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Analytical potential formulae and fast algorithm for a horn torus resistor network
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In this paper, a (u + 1) × v horn torus resistor network with a special boundary is researched. According to
Kirchhoff’s law and the recursion-transform method, a model of the resistor network is established by the voltage
V and a perturbed tridiagonal Toeplitz matrix. We obtain the exact potential formula of a horn torus resistor
network. First, the orthogonal matrix transformation is constructed to obtain the eigenvalues and eigenvectors
of this perturbed tridiagonal Toeplitz matrix; second, the solution of the node voltage is given by using the
famous fifth kind of discrete sine transform (DST-V). We introduce Chebyshev polynomials to represent the
exact potential formula. In addition, the equivalent resistance formulae in special cases are given and displayed
by a three-dimensional dynamic view. Finally, a fast algorithm of computing potential is proposed by using
the mathematical model, famous DST-V, and fast matrix-vector multiplication. The exact potential formula and
the proposed fast algorithm realize large-scale fast and efficient operation for a (u + 1) × v horn torus resistor
network, respectively.
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I. INTRODUCTION

The resistor network model has a wide range of appli-
cations and plays an important role in physics and material
science. In 2010, in particular, the Nobel Prize in Physics was
awarded to the discoverer of the graphene network, which
not only proved that resistive networks exist in reality, but
also that they are of great value. In 2018, Hadad et al. [1]
established a model based on the work of Su, Schrieffer, and
Heeger, using a dimer circuit to achieve self-induced topo-
logical protection in nonlinear circuit arrays. In 2021, Zhang
et al. [2] studied an ERCM (enhanced reliability centered
maintenance) technology by establishing a resistor network
model and applied a resistance change method to material
damage detection for CFRPs (carbon fiber reinforced plastics)
panels damage location and pattern recognition. In the past
few years, many results have been achieved in the study of
resistor networks [3–15] and neural networks [16–22]. Since
Kirchhoff [3] established the basic circuit theory (node current
law and circuit voltage law) in 1845, the resistor network starts
to develop. In afterward research, Cserti [9] studied Green’s
function technology to solve the equivalent resistance problem
of the infinite network. Until 2004, Wu [10] put forward the
Laplacian matrix method of the resistor network. Shi et al.
[16,17] studied a discrete-time recurrent neural network. Liu
et al. [18] and Sun et al. [19] proposed different types of
the zeroing neural network. And Jin et al. [20–22] studied an
innovative control theory stimulated gradient neural network
algorithm.

*Corresponding author: zyf19970201@sina.com
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In the following research, researchers found several ef-
fective methods to solve the effective resistance of resistor
networks with different structures, but the potential formula
of complex networks is still an unsolved problem. In 2011,
Tan [23] established an advanced resistance network model
recursion-transform (RT) theory. After 2014, Tan made break-
throughs and proposed some network models (globe network,
fan network, etc.). With the development of RT theory, it is
divided into two methods: one is to establish the matrix equa-
tions model based on current parameters (RT-I) and the other
is to establish the matrix equations model based on voltage
parameters (RT-V). Tan [24] proposed an accurate potential
formula for solving arbitrary cobweb and fan networks using
voltage parameters (RT-V). After that, Z. Tan et al. [25] found
a nonregular fan network with any two boundaries and many
interesting networks SNAIL (simple neural attention meta-
learner) network and HART (highway addressable remote
transducer) network were obtained with different boundary
conditions. Since then, many achievements have been made
[26–33]. In 2020, Tan et al. [31] published the basic prin-
ciples of resistive networks and made breakthroughs, which
can be applied to various types of network structures and
solve the analytical solutions of complex networks, such as
the nonregular cylindrical network. In the same year, Tan
et al. [32] studied the network models of cylindrical networks
with arbitrary boundaries, including cobweb network, globe
network, and other multiple topologies. In 2021, Chen et al.
[33] proposed a complex impedance network model of two
terminal ladder networks and deduced the analytic formula
of its equivalent complex impedance of the n-order RLC net-
work. The above literature shows that much research is based
on RT methods to achieve breakthrough progress. The RT
method requires the use of a tridiagonal matrix to construct
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FIG. 1. (u + 1) × v horn torus network with (u + 1) horizontal
and v vertical grids and its horizontal resistances are rb. There are
u latitude lines, v longitude lines, and a zero potential point O. Let
Yk denote an arbitrary node along the longitude and the resistances
between Yu and O are 1

2 ra, while the resistances at all other nodes
along the longitude are ra.

a mathematical model and the eigenvalues of this matrix must
be used to express the exact potential formula. At present,
there have been many results on tridiagonal matrices [34–40],
which are also widely used. It can be said that it is a powerful
tool to solve the problem of the resistor network [24,41–
51]. The structure of things in the real world is diverse and
very complex and network models are also developing in a
diversified way. New network models need to be excavated.

The rest of this paper is organized as follows. In Sec. II, the
exact potential formulae of a (u + 1) × v horn torus resistor
network are given. In Sec. III, the detailed derivation process
of the exact potential formula is introduced. In Sec. IV, some
special cases of potential formula are discussed and displayed
by a three-dimensional (3D) dynamic view. In Sec. V, a fast
algorithm of computing potential is proposed by using the
mathematical model, famous DST-V, and fast matrix-vector
multiplication. Finally, the paper is summarized in Sec. VI.

II. EXACT POTENTIAL FORMULAE

In this section, we will give the exact potential formula of
the horn torus resistor network and give a potential formula of
the infinite network. Through the 3D dynamic view, we will
show the whole process of the changing graph for the potential
with the current input and output point change.

A (u + 1) × v horn torus resistor network is proposed, of
which u + 1 and v are the numbers of grids along latitude and
longitude directions as shown in Fig. 1 and its horizontal resis-
tances are rb. There are u latitude lines, v longitude lines, and
a zero potential point O. Yk denotes an arbitrary node along
the longitude and the resistances between Yu and O are 1

2 ra,
while the resistances at all other nodes along the longitude
are ra. Set the potential of O point to zero, the U/J axis is
taken as Y, and the coordinates {x, y} represent the nodes of
the network. The current J flows in from d1(x1, y1) and flows
out from d2(x2, y2). For the convenience of expression, we
abbreviate U(u+1)×v(x,y)/J as Uu×v (x, y)/J and the potential of
any node of any horn torus resistor network can be expressed

FIG. 2. Segment of the horn torus resistor network with potential
parameters.

as follows:

Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

A f , (1)

where

A f =
(

�
( f )
x1,xKy1, f − �

( f )
x2,xKy2, f

G( f )
v+1 − G( f )

v−1 − 2

)
Ky, f ,

� ( f )
xm,x = G( f )

v−|xm−x| + G( f )
|xm−x|, m = 1, 2, (2)

G( f )
g (cosh ϕ f ) = sinh(gϕ f )

sinh(ϕ f )
, cosh ϕ f = ι f /2, ϕ f > 0,

(3)

g = v − |x1 − x|, |x1 − x|, v − |x2 − x|, |x2 − x|, v + 1, v − 1,

f = 1, 2, . . . , u,

Kq, f = sin
2q f π

2u + 1
, q = y1, y2, y, (4)

ι f = 2 + 2rb

ra
− 2rb

ra
cos

2 f π

2u + 1
. (5)

In particular, the input and output points can be one or
more, so formula (1) applies to all coordinate points (xg, yg)
(0 � g � v). Therefore, q can also be y3, y4, . . . , yg.
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FIG. 3. 3D view for U90×90(x, y)/J with the current input and
output point.

When Fig. 2 is a semi-infinite network, the nodal potential
in the horn torus resistor network is denoted by

Uu×∞(x, y)

J
= 8rb

2u + 1

u∑
f =1

sinh(ϕ f )B f Ky, f , (6)

where

B f =
((

e−|x1−x|ϕ f Ky1, f − e−|x2−x|ϕ f Ky2, f
)

ι2f − 4

)
.

ϕ f , Kq, f , and ι f are the same as Eqs. (3), (4), and (5), re-
spectively. Formula (6) is the potential formula for any point
d (x, y) in the horn torus resistor network.

Remark. Based on formula (1) of the resistor network, as
shown in Fig. 3, we dynamically displayed the changing graph
of the potential with the current input point [d1(x1, y1)] and
output point [d2(x2, y2)] change, which can more intuitively
feel the whole change process through the image, providing
a dynamic visualization case analysis for the research of the
resistor network.

III. DERIVATION OF POTENTIAL FORMULA

A. Overall idea and design

So as to calculate the potential of the nodes in the horn
torus resistor network, assume that the current J goes from
d1(x1, y1) input to d2(x2, y2) output. Figure 2 shows the volt-
ages of the resistor network. All the voltages in the horizontal
direction are represented as V ( f )

1 ,V ( f )
2 , . . . ,V ( f )

v (0 � f � u),
where the resistance is rb, and all the voltages in the vertical
direction are represented as V (1)

g ,V (2)
g , . . . ,V (u)

g (0 � g � v),
where the resistance is ra.

Suppose that the potential of O points to zero; then cal-
culating the node potential between any two points can be
described as

Uu×v (x, y) = V (y)
x − 0 = V (y)

x , (7)

where V (y)
x is denoted by voltage.

B. Modeling on account of Kirchhoff’s law and
a perturbed tridiagonal Toeplitz matrix

The establishment of the network model is essential, so in
this section we will model the network through the analysis of
the network and give the boundary equations.

First of all, we cut off a partial resistor network as shown
in Fig. 2. Applying Kirchhoff’s law, the recurrence relation
equations of node potential are obtained as follows:

V (1)
g+1 = (2 + 2σ )V (1)

g − σV (2)
g − V (1)

g−1,

f = 1, 0 � g � v,

V ( f )
g+1 = (2 + 2σ )V ( f )

g − σV ( f −1)
g − σV ( f +1)

g − V ( f )
g−1,

1 < f < u, 0 � g � v,

V (u)
g+1 = (2 + 3σ )V (u)

g − σV (u−1)
g − V (u)

g−1,

f = u, 0 � g � v, (8)

where σ = rb/ra. By Eq. (8), we get a general matrix equation

Vg+1 = QuVg − Vg−1 − rIg, (9)

where Vg and Ig are the u × 1 column matrices separately and
can be described by

Vg = [
V (1)

g ,V (2)
g ,V (3)

g , . . . ,V (u)
g

]T
(0 � g � v), (10)

Ig = J (ξy1,g − ξy2,g), (11)

the function ξy,g is defined as ξy,g(y = g) = 1, ξg,y(y �= g) = 0,
the matrix Qu is a u × u perturbed tridiagonal Toeplitz matrix,

Qu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 + 2σ −σ 0 · · · · · · 0

−σ 2 + 2σ −σ
. . .

...

0 −σ
. . .

. . .
. . .

...
...

. . .
. . .

. . . −σ 0
...

. . . −σ 2 + 2σ −σ

0 · · · · · · 0 −σ 2 + 3σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u×u

,

(12)

and σ = rb/ra. The matrix equation model of a (u + 1) × v

horn torus resistor network is Eq. (9).
Secondly, in light of the RT-V method, we need to apply

Kirchhoff’s law to establish boundary condition equations by
the left and right edges,

Vv−1 + V1 = QuV0 (13)

and

V0 = Vv = QuVv−1 − Vv−2, (14)

where matrix Qu is given by Eq. (12). Owing to its periodicity,
V0 = Vv .

The potential formula (1) we need is obtained by Eqs. (9),
(10), (11), (12), (13), and (14), but Eq. (9) is an extremely
complex matrix equation, which cannot be directly solved by
using ordinary methods.
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C. Horadam sequence and the orthogonal diagonalization
of the matrix Qu

In this section, in order to improve the actual performance
and realize the fast algorithm for computing the potential, we
introduce the famous Horadam sequence represented by the
Chebyshev polynomial of the second kind and the fifth kind
of discrete sine transformation.

Different from the RT method, we use the Chebyshev
polynomials of the second kind to denote the Horadam se-
quence. The Horadam sequence is defined by the following
conditions:

Wg = dWg−1 − qWg−2, W0 = a, W1 = b, (15)

where g ∈ N, g � 2, a, b, d, q ∈ C, N is the set of all natural
numbers, and C is the set of all complex numbers.

We know that the Horadam sequence [52] represented by
Chebyshev polynomials of the second kind is

Wg = (
√

q)g

[
b√
q

Ug−1

(
d

2
√

q

)
− aUg−2

(
d

2
√

q

)]
,

where

Ug(cos ϕ) = sin(g + 1)ϕ

sin ϕ
, cos ϕ = d

2
√

q
, ϕ ∈ C (16)

are the Chebyshev polynomials of the second kind [53].
In physics, we need to convert to a real number field. Since

Eq. (16) is a representation in the complex number field, the
representation in the real number field is as follows:

Ug(cosh ϕ) = sinh(g + 1)ϕ

sinh ϕ
, cosh ϕ = d

2
√

q
, ϕ ∈ R.

If we put q = 1, d = ι f , a, and b, in (15), we obtain the
sequence (R( f )

g )g�0, where

R( f )
g = bU ( f )

g−1

( ι f

2

)
− aU ( f )

g−2

( ι f

2

)
, (17)

U ( f )
g (cosh ϕ f ) = sinh(g + 1)ϕ f

sinh ϕ f
.

ϕ f and ι f are given in Eqs. (3) and Eqs. (5), respectively.
In order to obtain an analytical solution of the potential and

a fast numerical algorithm for computing the potential, let us
first give the orthogonal diagonalization of the matrix Qu.

Qu is given in Eq. (12). Then the eigenvalues ι1, . . . , ιu of
Qu are given by

ι f = 2 + 2rb

ra
− 2rb

ra
cos

2 f π

2u + 1
(18)

and the corresponding eigenvectors ω( f ) = (ω( f )
1 , . . . , ω

( f )
u )†

are given by

ω( f )
v = 2√

2u + 1
sin

2v f π

2u + 1
,

v = 1, 2, . . . , u, f = 1, 2, . . . , u. (19)

Let

SV
u = 2√

2u + 1

(
sin

2 f vπ

2u + 1

)u

v, f =1

.

Clearly, the matrix SV
u is the famous fifth kind of discrete

sine transform (DST-V) [54–56]. SV
u is an orthogonal matrix

and the inverse of SV
u is actually SV

u , i.e.,(
SV

u

)−1 = (
SV

u

)T = SV
u . (20)

By calculation we obtain the orthogonal diagonalization of
the matrix Qu as follows:(

SV
u

)−1
Qu

(
SV

u

) = diag(ι1, ι2, . . . , ιu), (21)

i.e.,

Qu = (
SV

u

)
diag(ι1, ι2, . . . , ιu)

(
SV

u

)−1
.

According to Eq. (21), the eigenvalues ι f , f = 1, 2, . . . , u
in Eq. (18) and the eigenvectors ω( f ) = (ω( f )

1 , . . . , ω
( f )
u )† in

Eq. (19) are obtained, respectively.

D. Orthogonal matrix transform method

In this section, we solve Eq. (9) by orthogonal matrix
transformation. First, we multiply the left side of Eq. (9) by
an orthogonal matrix SV

u , which is the fifth kind of discrete
sine transformation matrix, and we obtain

SV
u Vg+1 = SV

u QuVg − SV
u Vg−1 − rSV

u Ig. (22)

By Eqs. (20) and (21), we have

SV
u Qu = TuSV

u , (23)

where Tu = diag(ι1, ι2, . . . , ιu).
By Eqs. (22) and (23), we have

SV
u Vg = Rg, Vg = SV

u Rg, (24)

where Rg is the u × 1 column vector, i.e.,

Rg = [
R(1)

g , R(2)
g , . . . , R(u)

g

]T
(0 � g � v). (25)

Combining Eqs. (23) and (24) with Eq. (22), we have the
following equation:

R( f )
g+1 = ι f R( f )

g − R( f )
g−1 − rJεy, f , (26)

where

ε1, f = 2√
2u + 1

sin

(
2y1 f π

2u + 1

)
,

ε2, f = − 2√
2u + 1

sin

(
2y2 f π

2u + 1

)
.

(27)

After that, multiplying Eqs. (13) and (14) from the left-
hand side by matrix SV

u , the following equations are derived:

R( f )
v−1 + R( f )

1 = ι f R( f )
0 (28)

and

R( f )
0 = R( f )

v = ι f R( f )
v−1 − R( f )

v−2. (29)

E. Analytical solution of matrix equation expressed
by Chebyshev polynomials

In this section, let G( f )
g = U ( f )

g−1. By Eqs. (26), (28), (29),

and (17), the exact solution of R( f )
g will be derived. Presuming

that the current J is input from d1(x1, y1) and output from
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d2(x2, y2), the piecewise solution is obtained from formula
(26):

R( f )
g = R( f )

1 G( f )
g − R( f )

0 G( f )
g−1, 0 � g � x1, (30)

R( f )
x1+1 = ι f R( f )

x1
− R( f )

x1−1 − rJε1, f , (31)

R( f )
g = R( f )

x1+1G( f )
g−x1

− R( f )
x1

G( f )
g−x1−1, x1 � g � x2, (32)

R( f )
x2+1 = ι f R( f )

x2
− R( f )

x2−1 − rJε2, f , (33)

R( f )
g = R( f )

x2+1G( f )
g−x2

− R( f )
x2

G( f )
g−x2−1, x2 � g � v, (34)

where G( f )
g has been defined in Eq. (3).

By solving Eqs. (28), (29), (30), (31), (32), (33), and (34),
the general solution of R( f )

g is obtained as follows:

R( f )
x = rbJ

�
( f )
x1,xε1, f + �

( f )
x2,xε2, f

G( f )
v+1 − G( f )

v−1 − 2
, 0 � x � v, 1 � f � u,

(35)
where �

( f )
xm,x, ε1, f , ε2, f , and G( f )

g are given by Eqs. (2), (27),
and (3), respectively.

The above results in a complicated expression R( f )
g com-

posed of three piecewise functions. According to the general
solution Eq. (35), we can calculate the branch voltage and
node potential.

F. Derivation of an analytical formula for the potential

In this section, we will deduce the final potential formula
and discuss interesting formulae for finite or infinite con-
ditions. Above all, we use the general solution of R( f )

g to
calculate the node potential. The node voltage V ( f )

g is gained
by means of Eq. (24):

V (y)
x = 2√

2u + 1

u∑
f =1

sin

(
2y f π

2u + 1

)
R( f )

x . (36)

By Eqs. (35) and (36), we have

V (y)
x = 2rbJ√

2u + 1

u∑
f =1

D f , (37)

where

D f =
(

�
( f )
x1,xε1, f + �

( f )
x2,xε2, f

G( f )
v+1 − G( f )

v−1 − 2

)
sin

(
2y f π

2u + 1

)
,

�
( f )
xm,x, G( f )

g , ε1, f , and ε2, f are defined in Eqs. (2), (3), and (27),
respectively.

Furthermore, when v tends to infinity but u is finite, the
following formula will be obtained by means of Eqs. (3)
and (5):

lim
v→∞

G( f )
v−|g−x| + G( f )

|g−x|
G( f )

v+1 − G( f )
v−1 − 2

= 2 sinh(ϕ f )
e−|g−x|ϕ f

ι2f − 4
, (38)

where ϕ f and ι f are the same as Eqs. (3) and (5).
By Eqs. (38) and (37), we obtain

Uu×∞(x, y)

J
= 4rb√

2u + 1

u∑
f =1

E f sin
2y f π

2u + 1
, (39)

where

E f =
(

(e−|x1−x|ϕ f ε1, f + e−|x2−x|ϕ f ε2, f ) sinh(ϕ f )

ι2f − 4

)
.

ε1, f , ε2, f and ι f are given by Eqs. (27) and (5), respectively.
By Eqs. (27) and (39), we obtain Eq. (6).

Up to now, by bringing formula (27) into formula (37),
formula (1) is obtained. Two general potential formulae (1)
and (6) of a (u + 1) × v horn torus resistor network have been
proved.

IV. SEVERAL CASES OF INTERESTING FORMS
FOR POTENTIAL FORMULAE

Since formula (1) is a general potential conclusion of a
horn torus resistor network includes all cases. If taking some
special conditions in formula (1), then we get a series of
fascinating results under various parameters. The environment
of special cases is carried out in a (u + 1) × v horn torus
resistor network as shown in Fig. 1. Presuming that O = 0
is the origin, the current J input at the node d1(x1, y1) and exit
at the node d2(x1, y2).

Case 1. Suppose the current J flows in from the origin O =
0 and out from d (x, y); the potential of any two points can be
written as

Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

(
�

( f )
x1,xKy1, f Ky, f

G( f )
v+1 − G( f )

v−1 − 2

)
,

where �
( f )
x1,x, G( f )

g , and Kq, f are the same as Eqs. (2), (3), and
(4), respectively.

When u = v = 90, x1 = y1 = 40, x2 = y2 = 0, and ra =
rb = 1, the following formula is obtained:

U90×90(x, y)

J
= 4

181

90∑
f =1

G f , (40)

where

G f =
(

sin
( 80 f π

181

)
sin 2y f π

181

G( f )
91 − 2G( f )

89 − 2

)
�

( f )
40,x, (41)

�
( f )
40,x = (

G( f )
90−|40−x| + G( f )

|40−x|
)
,

G( f )
g (cosh ϕ f ) = sinh(gϕ f )

sinh ϕ f
, cosh ϕ f =

(
2 − cos

2 f π

181

)
,

(42)

g = 90 − |40 − x|, |40 − x|, 91, 89, f = 1, 2, . . . , 90.

The 3D view is shown in Fig. 4 by MATLAB.
Case 2. Presume that when the current J is injected at node

d1(x1, y1) and the current J is withdrawn at node d2(x1, y2),
the potential of any node d (x, y) is

Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

H f Ky, f ,
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FIG. 4. 3D view for the U90×90(x, y)/J in Eq. (40).

where

H f =
((

Ky1, f − Ky2, f
)
�

( f )
x1,x

G( f )
v+1 − G( f )

v−1 − 2

)
,

and �
( f )
x1,x, G( f )

g , and Kq, f are defined in Eqs. (2), (3), and (4),
respectively.

When u = v = 90, x1 = x2 = y1 = 40, y2 = 30, and ra =
rb = 1, the following formula is gained:

U90×90(x, y)

J
= 4

181

90∑
f =1

I f sin
2y f π

181
, (43)

where

I f =
([

sin
( 80 f π

181

) − sin
( 60 f π

181

)]
G( f )

91 − G( f )
89 − 2

)
�

( f )
40,x

and �
( f )
40,x and G( f )

g are given in Eqs. (41) and (42), respec-
tively. The 3D view is shown in Fig. 5.

Case 3. When the current J enters from node d1(x1, y1) to
node d2(x2, y1), in other words, y1 = y2. From formula (1), the
potential of any node d (x, y) can be written as

Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

J f ,

where

J f =
(

Ky1, f Ky, f

G( f )
v+1 − G( f )

v−1 − 2

)
(� ( f )

x1,x + � ( f )
x2,x ),

FIG. 5. 3D view for the U90×90(x, y)/J in Eq. (43).

FIG. 6. 3D view for the U90×90(x, y)/J in Eq. (44).

and �
( f )
xm,x, G( f )

g , and Kq, f are defined in Eqs. (2), (3), and (4),
respectively.

When u = v = 90, x1 = y1 = y2 = 40, x2 = 30, and
ra = rb = 1, the following formula is obtained:

U90×90(x, y)

J
= 4

181

90∑
f =1

K f , (44)

where

K f =
(

cos
( 80 f π

181

)
sin 2y f π

181

G( f )
91 − G( f )

89 − 2

)(
�

( f )
40,x + �

( f )
30,x

)
,

(45)
�

( f )
30,x = (

G( f )
90−|30−x| + G( f )

|30−x|
)
,

and �
( f )
40,x and G( f )

g (g = 90 − |40 − x|, |40 − x|, 90 − |30 −
x|, |30 − x|, 91, 89) are given by Eqs. (41) and (42), respec-
tively. The effective resistance is shown in Fig. 6.

Case 4. Presuming that dh(xh, y1)(h = 1, 2, . . . , s) enters
the node at the same latitude as J/s and the current flows out
from O(0, 0) as J , the potential formula is obtained:

U (x, y)

J
= 4rb

2u + 1

u∑
f =1

L f ,

where

L f = Ky1, jKy, j

G( f )
v+1 − G( f )

v−1 − 2

(
1

s

s∑
h=1

� ( f )
xh,x

)
,

�
( f )
xh,x is given by Eq. (2), and G( f )

g and Kq, f are the same as
Eqs. (3) and (4), respectively.

When h = 1, 2, 3, s = 3, u = v = 90, x1 = 50, x2 =
40, x3 = 30, y1 = y2 = y3 = 30, and ra = rb = 1, the fol-
lowing formula is deduced:

U90×90(x, y)

J
= 4

181

90∑
f =1

M f , (46)

where

M f = sin
( 80 f π

181

)
sin

( 2y f π
181

)
G( f )

91 − G( f )
89 − 2

(
1

3

(
�

( f )
50,x + �

( f )
40,x + �

( f )
30,x

))
,

�
( f )
50,x = (

G( f )
90−|50−x| + G( f )

|50−x|
)
.
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FIG. 7. 3D view for the U90×90(x, y)/J in Eq. (46).

�
( f )
40,x,�

( f )
30,x and G( f )

g (g = 90 − |50 − x|, |50 − x|, 90 −
|40 − x|, |40 − x|, 90 − |30 − x|, |30 − x|, 91, 89) are
given by Eqs. (41), (45), and (42), respectively. The 3D view
is shown in Fig. 7.

Case 5. At the same time, the effective resistance from
d1(x1, y1) to d2(x2, y2) can also be gained,

Ru×v (d1, d2) = 4rb

2n + 1

u∑
f =1

N f , (47)

where

N f =
(

G( f )
v

(
K2

y1, f + K2
y2, f

) − 2�
( f )
x2,x1 Ky1, f Ky2, f

G( f )
v+1 − G( f )

v−1 − 2

)
,

and �
( f )
x1,x, G( f )

g , and Kq, f are defined in Eqs. (2), (3), and (4),
respectively.

In the scale of u × v(90 × 90), we take y1 and y2 as vari-
ables. When the coordinate x1 = x2 = 80 and ra = rb = 1, the
following formula is deduced:

R90×90(d1, d2) = 4

181

90∑
f =1

O f , (48)

where

O f =
(

G( f )
90

(
K2

y1, f + K2
y2, f

) − 2�
( f )
80,80Ky1, f Ky2, f

G( f )
91 − G( f )

89 − 2

)

and �
( f )
80,80 = G( f )

90 + G( f )
0 , G( f )

g (g = 90, 0, 91, 89) is given by
Eq. (42). The 3D view is shown in Fig. 8.

FIG. 8. 3D view for the U90×90(x, y)/J in Eq. (48).

Proof of Eq. (47). Presuming the potentials at nodes of
d1(x1, y1) and d2(x2, y2) are U1 and U2, using Ohm’s law
yields

Ru×v (d1, d2) = 1

J
(U1 − U2). (49)

Replacing (x, y) = (x1, y1) and (x, y) = (x2, y2) into Eq. (1),
the following formula is obtained:

U1

J
= Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

P f , (50)

where

P f =
(

�
( f )
x1,x1 Ky1, f − �

( f )
x2,x1 Ky2, f

G( f )
v+1 − G( f )

v−1 − 2

)
Ky1, f ,

�
( f )
x1,x, G( f )

g , and Kq, f are defined in Eqs. (2), (3), and (4),
respectively,

U2

J
= Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

Q f , (51)

where

Q f =
(

�
( f )
x1,x2 Ky1, f − �

( f )
x2,x2 Ky2, f

G( f )
v+1 − G( f )

v−1 − 2

)
Ky2, f ,

and �
( f )
xm,x, G( f )

g , and Kq, f are defined in Eqs. (2), (3), and (4),
respectively. Placing Eqs. (50) and (51) into Eq. (49) gains
Eq. (47), where Kq, f is defined in Eq. (4).

Case 6. Assuming that the current J goes from d1(x1, y1) to
the two output nodes of d2(x2, y2) and d3(x3, y3), where two
output currents are respectively J/2, this situation is regarded
as two independent current sources. From formula (1), the
potential formula of an arbitrary node d (x, y) in the horn torus
network can be written as

U (x, y)

J
= 2rb

2u + 1

u∑
f =1

R f Ky, f ,

where

R f =
(

2�
( f )
x1,xKy1, f − �

( f )
x2,xKy2, f − �

( f )
x3,xKy3, f

G( f )
v+1 − G( f )

v−1 − 2

)
,

�
( f )
xm,x is given by Eq. (2) with m = 1, 2, 3. The G( f )

g and Kq, f

are the same as Eqs. (3) and (4), respectively.
When u = v = 90, x1 = 60, x2 = y1 = 40, y2 =

30, x3 = y3 = 20, and ra = rb = 1, the following formula is
deduced:

U90×90(x, y)

J
= 2

181

90∑
f =1

S f sin
2y f π

181
, (52)

where

S f =
(

2�
( f )
60,x sin 80 f π

181 − �
( f )
40,x sin 60 f π

181 − �
( f )
20,x sin 40 f π

181

G( f )
91 − G( f )

89 − 2

)
,

�
( f )
xm,x = G( f )

v−|xm−x| + G( f )
|xm−x|, m = 1, 2, 3, G( f )

g is given
by Eq. (42), and g = 90 − |60 − x|, |60 − x|, 90 − |40 −
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FIG. 9. 3D view for the U90×90(x, y)/J in Eq. (52).

x|, |40 − x|, 90 − |20 − x|, |20 − x|, 91, 89. The 3D view
is shown in Fig. 9.

Case 7. When x1 = x2 = 0, we can get the potential for-
mula of node (0, 0) and node (x, y) as follows:

Uu×v (x, y)

J
= 4rb

2u + 1

u∑
f =1

T f Ky, f ,

where

T f =
(

�
( f )
x1,xKy1, f − �

( f )
x2,xKy2, f

G( f )
v+1 − G( f )

v−1 − 2

)
,

and �
( f )
xm,x, G( f )

g , and Kq, f are defined in Eqs. (2), (3), and (4),
respectively.

When u = v = 90, x1 = y1 = y2 = 40, x2 = 0, and ra =
1, rb = 90, we can get

U90×90(x, y)

J
= 360

181

90∑
f =1

U f , (53)

where

U f =
(
�

(f )
40,xK40, f −�

(f )
0,x sin 80f π

181

G(f )
91 − G(f )

89 − 2

)
sin

2 f yπ

181
,

�
( f )
0,x = G( f )

90−|−x| + G( f )
|−x|,

�
( f )
40,x, G( f )

g are given by Eqs. (41) and (42), and g = 90 −
|40 − x|, |40 − x|, 90 − x, x, 91, 89. The 3D view is shown
in Fig. 10.

FIG. 10. 3D view for the U90×90(x, y)/J in Eq. (53).

V. FAST NUMERICAL ALGORITHM FOR COMPUTING
Uu×v (x, y)/J

In order to realize fast calculation of the potential for large-
scale resistor networks, in this section, by summarizing the
previous discussion and analysis, we give a fast numerical
algorithm of the potential by Eqs. (3), (5), (7), (9), (10), (11),
(24), (25), and (35) and the famous fifth kind of discrete sine
transform (DST-V).

Algorithm 1 Fast matrix-vector multiplication Quv = y

Step 1. Compute y1 by the equation
y1 = (2 + 2σ )v1 − σv2;

Step 2. Cycle computing yi by the equation
yi = (−σ )vi−1 + (2 + 2σ )vi − σvi+1,

i = 2, . . . , u − 1;
Step 3. Compute yu by the equation

yu = (−σ )vu−1 + (2 + 3σ )vu.

Algorithm 2 Fast algorithm for computing Uu×v (x, y)/J

Step 1. Compute ι f by Eq. (5), f = 1, 2, . . . , u;
Step 2. Compute

cosh ϕ f = ι f

2 , f = 1, 2, . . . , u;
Step 3. Compute G( f )

g by Eq. (3),
g = v − |xt − x|, |xt − x|, v + 1, v − 1,

t = 1, 2, f = 1, 2, . . . , u;
Step 4. Compute R( f )

x by Eq. (35),
x = 0, 1; f = 1, 2, . . . , u;

Step 5. Compute Vg by Eqs. (24), (25), and
DST-V, g = 0, 1;

Step 6. Compute QuVg by the algorithm 1,
g = 1, 2, . . .;

Step 7. Cycle computing Vg by Eqs. (9), (10),
and (11), g = 2, 3, . . .;

Step 8. Compute Uu×v (x, y)/J by Eq. (7).

The general idea of a fast numerical algorithm is as fol-
lows: R0 and R1 can be obtained through Eq. (35); V0 and
V1 can be obtained by the Vg = SV

u Rg, R0, and R1; V2 can
be calculated by Eq. (9), fast matrix-vector multiplication, V0

and V1; and so on.
As is well known, the complexity of tridiagonal matrix-

vector multiplication is O(n), which is the same as Algorithm
1. Moreover, one DST-V needs 2n log2 n + O(n) real arith-
metic operations [56,57]. So the complexity of Algorithm 2
is 4n log2 n + O(n), which consists of two DST-V and Algo-
rithm 1. According to the above two algorithms, two examples
are used to vividly show the iterative effect of large-scale data.

Example 1. In the network with u = 300 and v = 10, the
current flows in from (x1, y1)(x1 = 2, y1 = 200) and out from
(x2, y2)(x2 = 8, y2 = 80). Let rb = 1, ra = 100, and J = 1.
According to the results of computing U300×10(x, y)/J by Al-
gorithm 2, we can get a 3D graph (Fig. 11).

Example 2. In the scale of u × v(1000 × 10), when the
current x1 = 2, x2 = 8, y1 = 700, y2 = 400, rb = 1, ra =
100, and J = 1. The results of computing U1000×10(x, y)/J by
Algorithm 2 are shown in Fig. 12.

044123-8



ANALYTICAL POTENTIAL FORMULAE AND FAST … PHYSICAL REVIEW E 107, 044123 (2023)

FIG. 11. 3D graph for the changes of U300×10(x, y)/J with x and y.

VI. CONCLUSIONS

The main innovation of this paper is to derive a resistor
network model, i.e., the horn torus resistor network model,
based on which an exact potential formula and a fast algorithm
are proposed. The process of forming a 3D dynamic view
for some interesting potential functions are vividly displayed.
This makes the calculation of the resistor network not only
limited to manual calculation, but also realized for fast calcu-
lation of potential for large-scale resistor networks. The horn
torus-resistor network provides a network model and tool for
many fields such as natural science. It provides substantial
development for promoting the diversity of resistor network
models. Horn torus networks often appear in the research

FIG. 12. A 3D graph for the changes of U1000×10(x, y)/J with x
and y.

of astronomy and cosmology, as well as in the “Topological
spin exceptions on a rigid torus” [58]. It is expected that the
research ideas and methods in this paper can also be used
to study relevant scientific problems in the above fields. In
addition, by using the idea and method of the studying resistor
network, it would interesting to study the recurrent neural
network [16–22]. That will be our next step.
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