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The alignment of biological sequences such as DNA, RNA, and proteins, is one of the basic tools that allow to
detect evolutionary patterns, as well as functional or structural characterizations between homologous sequences
in different organisms. Typically, state-of-the-art bioinformatics tools are based on profile models that assume
the statistical independence of the different sites of the sequences. Over the last years, it has become increasingly
clear that homologous sequences show complex patterns of long-range correlations over the primary sequence as
a consequence of the natural evolution process that selects genetic variants under the constraint of preserving the
functional or structural determinants of the sequence. Here, we present an alignment algorithm based on message
passing techniques that overcomes the limitations of profile models. Our method is based on a perturbative
small-coupling expansion of the free energy of the model that assumes a linear chain approximation as the
zeroth-order of the expansion. We test the potentiality of the algorithm against standard competing strategies on
several biological sequences.
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I. INTRODUCTION

The evolution of biological molecules such as proteins is an
ongoing, highly nontrivial dynamical process spanning over
billions of years, constrained by the maintenance of relevant
structural and functional determinants. One of the most strik-
ing features of natural evolution is how different evolutionary
pathways produce an ensemble of molecules characterized by
an extremely heterogeneous amino acid sequence, often with a
sequence identity lower than 30%, but with virtually identical
three-dimensional native structures. Thanks to the shrewd use
of this structural similarity, it is nowadays possible to clas-
sify the entire set of known protein sequences into disjoint
classes of sequences originating from a common ancestral
sequence. Sequences belonging to the same class are called
homologous.

Homologous sequences are best compared using sequence
alignments [1]. Depending on the number of sequences to
align, there are three possible options. (i) Pairwise alignments
aim at casting two sequences into the same framework. The
available algorithms are typically based on some versions of
dynamic programming and scale linearly with the length of
the sequences [2,3]. (ii) Multiple sequence alignments (MSA)
maximize the global similarity of more than two sequences
[4]. Dynamic programming techniques can be generalized
to more than two sequences, but with a computational cost
that scales exponentially with the number of sequences to
be aligned. Producing MSAs of more than 103 sequences
remains an open computational challenge. (iii) To align a
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larger number of homologous sequences, one first selects a
representative subset called seed for which the use of MSA is
computationally feasible. Every single homolog eventually is
aligned to the seed MSA. In this way one can easily align up
to 106 sequences [5–7].

Standard alignment methods are based on the independent
site evolution assumption [1], i.e., the probability of observing
a sequence is factorized among the different sites. From a
statistical mechanics perspective, such an approximation
corresponds to a noninteracting 21 colors (20 amino acids + 1
gap symbol) Potts model. Profile-hidden Markov models [6],
for instance, are of that type. The computational complexity of
profile models is polynomial. However, profile models neglect
long-range correlations, although they are an important
statistical feature of homologous proteins. This well-known
phenomenon is at the basis of what biologists call epistasis
(i.e., how genetic variation depends on the genetic context of
the sequence). Recently, epistasis received renewed attention
from the statistical mechanics’ community [8]. Given an
MSA of a specific protein family, one could ask what is the
best statistical description of such an ensemble of sequences.
Summary statistics such as one-site frequency count fi(a)
(i.e., the empirically observed frequency of observing amino
acid a at position i in the MSA), two-site frequency count
fi j (a, b) (i.e., the frequency of observing the amino acid
realization a, b at position i and j, respectively), and in
principle higher-order correlations, could be used to inverse
statistical modeling of the entire MSA. One can assume
that each a sequence in the MSA is independently drawn
from a multivariate distribution P(a1, . . . , aL ) constrained
to reproduce the multibody empirical frequency counts of
the MSA. The use of the maximum-entropy principle is
equivalent to assume a Boltzmann-Gibbs probability measure
for P. The related Hamiltonian is a 21-colors generalized
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Potts model characterized by two sets of parameters:
local fields Hi(a) and epistatic two-site interaction terms
Ji, j (a, b). Such parameters can be learned more or less
efficiently using the so-called direct coupling analysis (DCA)
[9]. This method has found many interesting applications
ranging from the prediction of protein structures [10,11],
protein-protein interaction [12–14], prediction of mutational
effects [15–18], and so on. Inherent to this strategy, there is
the counterintuitive step of constructing an MSA based on a
statistical independence of sites assumption, which is used, in
turn, to predict long-range correlations. To solve this loophole,
we propose a mean-field message-passing strategy to align
sequences to a reference Potts model. To do so, we consider a
first-order perturbative expansion a la Plefka [19], setting as
zeroth order of the expansion the linear chain approximation.
Recently, other strategies were proposed which take into
account long-range correlations: the search for remote
homology [20], a simplified version of the message-passing
strategy presented here [21], the alignment of two Potts
models [22], and a more machine-learning-inspired method
based on transformers [23].

II. SETUP OF THE PROBLEM

Although here we will focus on proteins, the method can
be extended to other biological sequences, such as RNA
and DNA. Let A = (A1, . . . , AN ) be an unaligned amino
acid sequence of length N , containing a protein domain S =
(S1, . . . , SL ) of a known protein family. While A contains
only amino acids (represented as upper-case letters from the
amino acid alphabet), S might also contain gaps that are used
to indicate the deletion of an amino acid in the sequence A.
We assume that the protein family is described by a Potts
Hamiltonian

HDCA(S) = −
L∑

i=1

Hi(Si ) −
∑
i< j

Ji j (Si, S j ). (1)

The couplings Ji j and external fields Hi are learned from
the seed MSA in a preprocessing step, using DCA, and the
subsequence S is assumed to have the same length L as the
seed. The energy HDCA is considered as a score for the sub-
sequence S to belong to the protein family. In this setting,
our problem consists in finding a subsequence S with the
lowest energy (i.e., with the highest score). Contrary to profile
models, the Hamiltonian HDCA also includes pairwise interac-
tions related to residue coevolution, hopefully leading to more
accurate alignments in cases where the conservation of single
residues is not sufficient to describe the protein family. The
Hamiltonian in Eq. (1) does not model the insertions statistics
because the parameters Ji j and Hi are learned from the seed
MSA in which all columns containing inserts are removed.
Therefore, as in [21], we added the insertion cost Hins, whichis
learned from the insertion statistics contained in the full seed
alignment. Similarly to [21], we also added an additional gap
cost Hgap to correct the gap statistics learned in HDCA (that
deeply depends on how the seed is constructed). In this setting,
the alignment problem corresponds to finding a subsequence
S = (S1, . . . , SL ) of the original sequence A = (A1, . . . , AN ),
such that the following conditions hold.

MADVGNSSKSVVLSSAKQIY

D-VGNSSKLSSA
S1=A3 S3=A4 S12=A16

S2='-'

FIG. 1. Example of alignment. Top: Original sequence A of
length N = 20. Bottom: Aligned sequence S of length L = 12.
Match states are enlightened in (dark gray) blue. There is one gap
at position 2 in the subsequence S. Three amino acids are skipped in
the original sequence [in (light gray) orange]: they are interpreted as
insertions.

(1) S is an ordered list of amino acids in A (called match
states), with the possibility of adding gaps states denoted ‘‘−”
between two consecutive positions, and of skipping some
amino acids of A (i.e., interpreting them as insertions).

(2) The subsequence S minimizes the total energy H =
HDCA + Hins + Hgap.

An example of a sequence A and its alignment S is illus-
trated in Fig. 1. To formulate this problem as a statistical
physics model, we introduce for each position i = 1, . . . , L
a pair of variables yi = (xi, ni ), where xi ∈ {0, 1} is a binary
variable, and ni ∈ {0, 1, . . . , N, N + 1} is a pointer. The vari-
able xi indicates whether position i is a gap “ − ” (xi = 0)
or a match state (xi = 1). When i is a match, the pointer ni

indicates the position of the match state in the full-length
sequence A. When i is a gap, the pointer keeps track of the
last match state before position i. Note that we added pointer
values n = 0 and n = N + 1. These value are used for gap
states at the beginning and at the end of the aligned sequence:
if matched symbols start to appear only from a position i > 1,
we fill the previous positions j < i with gaps having pointer
n j = 0. Similarly, if the last matched state appears at position
i < L, we fill the next positions j > i with gaps having point-
ers n j = N + 1. The Potts Hamiltonian rewritten in terms of
the variables y = (y1, . . . , yL ) is

HDCA(y) = −
L∑

i=1

Hi(Axi .ni ) −
∑
i< j

Ji j (Axi .ni , Axj .n j ),

where A0 = − is the gap state. We will use shorthand no-
tations Hi(yi ) ≡ Hi(Axi .ni ) and Ji j (yi, y j ) ≡ Ji j (Axi .ni , Axj .n j ) in
the rest of the paper. The insertion cost Hins and the gap cost
Hgap take the form introduced in [21]. In particular, for the
insertion cost we have

Hins(y) =
L∑

i=2

ϕi(ni − ni−1 − 1),

with ϕi(�n) = (1 − δ�n,0)[λi
o + λi

e(�n − 1)], and �ni =
ni − ni−1 − 1 the number of skipped amino acids between
position i − 1 and i. The parameters {λi

o, λ
i
e} are inferred from

the insertion statistics (see [21] Sec. IV B). In addition, for the
gap cost we have

Hgap(y) =
L∑

i=1

μ(xi, ni ),
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with μ(1, n) = 0 for match states, μ(0, 0) = μ(0, N + 1) =
μext for the external gaps, and μ(0, n) = μint for the inter-
nal gaps (with 0 < n < N + 1). The values of μint, and μext

are chosen according to the procedure described in [21],
Sec. IV C: one realigns sequences of the seed MSA using
several values of μint, μext, and picks the ones minimizing
the Hamming distance between the realigned seed and the
original seed.

We finally introduce the Boltzmann probability law over
the set of possible alignments

P(y) = χin(y1)
∏L

i=2 χsr (yi−1, yi )χend(yL )

Z (β )
e−βH(y), (2)

where χin, χsr, and χend are Boolean functions ensuring that
the ordering constraints are satisfied. The constraint for S to be
an ordered list of amino acids is A can indeed be encoded with
the function χsr (xi−1, ni−1, xi, ni ) between two consecutive
positions

χsr (0, ni−1, 0, ni ) = I[ni−1 = ni],

χsr (1, ni−1, 0, ni ) = I[ni−1 = ni ∨ ni = N + 1],

χsr (0, ni−1, 1, ni ) = I[0 � ni−1 < ni < N + 1],

χsr (1, ni−1, 1, ni ) = I[0 < ni−1 < ni < N + 1],

and with additional constraints imposed in the first and last
position

χin(x1, n1) = δx1,0δn1,0 + δx1,1I[0 < n1 < N + 1],

χend(xL, nL ) = δxL,0δnL,N+1 + δxL,1I[0 < nL < N + 1].

Configurations y violating the ordering constraints have zero
probability. The parameter β plays the role of an inverse
temperature: by increasing β, the distribution concentrates on
the allowed configurations achieving the smallest energy, i.e.,
on the best alignments.

III. SMALL COUPLING EXPANSION

An efficient strategy for approaching this constrained opti-
mization problem is to use BELIEF-PROPAGATION (BP). BP is a
message-passing method to approximate probability distribu-
tions of the form of Eq. (2). In particular, it allows to compute
marginal probabilities on any small subset of variables, as
well as the partition function Z (β ). BP is exact when the
factor graph representing interactions between variables is a
tree and is used as a heuristic for sparse graphs. In our case,
however, the set of couplings Ji j is defined for all pairs (i, j),
resulting in a fully connected factor graph, as shown in the
left panel of Fig. 2. This makes the problem difficult for
BP. However, although the interactions are very dense (all
couplings are nonzero), they are typically weak for distant
sites. Conversely, interactions between two neighboring sites
are typically stronger as they encode the one-dimensional
structure of the amino acid sequence.

Therefore, in this work we develop an approximation
method where long-range couplings are treated perturbatively.
More precisely, we perform a small-coupling expansion of the
free-energy F = − 1

β
log Z (β ) associated with the Boltzmann

distribution in Eq. (2), where the zeroth order corresponds to
the model defined on the one-dimensional chain, i.e., with

FIG. 2. Left panel: Fully connected factor graph associated to the
probability Eq. (2) with L = 5. Variables yi are represented by white
dots, external fields Hi by white squares, and couplings Ji j by black
squares. Right panel: Factor graph obtained after the perturbative
expansion. External fields H2, . . . , HL−1 and short-range couplings
Ji,i+1, i ∈ {1, . . . , L − 1} are modified according to Eq. (3) [illus-
trated by red (light gray) stars].

long-range couplings set to zero: Ji j = 0 for |i − j| > 1.
Higher orders take into account the contribution of long-range
couplings in a perturbative way. We perform the expansion
up to the first-order term and let the computation of higher
orders for future work. This pertubative expansion is similar to
a Plefka expansion to obtain the Thouless-Anderson-Palmer
(TAP) equations [19,24,25]. The main difference is that in
the Plefka expansion, the zeroth order is the mean-field model
(i.e., including only external fields Hi) and all couplings Ji j are
treated perturbatively, while in our approach the zeroth order
includes also the short-range couplings Ji,i+1. We then study
the stationary points of the perturbed free-energy with respect
to single-sites and nearest-neighbors sites marginal probabili-
ties Pi(yi ) and Pi,i+1(yi, yi+1) to obtain a set of approximate BP

equations. The technical details of this small-coupling expan-
sion are given in the Supplemental Material [26], Secs. II and
III. In the rest of the paper we refer to these approximate BP

equations as the small coupling expansion (SCE) equations.
This set of SCE equations can be seen as BP equa-

tions whose associated factor graph is a linear chain, as
represented in the right panel of Fig. 2, or equivalently to
the equations obtained with the transfer matrix method (or
dynamic programming or forward-backward algorithm [1]).
The contribution of the long-range couplings Ji j , |i − j| > 1
results into a modification of the external fields Hi and short-
range couplings Ji,i+1:

H̃i = Hi + fi for i ∈ {2, . . . , L − 1},
J̃i,i+1 = Ji,i+1 + gi for i ∈ {1, . . . , L − 1}. (3)

Single-site fields fi and nearest-neighbors pairwise fields gi

are computed explicitly from the set of conditional probabili-
ties P(yi|y j ) for any i, j with |i − j| > 1:

fl (yl ) = −
l−1∑
i=1

L∑
j=l+1

∑
yi,y j

Ji j (yi, y j )Pi(yi|yl )Pj (y j |yl ), (4)

and

gl (yl , yl+1) =
l∑

i=1

L∑
j=ζ l

i

∑
yi,y j

Ji j (yi, y j )Pi(yi|yl )Pj (y j |yl+1), (5)

with ζ l
i = max(l + 1, i + 2). The SCE equations are recursive

equations for a set of forward messages Fi(yi ), F̂i(yi ) and
backward messages Bi(yi ), B̂i(yi ), defined on the edges of the
one-dimensional chain, as shown in Fig. 3. We give here the
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FIG. 3. BP messages defined on the one-dimensional chain. In
blue (top arrows): The set of forward messages Fi, F̂i, and in red
(bottom arrows) the set of backward messages Bi, B̂i.

exact form of the approximate BP equations, their derivation
is given in the Supplemental Material [26], Sec. III. For the
forward messages we have

F1(y1) = 1

z1→e1

eβH1(y1 ),

Fi(yi ) = 1

zi→ei

eβH̃i (yi )F̂i(yi ),

for i � 2,

F̂i+1(yi ) = 1

ẑei→i+1

∑
yi

eβ J̃ei (yi,yi+1 )Fi(yi ), (6)

where Fi is defined for i ∈ {1, . . . , L − 1} and F̂i for i ∈
{2, . . . , L − 1}, and zi→ei , ẑei→i+1 are normalization factors
ensuring that the BP messages are normalized to 1. For the
backward messages we have

BL(yL ) = 1

zL→eL−1

eβHL (yL ),

Bi(yi ) = 1

zi→ei−1

eβH̃i (yi )B̂i(yi ), for i � L,

B̂i(yi ) = 1

ẑei→i

∑
yi+1

eβ J̃ei (yi,yi+1 )Bi+1(yi+1), (7)

where Bi is defined for i ∈ {2, . . . , L} and B̂i for i ∈
{1, . . . , L − 2}, and zi→ei−1 , ẑei→i are normalization constants.
Single-site and nearest-neighbors marginal probabilities Pi(yi )
and Pi,i+1(yi, yi+1) can be expressed in terms of the BP

messages

P1(y1) = 1

z1
eβH1(y1 )B̂1(y1),

Pi(yi ) = 1

zi
eβH̃i (yi )F̂i(yi )B̂i(yi ), 2 � i � L − 1,

PL(yL ) = 1

zL
eβHL (yL )F̂L(yL ), (8)

and for i ∈ {1, . . . , L − 1}:

Pi,i+1(yi, yi+1) = eβ J̃i,i+1(yi,yi+1 )

zi,i+1
Fi(yi )Bi+1(yi+1). (9)

From the set of marginal probabilities, one finally com-
putes the conditional probabilities Pi(yi|y j ), for all i, j with
|i − j| > 1, from the chain rule, which is valid when long-
range couplings are neglected

Pi(yi|yl ) =
∑
yi−1

Pi−1(yi−1|yl )Pi(yi|yi−1) if i > l + 1, (10)

with a similar expression similarly when i < l − 1. A solution
of the SCE equations can be found iteratively (see Supple-
mental Material [26] Sec. III C for a complete description
of the algorithm). From a random initialization of the BP

messages, the algorithm first computes the marginals Pi, Pi,i+1

from Eqs. (8) and (9), then updates the set of conditional
probabilities Pi(yi|y j ) from Eq. (10), and finally computes
the long-range fields fi, gi using Eqs. (4) and (5). BP mes-
sages are then updated using the new value of fi, gi, and
these steps are repeated until convergence. Each iteration has
complexity O(L3Q4), with Q the size of the state space for
variable yi [in our case Q = 2(N + 2)], the bottleneck being
the computation of fields fi, gi. Although this algorithm is
slower than DCALIGN, the approximate BP algorithm derived
in [21], it has the advantage to derive the small coupling
expansion in a rigorous way, which in turns allows to compute
thermodynamic quantities such as free-energy and entropy
(see Supplemental Material [26], Sec. V for their explicit
expression) that were not available with the previous approach
[21]. The free-energy could be used to optimize the Hamil-
tonian’s parameters (in particular, the gap costs μint, μext

defined in Hgap). We leave this for future work. Note that
DCALIGN equations [21] can be recovered from this pertur-
bative expansion, at the cost of assuming the factorization
Pi j (yi, y j ) � Pi(yi )Pj (y j ) for |i − j| > 1 in the first-order term
of the free-energy (see Supplemental Material [26] Sec. III D
for an explicit derivation).

Decoding strategies

Once a solution to the SCE equations is found, an assign-
ment can be computed from the marginals using a decoding
strategy. We use and compare the performance of two strate-
gies: (i) the nucleation already used in [21], (ii) and Viterbi
decoding in which we use the nearest-neighbors pairwise
marginals Pi,i+1 to compute the solution having the largest
probability of being generated by a Markov chain using tran-
sition probabilities P(yi+1|yi ). Note that neither of the two
strategies are guaranteed to produce an assignment achiev-
ing the largest probability w.r.t. Eq. (2): in principle, one
should use a decimation strategy and recompute after each
assignment of a variable the new marginals conditioned on
the previous assignments. However, these two strategies are
faster than decimation, and we see that they provide very good
alignments. In particular, we show below that VITERBI decod-
ing outperforms the nucleation strategy on protein families
PF00684 and PF00035 taken from the PFAM database, see [27]
[7]. More details on the decoding strategies are given in the
Supplemental Material [26], Sec. IV.

IV. EPSILON COUPLING ANALYSIS

The SCE approach allows us to find a solution to the con-
strained optimization problem of finding the best alignment of
the original sequence A to a seed MSA. We use this method
to explore the energy landscape around a given optimal align-
ment found with our algorithm. We use a general technique
called the epsilon coupling analysis, introduced in [28], see
also [29] for its application to RNA secondary structures:
starting from the optimal solution y0, we add a repulsive
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FIG. 4. Result for ε coupling. Red (light gray) points: On family PF00397, averaged over 100 sequences. Black points: On family PF00684,
averaged over 40 sequences. Left: Difference between energy densities of the ground state: �e = [H(yε ) − H(y0)]/L. Middle: Hamming
distance between the ground state at ε and at ε = 0. Right: Entropy density s(ε). Results are obtained with SCE + VITERBI decoding, with an
annealed scheme β ∈ {0, 0.05, . . . , 0.4}.

external field to the Hamiltonian H(y) that repels y0 with
intensity ε:

H′(y; ε, y0) = H(y) + ε

L∑
i=1

δyi,y0
i
. (11)

This additional term [viz. the Hamming distance dH (y, y0)
between the optimal solution and a configuration y] penalizes
structures that are close to the ground state y0, allowing to
explore other minima. One computes the optimal solution yε

of H′ for many values of ε, using again the SCE + decoding
strategy. For each value of ε, one compares the new ground
state with the true one by computing their Hamming dis-
tance dH (y0, yε ), and their difference in energy density �e =
[H(yε ) − H(y0)]/L. We also compute, for each value of ε,
the entropy density s(ε) associated with the perturbed model
(11). Results are shown in Fig. 4 for two protein families
(PF00397 and PF00684) selected from the PFAM database [7].
We restrict our analysis to short families (L = 67 for PF00684
and L = 31 for PF00397) to avoid a significant slowing down
of the alignment algorithm. As ε increases, yε starts to depart
from y0 (dH > 0) and simultaneously the difference in energy
density �e becomes positive. This indicates that we do not
find other optimal solutions, instead we find solutions with
higher energy (�e > 0), but close in hamming distance to the
true ground state, suggesting a landscape with a single mini-
mum in a basin of attraction. This analysis is compatible with
our computation of the entropy: we obtain for both families a
rough estimate of the number of optimal configurations eLs(ε)

between one and two configurations. At larger ε values, the
energy density difference �e, the Hamming distance dH , and
the entropy s(ε) reach a plateau at ε � 1.0 for both protein
families. The solutions yε found for these values of ε are
mostly made of gaps, i.e., are not good alignments, which
indicates that in this regime the free-energy landscape is sub-
stantially modified by the perturbation.

V. PERFORMANCE ANALYSIS

We assess the quality of MSAs generated by our SCE
method and compare them to state-of-the art alignments pro-
vided by HMMER [6], on small protein families PF00397,
PF00684, and PF00035 taken from PFAM [7] (with L = 67
for PF00035). As done in [21], we do not consider the entire

sequences, whose length N is often much larger than L, but
a “neighborhood” of the hit selected by HMMER. In practice,
we add δ amino acids at the beginning and at the end of the
hit resulting in a final length N = δ + L + δ (with δ = 20 for
PF00397 and PF00684, and δ = 10 for PF00035). We con-
sider sequence-wise measures, also used in [21], to evaluate
the similarity between two candidate MSAs (a “reference”
and a “target” MSA). (i) THe Hamming distance between
two alignments (Sref and Star) of the same sequence A in
the reference and target MSAs, respectively. (ii) Gap +: The
number of match states in Sref that are replaced by a gap in
Star. (iii) Gap −: The number of gap states in Sref that are
replaced by a match state in Star. (iv) Mismatch: The number
of amino acid mismatches, i.e., the number of times we have a
match state in both Sref and Star, but corresponding to different
amino acids positions in the full sequence A. All quantities are
normalized by L, the length of the sequences.

In addition, we compare the quality of alignments by com-
puting for each sequence of the MSAs the difference in energy
density �e = [HDCA(Sref ) − HDCA(Star )]/L.

A. Comparison with HMMER

We first compare the MSA produced by our SCE algorithm
(target MSA) with the MSA produced by HMMER (reference
MSA), see Fig. 5. For each family we choose a random sample
of sequences and compare the alignments produced by the two
methods. The difference in energy density for each sequence
(sorted in decreasing order) is plotted on the left panels. For
the three families, we see that for a large fraction of the sample
set, the energy HDCA of the SCE alignment is lower than the
one of HMMER, thus resulting in a better alignment found by
SCE. For PF00397 and PF00684, for the rest of the sample set,
the difference in energy is zero: both methods find the same
alignment. The distribution of similarity metrics (Hamming
distance, Gap±, Mismatch) are mostly concentrated on the
first bins for both families, indicating that the alignments
found by SCE and HMMER are close. For PF00035, it is only
on a tiny fraction of the sample set that SCE finds a solu-
tion with either equal or slightly higher energy compared to
HMMER. The distribution of similarity metrics is broader on
this family, indicating that SCE and HMMER find substantially
different alignments on a large fraction of samples.
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FIG. 5. Comparison of SCE with HMMER. Top: Protein family PF00397 (on a set of 200 sequences). Middle: Protein family PF00684
(on a set of 100 sequences). Bottom: Protein family PF00035 (on a set of 100 sequences). On left panels, we plot the difference in energy
between the ground state found with HMMER E hmmer = HDCA(Shmmer ) and the ground state found with SCE E sce = HDCA(Ssce ) (percent of
the ground-state energy E sce found with SCE). Positive �E = E hmmer − E sce means that SCE strategy has found a better (lower in energy)
alignment than HMMER. Samples are sorted by decreasing values of �E/|E sce|. Then, from left to right, we plot the histograms of Hamming
distances, Gap +, Gap −, and Mismatch.

B. Comparison with the seed

To explore further the differences between our method
and HMMER, we compare the alignments found with the two
methods and the seed MSA. More precisely we realign each
sequence of the seed MSA (reference MSA) with our method
and with HMMER to obtain a new MSA (target MSAs). The
results, given in the Supplemental Material [26], Sec. I, Fig. 1.
(for the protein family PF00397), show that the MSA obtained
with SCE is closer to the seed MSA than the one obtained
with HMMER, suggesting that SCE performs better than the
alignment task.

C. Comparison of decoding methods

We compare the performances of two decoding meth-
ods: nucleation and Viterbi (see Supplemental Material [26],
Sec. IV). For each family, we compare the two decoding
methods used on the set of marginal probabilities computed
from our SCE algorithm. Results are shown in the Supple-
mental Material [26], Fig. 2 (for families PF00397, PF00684,
and PF00035). While for family PF00397, both decoding
methods find essentially the same alignment, the situation is
different for families PF00684 and PF00035: although for a
large fraction of the sequences, both decoding methods find
the same alignment, we can clearly see that VITERBI finds a
better solution on a nonnegligible fraction of the sequences,
with a significantly lower energy, and nucleation leads to a
better alignment only for a few sequences.

D. Remote homology detection

We test the performance of our SCE algorithm on homol-
ogy search for the RNA family RF00162 taken from RFAM

database [30]. The goal of homology detection is to determine
whether a sequence is evolutionary related (i.e., homologous)
to a family of sequences. It is common that homology search
fails at identifying distantly related sequences [31]. As a test-
ing ground, we use the SAM riboswitch seed alignment from
the RFAM family [30] RF00162 (which have length L = 108).
This dataset was proposed in [20] as a stress test for alignment
algorithms. Following this setup, the MSA is divided into a
training set and a test set. Sequences in the test set are selected
to be distant to the training set and distant from each other
(see [20] for details). In addition, a set of nonhomologous
decoy sequences is randomly generated as follows: each char-
acter is drawn i.i.d. from the nucleotide composition of the
positive test sequences, with a length matching a randomly
selected positive test sequence [20]. To wrap up, we have three
mutually nonoverlapping set of sequences: (i) training: from
which we learn the parameters of our model; (ii) test: a set of
homologous sequences; and (iii) decoy: a randomly generated
set of nonaligned sequences.

For each sequence in the test set and for the 11 sequences
randomly extracted from the set of decoy sequences, we com-
pute the alignment found with SCE + VITERBI decoding. The
parameters are learned from the training set: the parameters
of the Potts model are trained with a Boltzmann machine
DCA learning algorithm and the parameters of the insertion
cost Hins are learned from the insertion statistics (see [21]
Sec. IV B). The parameters of the gap cost μint, μext are taken
from [21], Table II.

To score the alignments, we compare their energy density
e = H(S)/L. We also compute, for each alignment S found
by our algorithm, its Hamming distance w.r.t. each aligned
sequence in the training set. We then collect the minimum
attained value. Results are given in Fig. 6. and show that our
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FIG. 6. Remote homology detection on the RNA family
RF00162 [20]. Alignments found by SCE + Viterbi decoding, on
a set of eight test sequences [in blue (dark gray)] and 11 decoy se-
quences [in orange (light gray)]. x axis: energy density e = H(S)/L
of the alignment. y axis: Hamming distance from the solution to
closest aligned sequence in the training set. Vertical (or horizontal)
dashed line shows the average between the right-most (or highest)
blue point and the left-most (or lowest) orange point, indicating that
the two sets can be separated with both observables.

method is able to disentangle between decoy sequences and
true sequences belonging to RF00162: the alignments found
for the test set have smaller energy and are closer to the
training set.

VI. CONCLUSION

We proposed an alternative method based on a perturbative
expansion of the model around the linear chain and obtained a
set of approximate message-passing equations that we used to
find optimal alignments. We tested the potentiality of our al-
gorithm on protein families taken from the PFAM database [7].
The results obtained on these families suggest that including
long-range correlations is crucial for the alignment task and it
is a promising direction to go beyond current state-of-the-art
bioinformatics tools based on profile models, which, from a
statistical mechanics standpoint, are assuming statistical inde-
pendence of sites. Additionally, we compare the performances
of two different decoding strategies, and show that for two
of the protein families studied in this paper, the VITERBI

decoding algorithm outperforms the nucleation strategy pre-
sented in [21]. We test the performance of our method on
remote homology search, for the RNA family RF00162 taken
from the RFAM database [30], and obtain promising results
suggesting that our method is able to detect distant homologs.
The method proposed in this paper treats perturbatively the
contribution of long-range couplings Ji j , with |i − j| > 1 us-
ing a small coupling expansion a la Plefka [19]. While this
assumption might not be justified as some of the couplings
might not be in the perturbative regime, our approach is an
initial step to include them to go beyond the independent-site
assumption. Moreover, in the context of DCA [11], it was
empirically shown that the first-order approximation of the
Plefka expansion is enough to capture relevant structural and
functional features of the protein family.

Our approach provides a self-consistent derivation of
the mean-field approximation used in [21], which, in turn,
being variational, allows us to compute approximated ther-
modynamic potentials. We use this strategy to explore the
free-energy landscape of this constrained optimization prob-
lem, obtaining, for the protein families studied in this paper,
the global picture of a unique solution surrounded by a
basin of attraction. The main limitation of our method is
an increase of computational complexity with respect to the
mean-field method of [21]: indeed, our SCE algorithm has
an O(L3N4) complexity (with L the length of the alignment
S and N the length of sequence A to be aligned), compared
to the O(L2N2) complexity for the DCALIGN algorithm de-
signed in [21]. Further investigations could be to use our
approximation of the free-energy for developing methods to
simultaneously optimize the model’s parameters and find the
optimal alignment, using, for instance, strategies based on
expectation-maximization. Note finally that the method devel-
oped in this paper is not restricted to the alignment problem
and could be used in other problems that have the structure of
a one-dimensional chain with additional fully connected weak
couplings.
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