant when the system leaves that site.
Our focus is on the statistical average of such time under
steady-state conditions. Equivalently, the average residence
time defined in this way corresponds to the “average exit time”
from the site, and to the “average lifetime” of the site seen
as a transient state. The assessment of the average lifetime
of a certain transient state might be of particular relevance
in (bio)chemical networks when the transient state of interest
cannot be observed in practice.

From now on, let us indicate with β the site we are inter-
ested in, and let τ res

β be its average residence time. Note that
τ res

β is related to the steady-state occupation probability of the
site, but also to the specific dynamical features of the network
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FIG. 1. Abstract representation of a network with several sites.
The aim is to obtain an upper bound on the average residence time
(average exit time) of the system in the unobserved site β from a long
time record of the following observed features: the persistence in one
linked site α and the detection of the transitions from α to β.

[21]. For instance, in the case of networks at the thermal equi-
librium, τ res

β is determined not only by the energetic stability
of the site (hence, by the Boltzmann occupation probability at
equilibrium), but also by the rates of entry/exit into/from the
site (hence, by features such as activation energies).

If the jump rate constants from the site β to the directly
linked sites were known, we could determine the average
residence time as

τ res
β =

⎛
⎝∑

j �=β

kβ→ j

⎞
⎠

−1

. (1)

Indeed, if we imagine employing Gillespie’s algorithm [5,22]
to simulate the jump dynamics, the distribution of the
exit (residence) time is ρ(τ res

β ) = aβ exp{−aβτ res
β } where

aβ = ∑
j �=β kβ→ j is the total propensity of leaving the site β.

The average time over this distribution is exactly the τ res
β given

in Eq. (1).
The crucial point is making an inference on τ res

β when the
set of jump rate constants kβ→ j is not known [hence, Eq. (1)
is not useful] and only a limited knowledge about the network
is available from a direct but partial observation of it. In
our context, the wording “partial observation” refers to the
situation in which one is able to experimentally monitor only
part of the network’s features, meaning that the rest remains
invisible [23].

Here we focus on the drastic case in which we are
only able to observe a single site α directly connected
with β, and to detect when a jump α → β takes place.
The situation is depicted in Fig. 1. Suppose to be able
to store the times of permanence in the site α and the
instants at which a jump α → β takes place (imagine “hear-
ing a click” when such a jump occurs). Having only this
type of information at disposal, can we make some in-
ference on the average residence time of the unobserved
site β?

We will see that what we can provide is an upper bound
on τ res

β . The result is Eq. (2) presented in the next section.
The bound, which is proved and discussed in Appendix B,
is tested by means of simulations made on small networks
with randomly generated jump rate constants. The bound is

then illustrated for a simulated multicyclic enzymatic reaction
network.

Before proceeding, it is worth making a comment on the
“observability” of a network. The observability might be con-
crete or hypothetical depending on the technology currently
available. For instance, optical traps and single-molecule
fluorescence techniques [10] allow the monitoring of con-
formational transitions in biomolecules under action, such
as enzymes under turnover conditions or molecular motors.
Such methodologies started to be available about thirty years
ago [24], and nowadays they allow the tracking of single
molecules even in living cells [25]. If the sites correspond
instead to the chemical states of a tagged molecule (or of
a tagged molecular moiety), and the site can change when
that molecule (or the molecule currently carrying the tagged
moiety) is involved in chemical reactions, then we should
think of a hypothetical experimental technique that enables
us to observe on the fly that specific molecule/moiety among
all others of the same type. In the context of macroscopic
and well-stirred reactive mixtures, the jump dynamics of such
single tagged molecule (or molecular moiety) is a Markov
process [6,7] and, under macroscopic stationary conditions,
the jump rate constants are related to the kinetic rate constants
of the elementary reactions and to the composition of the mix-
ture [1,8,9]. For chemical reactions involving low numbers
of reactant molecules, instead, the deterministic mass-action
rate equations written in terms of volumetric concentrations
are inadequate; rather, the system’s state is captured by the
ensemble of copy numbers of each species [5]. In this case, the
technique should be able to detect (some of) such global con-
figurations and the jumps between (some of) them. Note that
similar dynamics are also encountered in minimal epidemic
models [26] where, in place of molecules, one deals with
individuals in various health states such as “susceptible,” “in-
fectious,” “recovered,” and possibly others. Under simplifying
assumptions, the dynamics of the system (single individual
or whole population) is again an autonomous Markov jump
process whose monitoring could be facilitated by the fact that
we deal with living beings rather than molecules.

In short, what we illustrate in the following applies to any
situation that conforms to a Markov jump process at the steady
state, provided that a technique enables us to observe at least
one site (α) and the transition from such site to the one of
interest (β).

II. RESULTS AND ILLUSTRATIVE CALCULATIONS

Let us introduce the recurrence time ταβ as the time be-
tween two consecutive α → β transitions. Similarly, let ταβ|α
be the time of the first occurrence of the α → β transition if
the system starts from the site α. The statistics of the recur-
rence and occurrence times is summarized in Appendix A.
Then, let us introduce Prob{ταβ � τ }, the probability that
ταβ falls below a value τ ; similarly, Prob{ταβ|α � τ } for the
occurrence time ταβ|α . With these positions, in Appendix B
we show that τ res

β is upperbounded as follows:

τ res
β � min

τ

{
Prob{ταβ|α � τ } − Prob{ταβ � τ }

ραβ (τ )

}
, (2)
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FIG. 2. Illustration of the bound Eq. (2) for randomly generated instances of networks with five sites [panel (a)] and 10 sites [panel (b)]
all directly connected with each other with forward and backward transitions. The dots are 104 instances and the straight red lines have slope
1. The insets show only the points for which kβ→α/aβ � 0.8. Panels (c) and (d) show, for the same instances, that the upper bound is more
stringent than the trivial bound ταβ − ταβ|α (all points fall below the diagonal). The time units here are immaterial.

where ραβ is the distribution function of the recurrence time.
The proof of Eq. (2) makes use of Eq. (A8) derived in
Appendix A (a set of differential equations that directly spec-
ify the mutual interrelations between the distribution functions
of the occurrence times) and exploits the physical fact that the
system, for undergoing the α → β jump, first has to reach the
site α. Let us note that a “trivial” upper bound can also be
established [27]: τ res

β � ταβ − ταβ|α . We will see, however,
that Eq. (2) is a more stringent bound.

As pointed out in the second part of Appendix B, the
inequality in Eq. (2) becomes an exact equality, even regard-
less of τ , only in the two-site case. In all other situations,
the closeness of the bound to the true value depends on
the features of the whole network (extension, topology, and
kinetic parameters), hence the tightness cannot be assessed
in the absence of any further information on the unobserved
part of the system. A full characterization of the situations in
which Eq. (2) becomes tight is hardly achievable. However,
as shown in Appendix B, a qualitative picture emerges by
considering the relevant sites directly reachable jumping from
β. The term “relevant” comes from the comparison between
the rate constants kβ→ j (with j �= β). The relevant sites are
those for which the relative rates kβ→ j/aβ have high values

and are comparable to each other (if all exit processes have
comparable rates, then all the reachable sites are relevant). The
clearest situation in which the bound Eq. (2) likely becomes
tight is when α is the only relevant site; that is, the β → α

transition (if allowed) is much faster than all other exit jumps
from β taken as a whole (i.e., if kβ→α/aβ is close to 1). If,
instead, there are (also) other relevant sites different from α,
it is required that the reaching of α from each of such sites
via connecting pathways be on average much faster than the
subsequent evolution up to the α → β jump. Finally, it is
important to stress that the bound could be loose against the
expectation if the reaching of α from β is on average much
faster than the subsequent evolution up to the α → β.

Figure 2 shows the effectiveness of Eq. (2) for randomly
generated instances of small networks with 5 and 10 sites. In
the simulations, all sites were taken to be directly connected
with each other with forward and backward transitions. The
jump rate constants were randomly generated by adopting
ki→ j = 10x with x drawn at random between −1 and +2 with
uniform distribution. Given the set of rate constants, the sta-
tistical distributions of ταβ and ταβ|α were computed by means
of Eq. (A4) in Appendix A. The required probabilities at the
numerator on the right-hand side of Eq. (2) were then obtained
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FIG. 3. Pictorial representation of the time record of the observed
features of a network. The rectangles represent the permanence of the
system in the site α and the vertical red lines are instants when the
transition α → β takes place.

by integration, and the point of minimum was numerically
determined by means of a scan of τ in a wide range [28]. The
exact value of τ res

β was obtained from Eq. (1). The results are
shown in panels (a) and (b) of Fig. 2. The dots represent 104

instances and the dashed line has slope 1. As can be seen, all
points fall below the line, which corresponds to the fulfillment
of Eq. (2). The insets show the points corresponding to the
instances for which the only relevant exit process from β is
the β → α transition (kβ→α/aβ � 0.8 was adopted for such
selection) and the bound is expected to be tight. Indeed, the
points fall close to the diagonal. Let us recall that there are,
however, other situations in which the bound can be tight.
Panels (c) and (d) show that the quantity on the right-hand side
of Eq. (2) falls below ταβ − ταβ|α , hence Eq. (2) is a bound
more stringent than the trivial one mentioned above. Further
simulations were also performed for networks in which some
of the site-to-site connections were missing [29] without find-
ing any qualitative difference with respect to the outcomes in
Fig. 2.

Let us now discuss the practical utility of Eq. (2). While in
the above simulations all details of the network were known,
in the practice one has little knowledge, or even no knowl-
edge, about the number of sites directly connected with β,
the site-to-site connectivities, and the value of the jump rate
constants. As already stated, we suppose to only have access
to the very limited portion depicted in Fig. 1: we can see
when the system jumps into α (regardless of the origin site),
when the system leaves α (regardless of the arrival site),
and when the system leaves α jumping into β. Figure 3 depicts
the time record of such a type of observation. The rectangles
represent the permanence of the system in the site α. The sys-
tem can leave α jumping into several arrival sites. The vertical
red lines are collocated where we “hear a click” corresponding
to a α → β transition. Let us suppose to have a long time
record of this type at disposal. From the separation between
the vertical lines we get an ensemble of recurrence times ταβ

and, therefore, the corresponding distribution function and the
probability Prob{ταβ � τ } for any chosen τ . Then, the sepa-
ration between the starting time of a rectangle and the closest
vertical line to the right corresponds to an occurrence time
ταβ|α . From the ensemble of occurrence times we can get the
probability Prob{ταβ|α � τ } for any τ . With such information,
obtained from the analysis of the “experimental” time record,
we can evaluate the right-hand side of Eq. (2).

For illustrative purposes, the type of analysis illustrated
above was performed for one of the enzymatic networks
used by Barato and Seifert in an early application of the
thermodynamic uncertainty relation [30]. The network, which
consists of six sites, is shown in panel (a) of Fig. 4. On
chemical grounds, the system is a tagged enzyme molecule
which can be found in six different states (the sites): free
enzyme (E), enzyme bound to one molecule (ES) or two
molecules (ESS) of substrate, bound to one molecule (EP)
or two molecules (EPP) of product, and bound to substrate
and product (ESP). Under chemostating conditions for both
substrate and product, all transitions are first-order kinetic pro-
cesses with time-independent jump rate constants. Such rates
were generated at random in the same way as in the previous
simulations. The state ES was chosen as site α, and ESS as
site β. We imagine being able to observe the permanence of
the enzyme in the state ES and the transition ES → ESS. The
objective is getting an upper bound on the average residence
time of the enzyme in the state ESS.

In order to mimic the experimental practice, a long stochas-
tic path among the sites was generated by means of Gillespie’s
stochastic simulation algorithm [5]. The path was interrupted
after 106 transitions ES(α) → ESS(β ). With this record (of
the type depicted in Fig. 3) at disposal, we could obtain all the
statistical quantities that are required on the right-hand side
of Eq. (2). The distribution function of the recurrence time
of the transition ES → ESS is shown in panel (c) of Fig. 4.
The circles (the “experimental outcome”) correspond to the
distribution obtained by means of a histogram construction
from the simulated record, whereas the dashed line is the exact
profile calculated by means of Eq. (A4) given in Appendix A.
Panel (d) shows the two τ -dependent probabilities that enter
Eq. (2). These probabilities were directly obtained from the
simulated record by determining, for each given τ , the frac-
tions of values ταβ � τ and ταβ|α � τ . With the information
in panels (c) and (d), the quantity ϕαβ (τ ) = [Prob{ταβ|α �
τ } − Prob{ταβ � τ }]/ραβ (τ ) was computed. The profile is
shown in panel (b). The circles correspond to the values from
the simulated record whereas the dashed line is the exact pro-
file. The horizontal thick red line is placed in correspondence
of the exact value of τ res

β . As we see, the exact profile of
ϕαβ (τ ) versus τ starts flat, goes down to a minimum, and then
increases and stabilizes on a plateau. The minimum is indeed
higher (and in this case only slightly) than the true value of
τ res

β . The profile of ϕαβ (τ ) obtained from the simulated record
closely follows the exact profile except for deviations due
to numerical issues at low τ values where the statistics are
poor, and at high τ values where both the probabilities at the
numerator tend to one and the distribution at the denominator
tends to zero.

Let us note that the upper bound is close to the true
value τ res

β = 0.037, with a ratio of only 1.17. Further calcu-
lations were done with smaller values of both kESS(β )→ES(α)

and kESP→ES(α). The reduction of both rates by a factor of
10 produced a ratio of 3.42 (with τ res

β = 0.108), and the re-
duction by a factor of 100 produced an even larger ratio of
19.05 (with τ res

β = 0.134). This behavior is in accord with the
expectation that the bound becomes looser when the fastest
exit process from the site β (ESS) becomes the jump into
ESP [because we are reducing kESS(β )→ES(α)] and the way
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FIG. 4. Illustration of the practical utility of the bound Eq. (2). Panel (a) shows the six-site network under consideration. The arrows
indicate the directed site-to-site connections, and the close numbers are the corresponding jump rate constants randomly generated. The time
units here are immaterial. The sites α and β correspond, respectively, to the tagged enzyme molecule in the states ES and ESS. Panel (b) shows
the exact value of τ res

β (horizontal red line), the exact profile of ϕαβ (τ ) = [Prob{ταβ|α � τ } − Prob{ταβ � τ }]/ραβ (τ ) versus τ (dashed blue
line) and the profile of ϕαβ (τ ) obtained from the simulation (full circles). Panel (c) shows the distribution of the recurrence time of the α → β

transition; the dashed line is the exact profile whereas the circles correspond to the histogram construction from the outcomes of the simulation.
Panel (d) shows the τ dependence of the two probabilities that enter the expression of ϕαβ (τ ); these profiles were obtained from the simulation.

back to the site α becomes slower [because kESP→ES(α) is also
reduced].

The take-home message is that if one is able to construct a
profile like that in Fig. 4(b) from the direct observation of the
network of interest, and if the problematic regions at low and
high τ are detected and neglected, what remains is a regular
central portion whose minimum can be safely taken as an
upper bound on τ res

β . Unfortunately, the total lack of informa-
tion about the unobserved part of the network implies that the
tightness of the bound cannot be assessed. The deviation from
the true value depends on the features of the whole system
and, as we have seen in the above example, it can be very
sensitive even to a few of them.

III. CONCLUSIONS AND PERSPECTIVES

In discrete Markov models with finite number of sites, the
average residence time in a site (average lifetime of the site)
quantifies the persistence of the system in that site at the
steady state. Here we faced the practical problem of getting
an upper bound on the average residence time τ res

β of an unob-

served site β from a very partial observation of the network:
the observation of only one linked site α and the detection of
the α → β occurrence. The inequality Eq. (2) is the bound,
which has been proved, numerically tested, and illustrated for
a model of steady-state enzymatic catalysis.

It has been pointed out that the closeness of the bound
to the true value depends on the features of the whole
network, hence the tightness cannot be assessed if we have no
information about the unobserved part. This is an inevitable
limitation. Of course, the upper bound on τ res

β can be improved
if we imagine being able to monitor several transitions from
different sites (say, α, α′, · · · ) to β, perform independent
experiments in which we collect time records like that in
Fig. 3 for each of the monitored transitions, apply Eq. (2),
and then take the lowest value [31]. In addition, the spread
of the outcomes could indirectly provide us some qualitative
information about the unobserved part of the network. This
perspective requires further inspections.

The basis for obtaining the bound was Eq. (A8) derived
in Appendix A. This is a system of differential equations gov-
erning the evolution of the whole set of statistical distributions
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of the first-occurrence times of the α → β transition starting
from the various initial sites. Apart from simple mathematical
elaborations, the crucial step to get the bound consisted in
enforcing the physical fact that the system first needs to reach
the site α for later jumping into β. Different elaborations of
Eq. (A8), and the enforcement of other physical constraints,
could lead to further nontrivial relations for steady-state
Markov jump processes.

Finally, it is worth stressing that the statistics of
occurrence/recurrence times presented in Appendix A can
be generalized to events more complex than the single site-to-
site transition. One should start again from the construction of
the specific matrix K for the given event of interest, solve the
corresponding master equation, and finally build the specific
distribution function for the occurrence/recurrence time of
that event. For instance, if we were able to observe several
transitions α → β, α′ → β, . . . in the course of the same
experiment, and if the detectable event is the jump into β

regardless of the origin site (α, α′, . . .), we might ask if a more
stringent bound on τ res

β can be obtained from such augmented
information at disposal. This is a further aspect that deserves
inspection.

APPENDIX A: STATISTICS
OF OCCURRENCE/RECURRENCE TIMES

Let us consider a network with N sites. Let us introduce the
N-dimensional column array pnoE (t ) whose ith component is
the probability that, starting from a given initial condition at
the time-zero, at the time t the system is in the site i and the
transition α → β (the “event” E of interest) did not occur up
to time t . The quantity pnoE

α (τ ) × kα→βδτ corresponds to the
probability that the first α → β transition occurs between τ

and τ + δτ . It has been shown that pnoE (t ) evolves according
to the following modified master equation [7,15]:

dpnoE (t )

dt
= −K pnoE (t ), (A1)

in which K is the N × N matrix with elements

Ki j = Ri j + kα→β δi,βδ j,α, (A2)

where δ is the Kronecker delta function, and where R is the
transition matrix of the jump process [i.e., the matrix that gov-
erns the evolution of the occupation probabilities according to
the master equation dp(t )/dt = −Rp(t )]:

Ri j = −k j→i (1 − δi, j ) + δi, j

∑
n �= j

k j→n. (A3)

Let us now consider the distribution function of the oc-
currence time ταβ|i of the α → β transition starting from the
generic site i. Let us indicate such distribution with ραβ|i(τ ),
where τ implicitly corresponds to the specific occurrence time
of interest. [The recurrence case corresponds to i = β, hence
ραβ (τ ) ≡ ραβ|β (τ )]. If the system is initially in the site i,
the quantity pnoE

α (τ ) × kα→β gives exactly ραβ|i(τ ). By using
pnoE

j (0) = δi, j as the initial condition, the formal solution of
Eq. (A1) is

ραβ|i(τ ) = kα→β[e−τK]αi. (A4)

With this distribution at disposal, any average quantity can be
computed. In particular, the moments of the distribution can
be expressed as [7,15]

τ n
αβ|i = n!

∑
j

[K−n] ji. (A5)

For the purpose of this work, we go ahead a step fur-
ther to work out a set of differential equations, of the type
of Eq. (A1), in which the unknown quantities are directly
the distribution functions ραβ|i(τ ). Let us take the derivative
with respect to τ at both sides of Eq. (A4). This yields
∂ραβ|i(τ )/∂τ = −kα→β

∑
j[e

−τK]α j Kji. By considering that
kα→β[e−τK]α j = ραβ| j (τ ), and recalling Eq. (A2), it follows
that

∂ραβ|i(τ )

∂τ
= −

∑
j

R ji ραβ| j (τ ) − kα→β δi,α ραβ|β (τ ). (A6)

In compact form we have

dρ(τ )

dτ
= −KT ρ(τ ), (A7)

where ρ(τ ) is the column array whose ith component is
ραβ|i(τ ), and T stands for transposed array. Equation (A7)
closely resembles Eq. (A1), but here the unknowns are the sta-
tistical distributions of the occurrence times and the variable
is τ . Explicitly,

∂ραβ|i(τ )

∂τ
=

∑
j �=i

ki→ j ραβ| j (τ ) − ραβ|i(τ )
∑
j �=i

ki→ j

− kα→β δi,α ραβ|β (τ ). (A8)

APPENDIX B: THE BOUND EQ. (2)

1. Proof

For the sake of notation, let us introduce

Pi(τ ) := Prob{ταβ|i � τ }. (B1)

With this position, by writing Eq. (A8) for τ ′ (in place of τ )
and integrating at both members from 0 to τ , we get

ραβ|i(τ ) = −
∑
j �=i

ki→ j Pj (τ ) + ai Pi(τ )

+ kα→β δi,α Pβ (τ ), (B2)

where we have introduced

ai :=
∑
j �=i

ki→ j . (B3)

To obtain Eq. (B2) it has been considered that ραβ|i(0) =
kα→β δi,α and that

∫ τ

0 dτ ′ ραβ|i(τ ′) = Prob{ταβ|i � τ } = 1 −
Pi(τ ).

Now comes the crucial physical step, which consists in
invoking the following inequality:

Prob{ταβ|α � τ } � Prob{ταβ|i � τ } (B4)

for all i and all τ values. This inequality expresses the obvious
fact that, for jumping from α to β, the system first has to
reach the site α. This implies that, for any chosen time τ ,
the probability of observing the jump α → β within the time
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τ is for sure the largest when the system is initially already
in the site α. The inequality (B4) is then converted into the
corresponding relation:

Pα (τ ) � Pi(τ ). (B5)

By using Pj (τ ) � Pα (τ ) in the summation on the right-hand
side of Eq. (B2), we obtain

ραβ|i(τ ) � ai [Pi(τ ) − Pα (τ )] + kα→β δi,α Pβ (τ ). (B6)

Different choices of i lead to different inequalities. In
particular, for i corresponding to the site β, Eq. (B6)
yields ραβ|β (τ ) � aβ[Pβ (τ ) − Pα (τ )]. Recalling that aβ =
1/τ res

β [from Eq. (B3) with Eq. (1)], we finally get

τ res
β � Prob{ταβ|α � τ } − Prob{ταβ � τ }

ραβ|β (τ )
. (B7)

This inequality holds for all τ values. The most stringent
bound is hence obtained by taking the minimum of the quan-
tity on the right-hand side. This gives Eq. (2), in which ραβ (τ )
is written in place of ραβ|β (τ ).

2. On the tightness

Looking back at the derivation of Eq. (B7), and in partic-
ular writing Eq. (B2) directly for i = β, we readily see that,
for any τ , the inequality in (B7) reduces to an exact equality
only in the two-site case (α and β). For general networks,
what we can say is that the final bound given in Eq. (2) tends
to be tight when the quantity

∑
j �=β kβ→ jPj (τ ∗) is close to

Pα (τ ∗)
∑

j �=β kβ→ j , where τ ∗ is the time corresponding to the
condition of minimum in Eq. (2). In fact, the inequality in
Eq. (2) comes from the replacement of the former quantity
with the latter.

For the sake of notation, let us denote with Cβ the set of
sites j �= β that are directly reachable by jumping from β. By
introducing the relative rates γ j := kβ→ j/aβ for j ∈ Cβ , with∑

j∈Cβ
γ j = 1, the requisite for the tightness becomes

∑
j∈Cβ

γ jPj (τ
∗) � Pα (τ ∗). (B8)

Further elaborations of Eq. (B8) are hampered by the fact that
the probabilities depend on the details of the whole network.
Moreover, these probabilities have to be evaluated at the time
τ ∗ which also depends on the network’s features in a rather in-
tricate manner. We can only identify some physical situations
in which the bound is expected to be close to the true value
of τ res

β .
Let us first note that the sites of Cβ could be differentiated

from each other on the basis of the associate γ j value. We
term “relevant” the sites for which the γ j have high val-
ues and are comparable to each other. Let us denote with
Rβ ⊆ Cβ such a subset of sites. For the other sites linked
to β we assume that

∑
j /∈Rβ

γ j 
 1. Clearly, Rβ coincides
with the whole Cβ if all kβ→ j have comparable values. Let
us now consider the situations in which the following condi-
tions hold: (i) Pj∈Rβ

(τ ∗) � Pα (τ ∗) for all the relevant sites,
(ii) 
 = ∑

j /∈Rβ
γ jPj (τ ∗) 
 Pα (τ ∗). The fulfillment of both

conditions would imply the fulfillment of Eq. (B8). Condition

FIG. 5. Examples of three-site networks with randomly gener-
ated jump rate constants. The lengths of the arrows graphically
correspond to the value of rate constants (the arrows are not displayed
for rate constants too small). In the panels, r is the ratio between the
upper bound from Eq. (2) and the true value of τ res

β . Panels (a)–(d) are
situations in which the bound is tight, whereas panels (e) and (f) show
instances with upper bound much higher than the true value.

(ii) is ignored when Rβ coincides with Cβ since 
 = 0 in that
case.

Condition (i) is exactly fulfilled for the site α (if the jump
β → α is allowed and if α belongs to the relevant sites),
whereas for all other sites of Rβ it is required that the reaching
of α from such sites via connecting pathways be on average
a process much faster than the subsequent evolution up to the
α → β jump. Condition (ii) requires that the Pj /∈Rβ

(τ ∗) not
be much larger than Pα (τ ∗), otherwise the condition could be
violated even if γ j 
 1. This vaguely tells us that the reaching
of α from the sites j /∈ Rβ should not be exceedingly slow
compared to the subsequent evolution up to the α → β jump.
A precise quantitative statement, however, cannot be made.
Finally, let us note that the bound could be loose against the
expectation when Pβ (τ ∗) is close to Pα (τ ∗), which happens
when the reaching of α starting from β is, on average, much
faster than the subsequent evolution up to the α → β jump.
In such cases, Pβ (τ ∗) − Pα (τ ∗) could be of the same order
of magnitude of the difference between the two members in
Eq. (B8), hence the approximations would become potentially
critical. Note that the reaching of α from β could take place
either via the direct β → α (if allowed) or via connecting
pathways.

The global qualitative picture is the following: the bound
Eq. (2) could be tight when, among the relevant sites directly
reachable from β, we find α and/or other sites from which the
return to α is on average fast with respect to the subsequent
evolution up to the α → β transition [32]. If the reaching
of α from β is on average much faster than the subsequent
evolution up to the α → β, the bound could be loose against
the expectation.

Figure 5 illustrates the above claims for a simple three-site
network with all sites directly connected with each other with
forward and backward transitions. The jump rate constants
were generated at random in a range covering three orders
of magnitude. The figure shows typical cases among those for
which the ratio r between upper bound and τ res

β was close to
one [panels (a)–(d)] or very large [panels (e) and (f)]. The
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lengths of the arrows correspond to the relative values of
the jump rate constants (missing arrows correspond to rates
very small). In (a), (b) and (c), the jump β → α is the only
relevant exit process from the site β. In panel (d), both the
jumps from β to α and from β to the third site must be
considered since they have comparable (and small) rates; then,
from the third site there is a fast [32] and direct way back to α

without passing through β. In all these situations, the bound
is tight as expected. In panel (e), the only relevant exit process

from β is the jump into the third site, but then from this site
the main pathway back to α passes through β. Although the
reaching of α from the third is found to be fast compared to the
subsequent evolution up to the α → β transition [32], the fact
that β is visited on the pathway warns us that Pβ (τ ∗) could be
sufficiently close to Pα (τ ∗) to make the bound loose, as indeed
it is. In panel (f), the relevant exit process from β is again the
jump into the third site, and from this site the return back to α

is slow [32]. Also in this case, as expected, the bound is loose.
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