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Stochastic kinetics under combined action of two noise sources
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We are exploring two archetypal noise-induced escape scenarios: Escape from a finite interval and from the
positive half-line under the action of the mixture of Lévy and Gaussian white noises in the overdamped regime,
for the random acceleration process and higher-order processes. In the case of escape from finite intervals, the
mixture of noises can result in the change of value of the mean first passage time in comparison to the action of
each noise separately. At the same time, for the random acceleration process on the (positive) half-line, over the
wide range of parameters, the exponent characterizing the power-law decay of the survival probability is equal
to the one characterizing the decay of the survival probability under action of the (pure) Lévy noise. There is a
transient region, the width of which increases with stability index α, when the exponent decreases from the one
for Lévy noise to the one corresponding to the Gaussian white noise driving.
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I. INTRODUCTION

A particle immersed in a liquid constantly interacts with
other particles. Due to the enormous number of collisions,
these interactions cannot be described exactly. An effective
approximate description is provided by noise [1]. Noise is
a stochastic process [2] that is used to describe complicated
or not fully known interactions. If individual collisions are
independent, the corresponding noise is called white. The
mathematical theory underlying noise properties is provided
by the Central Limit Theorem [3] and the Generalized Cen-
tral Limit Theorem [4]. According to central limit theorems,
the sum of many independent identically distributed random
variables tends to the Gaussian distribution (if components
are characterized by finite variance) or to the α-stable den-
sity (diverging variance of components). Consequently, the
Lévy noise and its special case—the Gaussian white noise
(GWN)—are frequently used in the description of noise
driven systems in the out-of-equilibrium and equilibrium
regimes, respectively [5,6].

Noise is not the only possible source of randomness in the
system dynamics. The system parameters can also be sub-
ject to stochastic variations. Fluctuations in parameters of the
system are incorporated within the concept of superstatistics
[7]. In the context of superstatistics, two results are especially
worth presenting. It has been demonstrated [8] that Lévy
flights can emerge in systems driven by the Gaussian white
noise with the fluctuating temperature. Analogously, the fluc-
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tuation in temperature [9] can transform the Boltzmann-Gibbs
distribution [10] into the one following optimization of the
Tsallis entropy [11,12]. Therefore, the concept of superstatis-
tics builds a link between Lévy statistics and nonextensive
entropies.

Due to its mathematical properties [4,13], e.g., self-
similarity and possible bursts, the Lévy noise is typically
used in the description of out-of-equilibrium setups. Systems
driven by Lévy noise significantly differ from their equilib-
rium counterparts with respect to the microscopic reversibility
[14], and existence and type of stationary states [15,16]. Nu-
merous noise-induced effects, such as noise-driven escape
[17,18], stochastic resonance [19,20], and the ratcheting ef-
fect [21–23], have also been studied in out-of-equilibrium
regimes. Lévy flights are also considered as a paradigm of
random search strategies [24,25], which are related to first
passage and first hitting problems [26–29].

Models assuming variability of system parameters in-
clude distributed-order fractional equations [30–33], time-
dependent diffusion coefficient (scaled Brownian motion)
[34,35], or processes with randomly evolving diffusivity (dif-
fusing diffusivity) [36,37]. In this paper, instead of assuming
variability of the system parameters, we assume that ran-
domness is increased by the fact that the motion is driven
by the sum of the Lévy noise and the Gaussian white noise
[38–40]. This situation is frequent in signal processing, when
the recorded signal can be perturbed by noise, which can be
built by processes of different characteristics [41,42], nature,
or origin. Moreover, we do not study the overdamped mo-
tion of a free particle only, but we are also extending our
considerations to random acceleration processes [43–48] and
higher-order processes as well. Therefore, we assume that
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the highest derivative of the particle’s position is a random
process.

The model under study is described in Sec. II. Section III
analyzes the properties of escape kinetics from the finite in-
terval and the positive half-line. The manuscript is closed
with a summary and conclusions in Sec. IV. The supporting
information is moved to Appendices A and B.

II. MODEL

The studied model is devoted to the examination of the
escape kinetics of a free particle under the combined action
of two noise sources in the overdamped, random acceleration
and higher-order scenarios. The particle position evolves ac-
cording to the following Langevin equation:

dkx

dtk
= (1 − λ)ξα (t ) + λξ2(t ), (1)

where ξα (t ) stands for the α-stable noise, while ξ2(t ) repre-
sents the GWN. The λ parameter (0 � λ � 1) controls the
noise composition. For λ = 1, the system is driven only by
the GWN, while for λ = 0, it is driven by the α-stable noise
only. In Eq. (1), the parameter k defines the order of differ-
entiation. For k = 1, Eq. (1) attains the standard overdamped
form, while for k = 2, it describes the random acceleration
process [48,49]. Finally, k � 3 corresponds to a higher-order
process. For λ < 1, the probability density of finding a particle
in the vicinity of x is described by the fractional diffusion
equation [50–52]. For k = 1, it is the Smoluchowski-Fokker-
Planck equation [53–55], while for k = 2, it is the fractional
Klein-Kramers equation [56,57].

In addition to GWN, we are using the more general α-
stable noise, which includes GWN as the special, limiting
case [13]. Typically, the α-stable noise is used to describe
nonequilibrium realms [58]. The noise is still of the white
type, i.e., it produces independent increments, but this time
increments follow the heavy-tailed α-stable density [4].

Here, we use only symmetric α-stable noise, which is the
formal time derivative of the symmetric α-stable process L(t )
[13,58]. The symmetric α-stable process L(t ) is determined
by its increments, �L = L(t + �t ) − L(t ), which are inde-
pendent and identically distributed according to the α-stable
density. Symmetric α-stable distributions are unimodal densi-
ties with the characteristic function [4,13]

ϕ(k) = 〈eikx〉 = exp [−σα|k|α]. (2)

More precisely, increments �L are distributed according to
the probability density function with the characteristic func-
tion 〈eik�L〉 = exp[−�tσα|k|α]. The stability index α (0 <

α � 2) controls the asymptotics of the distribution, which for
α < 2 is of the power-law type, i.e., p(x) ∝ |x|−(α+1). The
scale parameter σ (σ > 0) controls the width of the distri-
bution, which can be defined by an interquantile width or
by fractional moments, i.e., 〈|x|ν〉 with ν < α, because the
variance of α-stable variables with α < 2 diverges.

In further studies, the scale parameter of the α-stable
noise and the variance of the Gaussian white noise are set
to unity. Moreover, we exclude the α = 2 case because it
corresponds to the superposition of two independent Gaus-
sian white noises that can be replaced by a single Gaussian

noise term with the appropriately rescaled variance [4,59]. For
α = 2, Eq. (2) gives the characteristic function of the normal
density N (0, 2σ 2); therefore, to obtain the standard Gaussian
white noise (with the unit intensity), one can use α-stable
density with α = 2 and σ = 1/

√
2.

The Langevin equation is approximated with the (stochas-
tic) Euler-Maruyama method [60,61] extended to the higher-
order equation,

x(k−1)(t + �t ) = x(k−1)(t ) + (1 − λ)ξ t
α�t

1
α + λξ t

2�t
1
2

(3)
x(l )(t + �t ) = x(l )(t ) + x(l+1)(t )�t,

where l = 0, 1, . . . , k − 2 and �t represent the integration
time step. The highest-order derivative x(k−1)(t ) is integrated
in a stochastic manner, while other derivatives are calculated
trajectorywise. In Eq. (3), ξ t

α and ξ t
2 represent the sequences

of independent identically distributed α-stable [62,63] and
standard Gaussian [N (0, 1)] random variables [4].

Numerical results, presented in the manuscript, have been
averaged over 106 (escape from the finite interval) or 105

(escape from the half-line) realizations, with the integration
time step �t varying between 10−1 (half-line) and 10−4 (finite
interval). Such a set of parameters assures a reasonable com-
promise between simulation accuracy and simulation time.
Moreover, as will be demonstrated, it allows for precise re-
construction of the known results.

III. RESULTS

We consider the properties of the escape process starting
at x0 (x0 ∈ 	) from the domain 	. The main quantity that
characterizes escape kinetics is the first passage time tfp,

tfp = min{t : x(0) = x0 ∧ x(t ) /∈ 	}, (4)

from which one can calculate the mean first passage time
(MFPT) T which is the average of first passage times,

T = 〈tfp〉. (5)

For k > 1, it is necessary to specify not only x(0), but also
values of higher-order derivatives x(l )(t ) (l = 1, . . . , k − 1)
at t = 0. We take x(1)(0) = · · · = x(k−1)(0) = 0. The first
passage time is recorded when a position x(t ) crosses the
boundary of 	, regardless of the values of the derivatives.
Furthermore, it is possible to study the properties of the first
passage time density f (t |x0) or survival probability S(t |x0).

We explore two types of escape process: Escape from
the finite interval restricted by two absorbing boundaries
(Sec. III A) and escape from the positive half-line (Sec. III B).
These two scenarios have fundamental differences. The
escape from the finite interval is characterized by the expo-
nential distribution of first passage times and the finite MFPT.
Contrary to the escape from a finite interval, for the escape
from the half-line the first passage time density has a power-
law tail with the diverging mean value. The escape from the
half-line is very different because a particle can explore points
which are very distant from the absorbing boundary. On the
one hand, possible long excursions are responsible for the
divergence of the mean first passage time. On the other hand,
a particle almost surely leaves the half-line.
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FIG. 1. MFPT for the overdamped motion for various values of
the stability index α with (a) x0 = 0 and (b) x0 = 0.75. Dot-dashed
lines depict the λ = 0 and λ = 1 asymptotics; see Eq. (6). Results
have been averaged over 106 realizations with �t = 10−4.

A. Finite interval

We start with the escape from the finite interval restricted
by two absorbing boundaries, i.e., 	 = (−1, 1). The particle
starts its motion at x0 and its position changes over time
according to Eq. (1). Figure 1 presents the MFPT as a func-
tion of λ for k = 1 with α ∈ {0.5, 0.75, 1, 1.5}, i.e., for the
motion described by the standard overdamped Langevin equa-
tion with x0 = 0 [Fig. 1(a)] and x0 = 0.75 [Fig. 1(b)]. The
mean first passage time, T (λ), is a nonmonotonic function of
the parameter λ. For λ = 0, the MFPT is equal to the MFPT
[64–68] for escape driven by the α-stable noise, which is
given by

T [x(0) = x0] = (L2 − x2
0 )α/2


(1 + α)σα
, (6)

with σ = 1 and L = 1, while for λ = 1, one can still use the
same formula with α = 2 and the rescaled scale parameter
σ = 1/

√
2, which gives the MFPT for the motion driven by

the standard Gaussian white noise. The dot-dashed lines in
Fig. 1 show the λ = 0 and λ = 1 asymptotics of MFPT. For
λ = 0, each line represents a different value of the stability
index α, while for λ = 1, there is only one asymptotic value
because all drivings reduce to the standard GWN. There exists
an intermediate value of λ for which the MFPT is maximal.
Moreover, for α = 0.5 and α = 0.75, there are local minima
at λ � 1. For α = 1.5, the MFPT curves attain a parabolalike
shape and the maxima of MFPT move towards larger λ.

For k = 1, the escape scenarios under the action of the
GWN and Lévy noise are very different. In the overdamped
case, the trajectories of processes driven by α-stable noise
are discontinuous. Due to that, a particle does not need to
approach the boundary, but can jump over it. This makes the
escape via a single long jump a plausible strategy. The (pure)
Gaussian driving produces continuous trajectories; therefore,
a particle can cross the boundary only by approaching it.
When a single noise source is replaced by two sources [see
Eq. (1)], trajectories are still discontinuous, but the additional
action of the GWN widens the central part of the jump length
distribution, increasing the frequency of small jumps. The
parameter λ allows for a continuous transition between pure
Lévy and pure Gaussian drivings; see Fig. 1.

For λ < 1, both short-jump and long-jump escape mech-
anisms are present—with λ = 1 representing the purely
short-jump escape case and λ = 0 maximizing the long-jump
escape effectiveness. Lowering λ from unity will weaken the
short-jump escape via the Gaussian part, while strengthening
the long-jump mechanism via the α-stable part; cf. Fig. 2.
For α ∈ {1.0, 1.5}, moving away from extreme cases effec-
tively inhibits escape—MFPT rises for intermediate λ values
and reaches a maximum; see Fig. 1. An additional effect is
recorded for the smaller α values—α ∈ {0.5, 0.75}, where
local minima appear for optimal λ � 1 (the minimum for
α = 0.75 is significantly shallower than the one for α = 0.5).
For lower α, the long-jump escape mechanism appears more
effective; cf. Fig. 2. Thus it is not surprising that only for small
α, e.g, α = 0.5 or α = 0.75, lowering λ slightly from 1 turned
out to be beneficial.

For k = 1, in addition to the MFPT, we have explored the
properties of the last hitting point (LHP) distribution pl (x),
i.e., the distribution of the last visited point before leaving
the (−1, 1) interval; see Fig. 2. From the examination of the
LHP density, one can see that with the increasing value of the
stability index α, the peak associated with the initial condition
decreases and the probability of visiting neighborhoods of
absorbing boundaries increases. Therefore, as α increases, the
probability of escaping in a single jump decreases and the ma-
jority of escapes are performed via a sequence of short jumps
ruled by the central part of the jump length distribution. This
behavior is the consequence of the decomposition [69–71] of
the α-stable process into a compound Poisson process that
describes long jumps and the Wiener part responsible for
small displacements.

For a fixed value of the stability index α, the height of
the peak associated with the initial condition decreases with
the growth of λ because, with growing λ, the central part
of the overall jump length distribution widens. The central
part of the jump length distribution controls short jumps,
which are responsible for blurring of the initial condition. At
the same time, the probability of escaping from the vicinity
of the absorbing boundary increases. Finally, for λ = 1, the
motion is driven by the GWN and the trajectory continuously
approaches an absorbing boundary.

For the asymmetric initial condition, e.g., x0 = 0.75, the
last hitting point density is no longer symmetric; see Fig. 3(a).
Nevertheless, effects recorded for the symmetric initial con-
dition, i.e., x0 = 0, are still visible. The asymmetry of the
initial condition is reflected in the splitting probability πR,
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FIG. 2. Last hitting point densities pl (x) for α ∈ {0.5, 1, 1.5}
[from top (a) to bottom (c)] with x0 = 0. Various curves correspond
to various values of λ; see Eq. (1).

which is the probability of leaving the domain of motion
(interval) to the right; see Fig. 3(b). The dot-dashed lines in
Fig. 3(b) depict the λ = 0 and λ = 1 asymptotics of splitting
probability calculated from

πR(x0) = 
(α)


2( α
2 )

∫ (L+x0 )/2L

0
[u(1 − u)]

α
2 −1du, (7)

with L = 1; see [72–75]. Additionally, with the increasing λ,
the role played by long jumps is decreased and the fraction
of escapes via the closest absorbing boundary (escapes to
the right) increases. For x0 = 0, the escape kinetics is fully
symmetric and πR = 1/2 (results not shown). For k > 1, the
trajectories x(t ) become continuous [76–79]; thus, for suffi-
ciently small �t , the last visited point is one of the interval
edges.
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FIG. 3. Last hitting point densities pl (x) for (a) α = 1 with x0 =
0.75 and (b) the splitting probability πR, i.e., probability of leaving
the domain of motion through the right boundary. In (a), different
curves correspond to various values of λ [see Eq. (1)], while in
(b), curves correspond to different values of the stability index α

[see Eq. (2)]. Dot-dashed lines in (b) depict the λ = 0 and λ = 1
asymptotics; see Eq. (7).

The examination of the last hitting point distribution pl (x)
and splitting probability πR can be completed by the exam-
ination of the first hitting point density, i.e., distribution of
first points visited after leaving the domain of motion. For
k > 1, the first hitting point density attains a trivial form as
trajectories are continuous, i.e., they continuously cross the
absorbing boundary. For k = 1, the trajectories are discontin-
uous; consequently, the trajectories overshoot the absorbing
boundaries by a distance �, which is called a leapover. Since
we are studying escape from a finite interval, the leapovers’
[26] asymptotics is the same as the asymptotics of the jump
length distribution, i.e., �−(α+1) (0 < α < 2); see [74,80].

The subsequent Fig. 4 shows mean first passage times
(left column) and splitting probabilities (right column) for k ∈
{2, 3, 4} with x0 = 0.75 and x(l )(0) = 0 (l ∈ {1, . . . , k − 1}).
The additional dot-dashed lines in the top panels show the
Gaussian (λ = 1) asymptotics of the MFPT,

T [x(0) = x0]

= (4/3)−5/6


(4/3)
(2L2)1/3

(
L + x0

2L

)1/6(
1 − L + x0

2L

)1/6

×
[

2F1

(
1,−1

3
;

7

6
;

L + x0

2L

)
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FIG. 4. Mean first passage times (left column) and splitting prob-
abilities (right column) for k ∈ {2, 3, 4} (from top to bottom) with
x0 = 0.75; see Eq. (1). The dot-dashed lines in the top panels show
(a) the Gaussian (λ = 1) asymptotics of the MFPT (see Ref. [81])
and (b) the splitting probability (see Ref. [82]).

+2F1

(
1,−1

3
;

7

6
; 1 − L + x0

2L

)]
(8)

(see Fig. 4(a) and Ref. [81]), and the splitting probability,

πR(x0) = 1 − 6
(1/3)


2(1/6)

(
L + x0

2L

)1/6

2F1

(
1

6
,

5

6
;

7

6
;

L + x0

2L

)

(9)

(see Fig. 4(b) and Ref. [82]). In Eqs. (8) and (9), 2F1 denotes
the ordinary hypergeometric function.

For k = 2, the process x(t ) is the random acceleration
process that is characterized not only by position, as in the
overdamped (k = 1) case, but also by the velocity, which
for λ < 1 is discontinuous. The higher-order processes with
k � 3 are characterized by the velocity, acceleration, and so
on. The MFPT is determined by the velocity which emerges
due to changes in higher-order derivatives. The noise di-
rectly affects the highest-order derivative only. Lower-order
derivatives are altered indirectly, i.e., in order to calculate the
derivative of l order, one needs to integrate the derivative of
l + 1 order, and the magnitude of the disturbance decreases
with the decreasing derivative order. The change in the veloc-
ity is the smallest. Therefore, with increasing k, the motion
becomes more persistent [83,84] since it is harder to change
the direction of motion; see below. However, for fixed values
of λ and the stability index α, the MFPT is the increasing
function of k; see left column of Fig. 4. Interestingly, for k � 2
with α < 1, the MFPT is practically the increasing function
of the parameter λ controlling the mixture of noises. At the
same time, for α > 1, the MFPT is a nonmonotonic (convex)
function of λ. For k = 2, our research extends the examina-
tion of the random acceleration process under the action of

GWN noise [81,85] or Lévy noise [86] to situations where the
motion is driven by the sum of two noises.

The examination of the splitting probability shows that in
the overdamped motion, the initial distance to the absorb-
ing boundary is the main factor determining the direction
of escape; see Fig. 3(b). Moreover, the highest value of the
splitting probability πR is recorded for the Gaussian white
noise driving, indicating the fact that long jumps produced by
the α-stable noise are capable of inducing the escape via the
more distant (left) absorbing boundary. A different situation
is recorded for higher-order processes; see left column of
Fig. 4. For x0 = 0.75, it is still more likely to leave the domain
(interval) of motion via the right boundary, but this time πR

is smaller than for the overdamped motion. Interestingly, the
splitting probability is the decreasing function of k, i.e., for
higher-order processes, πR decays because, with the increas-
ing k, the persistence of motion direction increases. However,
this point calls for further elaboration.

For k = 1, the motion is overdamped and characterized
by the position only. It is very easy to change the direction
of motion because, from every point, a particle can jump
to the left or right with the same probability. The splitting
probability is sensitive to the values of the stability index α

and the λ parameter, but the distance to the closest absorbing
boundary is also a factor determining πR(x).

The situation for higher-order processes (k � 2) is more
complex. As x(l )(0) = 0 (l ∈ {1, . . . , k − 1}), the first jump
determines the initial direction of motion and initial veloc-
ity. The change of direction of the motion requires reversing
the velocity, which demands reversing the acceleration and
higher-order derivatives. Therefore, with the increasing k, it is
harder to change the direction of motion. Since the first jump
is performed to the left or right with the same probability, it
is tempting to assume that for large k, it fully determines the
direction of the escape. However, it is not fully the case. In
order to verify such a hypothesis, from simulations, we have
estimated the probability of the first escape in the direction
of the first jump. This probability is close to 0.5; thus, such
a hypothesis cannot be fully justified. From examination of
the individual trajectories, we have observed that the escape
mechanism is more complex. The crucial thing is not the first
jump only, but the accumulation of a large enough velocity to
the left or right. Due to noise symmetry, the chances to induce
the velocity to the left or right are the same. For large k, once
a large enough velocity to the left or to the right is obtained,
it is unlikely for it to be reversed during the first exit time.
Therefore, the splitting probability becomes less sensitive to
the asymmetry in the initial condition, as, for example, is
visible in Fig. 5(b). This effect can already be anticipated by
examination of Fig. 3(b) and the right panels of Fig. 4, which
show that with the increasing k, the dispersal of the splitting
probability decreases and the splitting probability becomes
closer to 1/2. Note that πR can be a nonmonotonic function
of λ; see Figs. 4(d) and 4(f).

B. Half-line

The escape from the positive half-line, i.e., 	 = {x : x >

0}, cannot be characterized by the MFPT; therefore, we
present results for the survival probability S(t ), which is the
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FIG. 5. (a) Mean first passage times and (b) splitting probabili-
ties for k = 10 with x0 = 0.75; see Eq. (1).

probability that at time t a particle remains on the positive
half-line,

S(t |x0) = Prob[x(t ) ∈ 	|x(0) = x0]. (10)

The survival probability is connected to the first passage time
density f (t |x0) by the relation S(t |x0) = 1 − ∫ t

0 f (t ′|x0)dt ′.
For k = 1, the first passage time density has the universal t−3/2

asymptotics,

f (t |x0) ∝ t− 3
2 , (11)

which is general asymptotics for any symmetric Markovian
driving, e.g., Gaussian white noise or an α-stable driving
[87,88]. Consequently, we do not present results for k = 1
since they are universal and can be found in earlier works
[80,89]. Analogously, leapovers show �−(1+α/2) asymptotics
[26,74,80]. We start with results for k = 2, i.e., a random ac-
celeration process (characterized by continuous trajectories)
for which the survival probability also follows a power law
[90]. For more details, see Appendix B.

Figure 6 shows exemplary survival probabilities S(t |x0)
for x0 = 2 with k = 2. Various curves correspond to different
values of λ (λ ∈ {0, 0.5, 1}), while α is set to α = 1 [Fig. 6(a)]
and α = 1.5 [Fig. 6(b)]. The distinct linear decay of S(t |x0)
corresponds to the power-law decay since Fig. 6 is plotted
in the log-log scale. Therefore, additional solid lines show
t−1/(2+α) and t−1/4 power-law decays corresponding to λ = 0
and λ = 1, respectively; see below. An interesting situation
is observed for λ = 0.5. Despite the fact that this particular
case does not correspond to pure α-stable driving, its asymp-
totics follow the one predicted and recorded for λ = 0. This
suggests that the tails’ asymptotics of the survival probability
is mostly determined by the α-stable part of the driving. The
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10(a) 0
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S
(t

)

t

λ = 0
λ = 0.5

λ = 1

10−2

10−1

100

100 101 102 103 104 105

S
(t

)

t

λ = 0
λ = 0.5

λ = 1

(b)

FIG. 6. Exemplary survival probabilities S(t |x0 = 2) for a parti-
cle moving on the (positive) half-line driven by the mixture of the
α-stable noise and the Gaussian white noise. In (a), α = 1, while in
(b), α = 1.5. Various curves correspond to the different values of λ;
see Eq. (1). Solid lines show t−1/(2+α) and t−1/4 decays [see Eq. (13)],
which are predicted and recorded for λ = 0 and λ = 1, respectively.
Results have been averaged over 105 realizations with �t = 10−1.

numerical results presented in Fig. 6 have been averaged over
105 realizations with �t = 10−1.

Figure 7 shows the value of the fitted exponent β to the
power-law decay of the survival probability,

S(t ) ∝ t−β, (12)

as a function of λ. As is visible from Fig. 7(a), over the wide
range of λ, the exponent β is equal to

β ≈ 1

2 + α
, (13)

which is the value of the exponent characterizing the de-
cay of the survival probability of the random acceleration
process (k = 2) under action of Lévy noises; see [90] and Ap-
pendix B. Therefore, the exponent β decays with the increase
of α.

Equation (13) holds over a wide range of λ, confirming
the observation made from Fig. 7 that the long-time asymp-
totics of the survival probability is mostly determined by the
α-stable part of the driving. There exists a transient region
when the exponent β changes from 1

2+α
to 1

4 . The width
of this region increases with the increase of the stability
index α. For λ = 1, the escape is driven by the GWN and
β = 1

4 , as expected and predicted [48,91–93]. Figures 7(b)
and 7(c) show values of the fitted exponents for processes of
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FIG. 7. Values of the fitted exponent β [see Eq. (12)] for a
particle moving on the (positive) half-line driven by the mixture
of the α-stable noise with α ∈ {0.5, 0.75, 1, 1.5} and the Gaussian
white noise. Distinct curves correspond to the different values of the
stability index α; see Eq. (1). Various rows correspond to different
values of k: k ∈ {2, 3, 4} [from (a) to (c), i.e., top to bottom]. The
dot-dashed lines in (a) show the λ = 0 [β = 1/(2 + α)] and λ = 1
(β = 1/4) asymptotics, while in (b) and (c), λ = 1 asymptotics; see
Ref. [95].

higher-order k = 3 and k = 4, respectively. For larger k ex-
ponents, β decays, indicating a further slow down of the
escape kinetics. At the same time, the qualitative dependence
of β(λ) is the same as for k = 2. The additional dot-dashed
lines in Fig. 7(a) show the λ = 0 [β = 1/(2 + α)] and λ = 1
(β = 1/4) asymptotics, which are also depicted in Fig. 6. For
GWN driving, in the limit of k → ∞, the exponent β is equal
to β = 3

16 ; see [90,94].
Finally, we complete the analysis of the escape from a half-

line by the discussion of leapovers. Nontrivial leapovers are

observed in the discontinuous case only, i.e., for k = 1, and
they follow the �−(1+α/2) asymptotics [26,74,80].

IV. SUMMARY AND CONCLUSIONS

We have studied two archetypal escape scenarios: Escape
from a finite interval and from the positive half-line under
the action of the mixture of Lévy and Gaussian white noises.
In the case of escape from finite intervals, the mixture of
noises can result in the change of the value of the mean
first passage time in comparison to the action of each noise
separately. For the escape from the finite interval, there is
a pronounced difference between the random acceleration
process, higher-order processes, and the overdamped motion.
For the overdamped motion, the MFPT is a nonmonotonic
function of the parameter controlling the mixture of noises for
all considered cases. For higher-order processes, MFPT does
not need to be a nonmonotonic function of λ.

The escape from the half-line is characterized by the
power-law decay of the survival probability with the diverg-
ing mean value. For the random acceleration process, the
exponent characterizing the decay, for a wide range of the pa-
rameter λ, is equal to the one already recorded for the escape
driven by a (pure) Lévy noise. This indicates that over a wide
range of noise mixtures, the tails’ asymptotics is governed by
the Lévy part, which mainly determines the properties of the
escape kinetics. Nevertheless, there is a transient region in
which the asymptotics change from the one of α-stable noise
to the one of the Gaussian white noise.

The data (generated randomly using the model presented in
the paper) that support the findings of this study are available
from the corresponding author (P.P.) upon reasonable request.
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APPENDICES

For completeness of the presentation, we repeat the ba-
sic information regarding the escape from finite intervals
(Appendix A) under action of the Lévy white noise and the
escape from the positive half-line (Appendix B).

APPENDIX A: FINITE INTERVAL

The mean first passage time of the one-dimensional (1D)
α-stable motion [starting at x(0) = x0] from the interval
(−L, L) restricted by two absorbing boundaries reads [64–68]

T (x0) =
(
L2 − x2

0

)α/2


(1 + α)σα
. (A1)
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The α-stable noise with α = 2 is equivalent to the GWN with
σ = √

2. Therefore, the formula (A1) with α = 2 differs from
the typical formula for GWN driving, which is recovered for
σ = σ/

√
2.

For x0 = 0, the (L/σ )α dependence can be justified using
the assumption that the escape is performed via the single long
jump (see [39]), which is the main escape scenario for α-stable
noise with the small scale parameter σ . Analogous reasoning
cannot be performed for the mixture of α-stable and Gaussian
noises because typically the escape is no longer performed
via a single long jump. However, one can extend the consid-
erations performed in [96] based on the scaling properties of
the sums of a finite number of independent α-stable random
variables [97,98].

The stochastic driving in Eq. (1) consists of the sum of α-
stable and Gaussian white noises. The multiplicative constants
1 − λ and λ can be incorporated into the scale parameters σ

of the noise terms that grow over time. For the α-stable part,
one has

σα (t ) = (1 − λ)t1/α, (A2)

while for the Gaussian part,

σ2(t ) = λt1/2. (A3)

For α < 2, the scale parameter σ cannot be interpreted as the
standard deviation, as for α-stable densities with α < 2 the
variance diverges. However, for a finite number of jumps, N ,
the sample standard deviation remains finite and scales in the
way predicted by Eq. (A2), where t = N�t with �t being the
time between two consecutive jumps. Combining Eqs. (A2)
and (A3), one can calculate the sample variance under the
action of the mixture of noises,

σ 2
m(t ) = σ 2

α (t ) + σ 2
2 (t ) = (λ − 1)2t2/α + λ2t . (A4)

Approximately, the particle leaves the interval (−L, L) re-
stricted by two absorbing boundaries when

σ 2
m(t ) ≈ L2, (A5)

which results in the equation

(λ − 1)2t2/α + λ2t ≈ L2. (A6)

For α = 1 from Eq. (A6), one gets

t ≈
√

λ4 + 4L2(λ − 1)2 − λ2

2(λ − 1)2

= 2L2√
λ4 + 4L2(λ − 1)2 + λ2

. (A7)

For other values of the stability index α (except α = 2),
Eq. (A6) can be solved numerically.

In Fig. 8, the results of the numerical simulations are
compared with predictions of Eq. (A7) (with L = 1) showing
only qualitative agreement. The case of α = 2 reduces to the

1

1.1
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1.3

1.4

1.5

1.6

1.7

0 0.2 0.4 0.6 0.8 1

T

λ

FIG. 8. Points correspond to simulated MFPT in 1D with k = 1,
while a solid line depicts the prediction of Eq. (A7) with L = 1.

sum of two independent Gaussian white noises, which can be
replaced by a single noise term with the resultant σ .

APPENDIX B: POSITIVE HALF-LINE

The other classical escape setup is the escape of a free par-
ticle from the positive half-line, i.e., the particle motion starts
at x0 and is continued as long as x > 0. Under α-stable driv-
ing, a particle almost surely leaves the half-line, but such an
escape process cannot be characterized by the MFPT because
the latter diverges. For k = 1, under the action of the GWN,
the first passage times follow the Lévy-Smirnov distribution,

f (t |x0) =
√

x0

2πσ
exp

[
− x2

0

2σ 2t

]
× t− 3

2 . (B1)

The first passage time density has the power-law asymptotics

f (t |x0) ∝ t− 3
2 , (B2)

which is general asymptotics, as predicted by Sparre Andersen
[87,88], for any symmetric white driving. Consequently, the
asymptotics remains unaffected when the GWN is replaced
with an α-stable driving. Analogously, under the action of
the mixture of white noises, the asymptotics still follow t−3/2

decay. From the first passage time density, it is possible to cal-
culate the survival probability S(t |x0), which is the probability
that at time t , the particle has not left the domain of motion,

S(t |x0) = 1 −
∫ t

0
f (t ′|x0)dt ′ =

∫ ∞

t
f (t ′|x0)dt ′, (B3)

which has the universal t−1/2 asymptotic.
For higher-order processes, the situation is not as uniform,

as the exponent characterizing the power-law decay depends
on the stability index α. For the random acceleration process
[ẍ = ξ (t )] driven by the Lévy noise, the survival probability
has the following [90] asymptotics:

S(t ) ∝ t− 1
2+α . (B4)

For α = 2, it reduces to the known t−1/4 form; see [91,93,95].
Finally, for α = 2 with k → ∞, the survival probability de-
cays as t−3/16; see [90,94].
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