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Geometric Brownian information engine: Essentials for the best performance
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We investigate a geometric Brownian information engine (GBIE) in the presence of an error-free feedback
controller that transforms the information gathered on the state of Brownian particles entrapped in monolobal
geometric confinement into extractable work. Outcomes of the information engine depend on the reference
measurement distance x,,, the feedback site xy, and the transverse force G. We determine the benchmarks for
utilizing the available information in an output work and the optimum operating requisites for best achievable
work. Transverse bias force (G) tunes the entropic contribution in the effective potential and hence the standard
deviation (o) of the equilibrium marginal probability distribution. We recognize that the amount of extractable
work reaches a global maximum when x; = 2x,, with x,, ~ 0.60, irrespective of the extent of the entropic
limitation. Because of the higher loss of information during the relaxation process, the best achievable work
of a GBIE is lower in an entropic system. The feedback regulation also bears the unidirectional passage of
particles. The average displacement increases with growing entropic control and is maximum when x,, ~ 0.81c.
Finally, we explore the efficacy of the information engine, a quantity that regulates the efficiency in utilizing the
information acquired. With x; = 2x,,, the maximum efficacy reduces with increasing entropic control and shows
a crossover from 2 to 11/9. We discover that the condition for the best efficacy depends only on the confinement
lengthscale along the feedback direction. The broader marginal probability distribution accredits the increased

average displacement in a cycle and the lower efficacy in an entropy-dominated system.
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I. INTRODUCTION

In 1867, Maxwell proposed a hypothetical experiment
(Maxwell’s demon) that inspects gas molecules in a single
heat bath and utilizes the obtained information to extract
work, thus apparently violating the second law of ther-
modynamics [1,2]. Resolution of the paradox unveiled the
connection between the thermodynamic entropy and the in-
formation gathered from the measurement [3-5]. Szilard’s
engine, which involves a feedback-controlled measurement
process and work that is extracted using the collected infor-
mation, serves as the foremost benchmark for this apparent
paradox [6]. Recently, Sagawa and Ueda provided the quan-
titative association between entropy and information in the
information-fluctuation theorem [7-9], which designates the
bound on the work [10] obtained from the available infor-
mation. These developments spread the notion of information
engines, a system that extracts work from a single heat bath
using the mutual information earned from the measurement.
Execution of a feedback protocol [7-9,11-26], although not
limited to Refs. [27-31], is a widely popular mechanism
to devise an information engine. Due to their consequences
in living systems, several variants of information engines
at the mesoscopic level have been studied theoretically,
in both classical [12-14] and quantum systems [7,15-17],
and validated through experiments [20,22-26]. In many
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occurrences, a Brownian particle serves as a functional
substance [18-23].

Brownian information engines are typically realized by
confining particles in monostable or bistable optical traps
and implementing an appropriate feedback controller across
an operating direction. The upper bound of the achievable
work from a Brownian information engine and its optimum
functional recipe have been explored recently [21-23]. The
capacity of extractable work from such Brownian information
engines depends on the strength (frequency) of the con-
fining potential as the latter influences both measurement
unpredictability and the relaxation process after the feedback
operation. Therefore, the standard deviation of the equilibrium
distribution of the particle inside the confining potential plays
a central role in determining the best performance prescrip-
tion. Scrutiny of the total information accumulated through
the measurement process and the loss during the relaxation
step shows that the Brownian information engine can act as a
lossless engine under an error-free estimation [22].

An overwhelming majority of these studies [18-23,32-38]
(but not [39]) uses a harmonic or bistable energetic con-
fining potential to set up a Brownian information engine.
Therefore, the following questions immediately emerge: (a)
Can one actualize a Brownian information engine without
external confining potentials? (b) If so, what will be the un-
derlying working principle and performance ability? Recently,
we have detailed one of such type, namely a geometrical
Brownian information engine [39]. We examined the motion
of a free Brownian particle inside a two-dimensional (2D)
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narrow channel (mesoscopic scale) with varying width across
the transport direction. By introducing an appropriate feed-
back controller, we have determined the upper bound of the
extractable work. The particles confined in such geometry
with uneven boundaries experience an effective entropic po-
tential along the transport direction. The entropic potential
appears as a logarithmic function of the phase-space and is
scaled with thermal energy. The equilibrium marginal prob-
ability distribution in reduced dimension shapes an inverted
parabolic distribution in a purely energy-controlled regime.
This affects both the total information gathered during the
process and the amount of unavailable information caused
by the relaxation process. Consequently, the upper bound of
the maximum achievable work from a Brownian informa-
tion engine in a purely entropy managed condition is less
[(5/3 —21In2)kgT] [39] than an analogous energetic engine
(kgT /2) [14]. Therefore, it will be interesting to explore the
working policy of such a geometric Brownian information
engine (GBIE) and its outgrowths in detail, and hence com-
pare the best performance requirements of an entropy-driven
information engine with an analogous energetic device. Other
than utilizing available information as useful work, the feed-
back process results in a unidirectional passage of the particle.
Thus, analyzing how entropic limitation impacts the average
displacement per cycle will also be crucial. The efficacy of
an information engine is another factor that warrants atten-
tion [9]. The efficacy measures the uses of the information
gathered through a measurement and gets influenced by re-
laxation pathways. The information loss during the relaxation
in a GBIE differs from its energetic analog, and it will be
exciting to examine how the efficacy develops in increasing
entropic control.

In this context, it is noteworthy that the diffusive transport
of micro-objects inside a narrow channel has received sub-
stantial attention in the recent past [40-60]. Understanding
such constrained motion is essential in biological processes
such as ions passing through a membrane [61], translocation
of polymers through narrow pores [62—-64], and chemical re-
actions in a constrained space [65,66]. Zwanzig derived the
theoretical formulation of diffusion inside a restrained channel
with irregular boundaries [40]. The diffusion process reduces
into a one-dimensional Fick-Jacobs equation in which the
effect of varying curvature is considered through an effective
entropic potential of the form kgT In (2(x)), where 2(x) rep-
resents the phase-space of the device. Interestingly, a similar
type of logarithmic potential appears as a working potential in
various biophysical processes, such as optically trapped cold
atoms [67-70], DNA unzipping events [71-75], and many
others [76-81].

This paper documents the working principles and provi-
sions of the best production of a GBIE. We study a Brownian
particle trapped in a two-dimensional monostable spatial
confinement and restrained to a constant bias force (G) per-
pendicular to the longitudinal direction, as shown in Fig. 1
and in the spirit of [39]. The transverse external force G
regulates the entropic contribution to the effective poten-
tial. We then introduce a feedback controller that consists of
three steps: measurement, feedback, and relaxation to com-
plete the cycle, as depicted in Fig. 2. The particle inside
the uneven confinement experiences an effective potential

FIG. 1. Schematic illustration of two-dimensional monolobal
confinement. w,(x) and w;(x) are the boundary functions of the
confinement. x, and y, are characteristic length scales that describe
the confinement boundary. w(x) is the local half-width at x. G de-
notes the external transverse force acting orthogonal to the feedback
direction.

across the feedback direction. Because of the nontrivial inter-
play between thermal fluctuations, the phase space-dependent
effective potential, and the external force (G), the achieve-
ments of the information engines would alter significantly for
varying measurement distances and feedback locations. We
identified the favorable condition in which the device acted as
an engine, and we explored the optimum requisites to achieve
maximum work. Using the generalized integral-fluctuation
relation, we have shown that a GBIE can transform all the
available information to output work and, therefore, perform
as a lossless information engine. We have also explored the
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FIG. 2. Schematic representation of a feedback protocol associ-
ated with a geometric Brownian information engine (GBIE) during
the time interval v <t < 27. The feedback regulator consists of
three steps: (a) Measurement: At ¢ = t, the confinement center is at
zero (A(t) = 0) and we measure the position (x) of the particle. We
check whether x > x,, or not, where x,, is a measurement position
(indicated by the vertical blue dashed line). (b) Feedback: If x > x,,,
we shift the confinement center instantaneously to the feedback site
A(T + Ar) = x5 (represented by the red solid line). Otherwise, we
keep the confinement center unaltered A(t + At) = 0. (c) Relax-
ation: The particle is allowed to relax then with the fixed confinement
center at the feedback site (x;) until the next cycle begins (up to
t = 27). (d)—(f) Illustration of the feedback regulation in terms of
the effective geometric potential.
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influence of entropic control on the other important outcomes
of the engine, such as the average movement per cycle and the
efficacy. We have compared our result with the performance
ability of an energetic Brownian information engine and thus
gained a thorough understanding of the consequences of the
entropic restriction.

II. MODEL AND METHOD
A. Brownian particle in a geometric confinement

We consider a two-dimensional overdamped Brownian
particle in a geometric confinement subjected to an external
constant force G, acting along the transverse direction (as
shown in Fig. 1). Neglecting the inertial force, the dynamics
of the particle can be described by the following Langevin
equation:

dr -
i Géy + (1), (1)
where 7 denotes the position of the particle in two dimen-
sions, ¥ = xé, + yé,. €; is the unit position vector along the
Jjth direction, and Z (t) is the Gaussian white noise with the
following properties:

(¢j@) =0
(Gi();(t")) = 2D8;;8(t — ') fori, j=x,3  (2)

where D = kT, and (- - -) denotes the averaged realization.
We have considered that the frictional coefficient of the par-
ticle is unity. The geometric confinement can be generated
by imposing noninteractive static boundaries. We describe
the upper and lower walls, as depicted in Fig. 1, using the
boundary functions w,(x) = —ax?> + ¢ and w;(x) = —w,(x),
respectively, where a and c¢ are constant confinement parame-
ters. Therefore, the lengthscales along the x- and y-directions
are x, (= /c/a) and y, (= c), respectively. The local half-
width w(x) measures the spatially varying cross-section of
the confinement, and they can be written as w(x) = [w,(x) —
w;(x)]/2. The alternative Fokker-Planck description of the
process [Egs. (1) and (2)] can be expressed as [44-46,82—84]

for j =x,y,

d ( =D d v 0 ¥ ( 0
—p(x,y, = —1e —e X, Y,
o Y ox ox’ LY

-I-Di {ev/;)m iewp(x, ¥, t)}, 3)
dy

where ¥ (x, y) = Gy is a potential function and p(x, y, t) is the
probability distribution function of a particle in (x, y) at time ¢.
When the lengthscale along the x-direction (x,) is much larger
than that along the y-direction (y,), one can assume a fast local
equilibrium along the y-direction [40,41]. In this context, we
define a position-dependent potential function A(x) as

exp <_AD(X)> = /dy exp <w> “4)

If p(y;x) is a conditional local equilibrium distribution of
y for a given x, and p(y; x) is normalized to unity in y, one can

write
p(y;x) = exp (%) exp (#) (5)

The fast-local equilibrium approximation along the trans-
verse direction guides us to [40—44]

px, y, 1) = p(y; x)P(x, 1), (6)

where we express the marginal probability distribution func-
tion P(x, 1) as

@, (x)
P(x,1) = / p(x, y, 1)dy. (7)
wy(x)
Using Egs. (4)—(7), the two-dimensional Smoluchowski
Eq. (3) reduces to a Fick-Jacobs equation in reduced dimen-
sion [40-57]:

9 3.9 ,
P = a{DaP(x,t) +A (x)P(x,t)}, (8)

where A(x) is the effective potential experienced by the par-
ticle in reduced dimension. The effective potential represents
the free energy of a particle (at position x) in reduced dimen-
sion. A(x) will be of the form

A(x) = —D1In [%D sinh (Gw(x))}. 9)

D

Thus, the effective potential depends on the external trans-
verse force G, the thermal energy D, and the geometry of
the confinement in a nontrivial way. In the limit of G/D > 1,
the effective potential reduces to A(x) = —Gw(x) and is
popularly denoted as an energy-dominated situation. In the
opposite limit, G/D < 1, the effective potential becomes in-
dependent of G with a logarithmic form, and the potential is
purely entropic in nature,

G
A(x) = —Gw(x) for D > 1,

= —DIn[2w(x)] for g < 1. (10)

B. GBIE: Feedback protocol

We construct an information engine consisting of Brown-
ian particles trapped in geometric confinement and subjected
to a feedback control as illustrated in Fig. 2. Each cycle
consists of three steps: measurement, feedback and relaxation.
As there is no real force along the transport direction, the
particle does not perform any work of itself. Particles are
transported due to changes in the confinement center along
the direction of feedback. Therefore, we will use the con-
cept of effective potential [A(x)] to calculate the extractable
work equivalence during the feedback protocol. During such
feedback, the effective potential experienced by the particle in
reduced dimension changes with a change in the confinement
center. This present study identifies this net change in effective
potential energy as achievable work. Now, as shown in the
lower panel of Fig. 2, the particle, confined in a monolobal
trap with uneven w(x) along x direction, experiences an ef-
fective potential A(x — A(¢)), where the x is the position of
the particle, A(¢) is the center of the confinement at time
t. Initially, we take A(0) = 0. Once the thermal equilibrium
is reached, i.e., at t = 7, we perform a “measurement” to
determine the position of the particle x. We define a reference
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measurement distance at x,,. If the particle crosses the mea-
surement distance (x > x,,), we shift the confinement center
instantaneously to x; [i.e., A(t + At) = x; and At — 0]. In
other words, the position of the effective potential center also
changes to xy. Otherwise (x < x,,), we leave the confinement
center unaltered [i.e., A(t) = 0]. In this scenario, we do not
employ any feedback (x; = 0), and the center of the effective
potential remains unchanged. After the feedback, the particle
relaxes with fixed A (7) until the next feedback. We set the time
scale of the feedback protocol t is much larger than the char-
acteristic relaxation time scale of the system (t > t,). As the
shift is instantaneous (error-free) and particles always return
to the equilibrium state, the change in the potential energy can
fully be converted into work. Therefore, the extractable work
—W (x) related to the measurement process can be written as

—W(x) =AKx) —A(x — xy)
=0 if x < x,,. (11D

if x> x,

Notably, the effective entropic potential [A(x)] accounts
for the free energy associated with the particle in reduced
dimension. In thermodynamics, the free-energy change is
considered equivalent to extractable work. Therefore, the net
change in effective entropic potential on shifting the confine-
ment center is possible extractable work. Here, we note that
the total energy change of the particle differs from the change
of the effective potential during the change in the confinement
center. In an energetic limit (g > 1), the change in total en-
ergy and the effective potential on the shifting center coincide
with each other. However, in an entropic regime (% < 1), the
total energy possessed by the particle is different from the
effective potential (calculations not shown here). The process
is repeated and the average extractable work is obtained as

- (W) = —/ r dx Poq(x)W (x), 12)

—X,

where x, = \/c/a is the confinement length scale along the x-
axis and Peg(x) = lim;_, P (x, 1) is the equilibrium marginal
probability distribution. It is worthwhile to mention that A(x)
is not a physical potential energy and does not contribute a
force field in original 2D Langevin dynamics [Eq. (1)]. How-
ever, as mentioned earlier, A(x), experienced by the particle in
reduced dimension, changes with a change in the confinement
center. During the feedback, we identify this change A(x) as
achievable work ((W)). Later, we will connect this (W) to
the available or useful information in an error-free feedback
environment (which will be discussed later).

Next, we evaluate the net information acquired to examine
the upper bound of the extractable work. The term information
is related to the uncertainty of occurrence or surprisal of a
certain event. Information related to an event Y increases as
the probability of the same [P(Y)] decreases. When P(Y)
tends to unity (~1), the surprisal of the event is almost zero.
On the other hand, if P(Y) is extremely low (close to zero),
the surprisal of the event diverges. Therefore one can define
the information related to an event Y as I(Y) = —In (P(Y)).
In the present study, we consider an error-free feedback
mechanism. In this situation, the net information grossed is
equivalent to the Shannon entropy of the particle at initial
equilibrium since the Shannon entropy after the measurement

is zero. Therefore for an error-free measurement process, the
information can be expressed as [9,14,39]

(I) = —/ dx Peq(x) In[Peq(x)]. (13)

To estimate the unavailable information, we consider the
reverse protocol: The particle is initially in equilibrium with
the confinement location at A(#) = xy, and we shift the center
back to A(z) = 0 suddenly irrespective of the position of the
particle. For an error-free (almost) measurement, the average
unavailable information is [9,14,39]

I = — / " dx Py () In[Pog ()]

—X,

— / dx Peg(x) In[Peq(x — x¢)]. (14)
The unavailable information ((/,)) is an important quantity
since it limits the possible extractable work. A higher (/,)
lowers the achievable work. We refer the reader to Ref. [14]
for further details on total information and the unavailable
information related to an event. In the present study, one
can calculate both (I) and (/,) by estimating the equilib-
rium marginal probability distribution [Peq(x)] from the 2D
Langevin dynamics [Eq. (1)]. The other physical observable
of interest is the efficacy (y) of the feedback control. The y
measures how efficiently the device utilizes the net acquired
information in the feedback protocol. Using the concept of the
generalised Jarzynski equality [10,21-23], y can be written as

Xm

y = (exp(—pW)) = / dx Py () + / " dx Puy(x — x7)

—Xr m ( l 5)
for an error-free measurement protocol. Finally, the average
step ((Ax)) per feedback cycle can be calculated as

xr
(Ax) =xf/ dx Peg(x). (16)
Xm

To proceed further, we discuss the ranges of the measure-
ment (x,,) and feedback positions (xy). In the present context,
the measurement position can be set at any allowed position
inside the confinement along the x-direction, —x, < x,,, < X;.
Noticeably, the particle can never reach the terminal posi-
tion =+x, precisely. The associated uncertainty and hence the
information is undefined for x,, = £x,. Thus, to avoid the
singularity of the problem, one needs to shift the limit of
associated measurement position by =A (A — 0), whenever
required. We encounter such a singularity problem only in
the case of —(W) and (I) calculated in the entropy-dominated
limit (G/D < 1). In all other scenarios, this singularity prob-
lem does not arise. Therefore, we set the extreme points as
the concerning limits to make the calculation easier (without
any estimation error). Next, we vary the feedback location
of the confinement center (xy) within the range of 0 < x; <
(xr + x,»). In principle, one can choose x on the other side of
the confinement as well, i.e., 0 > x; > —(x, + x,,). However,
because of the reflection symmetry of the confined structure,
the effective potential, and hence the amount of extractable
work, is identical for x; = +x’. Finally, we assumed that
the boundary walls are noninteractive and do not exert any
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FIG. 3. Variation of equilibrium probability distribution function
P.(x) with the position x for different values of transverse bias force
G. Points are obtained from the numerical simulation study [using
Egs. (1) and (2)] and the lines represent theoretical predictions [using
Eq. (17)]. The parameter set chosenis D =1,a =0.1,and c = 1.6
for all cases.

force on the particle during a collision. In this regard, we
mention that the particle may hit the wall sometime during the
feedback protocol (like for x; > 2x,, and whenx; > x,, + x;).
We assume that the “hitting” incidents are weak and cannot
change the temperature of the heat reservoir. However, these
hitting incidents can only provide a transient effect on the
dynamics of the particle and cannot alter Peq(x). Therefore,
such “hitting” events do not affect the estimation of (/) or (I,).

C. Numerical simulation details

We understand that the estimation of most of the physical
observables under consideration involves the calculation of
the equilibrium probability distribution function [Peq(x)]. We
solve the Langevin dynamics [Eqgs. (1) and (2)] inside the
boundary walls using an improved Euler method [85] with a
time step (At = 1073) to find a two-dimensional probability
distribution in a long time [p(x,y,t — o0)]. We consider
a reflecting boundary condition near the confinement walls
and employ a Box-Muller algorithm to generate the required
thermal noise [86]. We obtain P.q(x) by calculation of the
marginal equilibrium distribution function using Eq. (7). For
this purpose, we use a spatial grid size of 10~ units. We gen-
erate a large number of trajectories (~107) to obtain a smooth
distribution function. To perform numerical integration, we
use a trapezoidal rule with a grid size of 103, whenever
it is required. Unless mentioned otherwise, we set a = 0.1,
¢ = 1.6, and D = 1 throughout the manuscript. Before we
proceed, we must mention that one needs to be careful in
introducing reflecting boundary conditions for a Brownian
particle inside a confined chamber with a hard wall, as ad-
dressed in [87]. The time step chosen here is small enough to
account for the corrections related to such hard-wall interac-
tions. Also, we consider a low curvature of the boundary wall
with centrosymmetric confinement to minimize the numerical
error. The agreement between the numerical simulation data
of the marginal probability distribution and the same obtained

from the Fick-Jacobs approximation, as shown in Fig. 3, vali-
dates the choice of the time step.

III. RESULTS AND DISCUSSION

A. Testament to the Fick-Jacobs approximation

The amount of achievable work, the average displacement
per cycle, and the efficacy are key physical outcomes of the
GBIE. As is evident from the definitions [Egs. (12)—(16)], we
need to assess the equilibrium probability distribution [Peq(x)]
of the unshifted confinement [A(7) = O] for the theoretical
estimation of these observables. One can obtain Peq(x) by
numerically solving the underlying 2D Langevin dynamics
[Egs. (1) and (2)] as mentioned earlier. For an analytical
estimation of Peq(x), we make use of the equilibrium solution
of the Smoluchowski equation [Eq. (8)] in reduced dimension,
which can be written as [39]

P —A(x) -1 o
wq(x) = N exp — | where N~' = dx Peg(x),

oan
where N is the normalization constant. Using Egs. (10)
and (17), one can find the Pey(x) under a different extent of
entropic control:

|G G G
Pey(x) = %exp <—3ax2> for D > 1
3
=7 /%(—a}c2 +c)

It must be noted that an assumption of a fast local equi-
librium along the transverse direction is necessary for
mapping the original two-dimensional Fokker-Planck descrip-
tion [Eq. (3)] into a reduced one-dimensional Smoluchowski
equation [Eq. (8)]. Therefore, the applicability of the theoret-
ically obtained Peq(x) [Egs. (17) and (18)] is subjected to the
validity of the Fick-Jacobs approximation in the considered
parameter space. In Fig. 3, we outline the variation of the ini-
tial steady-state probability distribution function [Peq(x)] for
different transverse force G. Numerical integration of Eqgs. (9)
and (17) provides the theoretical predictions for an arbitrary
value of G. Two limiting conditions in the transverse force,
ie, G/D>1 and G/D K 1, Pyg(x) can be calculated by
using Eq. (18). All points in Fig. 3 correspond to Langevin
dynamics simulation data. We obtain a good agreement be-
tween the theoretical predictions and numerical simulation
data. Thus, the Fick-Jacobs approximation is endorsed in re-
duced dimension.

Figure 3 also depicts that for a high value of exter-
nal transverse force (here G = 10), P(x) is a symmetric
Gaussian-like function with o = /D/2Ga, where o is the
standard deviation of the probability distribution, and it can
be defined as

+x; +x, 2
o’ =/ szeq(x)dx — (f xPeq(x)dx> ) 19)

Xy Xy

G
for — 1. 18
or -~ < (18)

In the other extreme (G — 0), P.q(x) spreads out to a symmet-
ric inverse parabolic function and is independent of G. The
concerned standard deviation reads o = /c/5a.
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FIG. 4. Variation of average extractable work (—(W)) during the
feedback cycle with the feedback location (x;) for different values of
measurement position (x,,) and different G, following Egs. (10)-(12)
and (17). The parameter set chosenis D =1,a=0.1, and ¢ = 1.6
for all cases.

B. Recipe to pull off maximum extractable work (—(W))

For a given geometric constraint, the measurement distance
x,, and the feedback location x; designate the feedback proto-
col and hence the outcomes of the GBIE. Also, the dominance
of the transverse bias force (G) governs the supplement due
to the entropic restraint. Therefore, we examine the adapta-
tion of the averaged extractable work per cycle, —(W), as a
function of the feedback location x for different measurement
distances x,, and G. Using Eqs. (9)—(12) and (17), one can es-
timate the average extractable work — (W) under any irrational
geometric restriction. The outcomes are shown in Fig. 4, and
the following observations are perceived:

(a) For a given measurement distance x,, and transverse
force G, the magnitude of extractable work (—(W)) shows
a turnover with the feedback distance xy. A maximum ex-
tractable work (— (W) max ) can be achieved for an intermediate
feedback location, say xy = x}“ax.

(b) The magnitude of —(W)nax changes with x,, nonmono-
tonically. When all other parameters are kept unchanged, one
can realize the highest value of —(W ). for an optimum
measurement distance.

(c) One can witness a rise in —(W ), With increasing G.
Thus, the maximum extractable work for a given protocol and
confinement parameters is higher in the energetic limit than
the entropic one.

(d) Finally, the monostable geometric trap can serve as an
information engine (—(W) > 0) only up to a specific value of
the feedback position. We observe that the extractable work
is not possible beyond x; > 2x'?** for any arbitrary system
parameter. To apprehend the underlying physics of the obser-
vations stated above, we now look into the optimal operating
condition on x, and x; for maximum extractable work. In
the limit of high transverse force (G/D >> 1), one can get the

expression of —(W) as
W) GaD Ga , Ga f Ga
— =,/ exp| —— - — erc,/—m ,
T Xf p D Xin 2 f D X,

(20)

where erfc(z) =1 —erf(z) is the complementary error
function, and erf(z) = 27~'/2 [; ¢ dy. The solution of
0(W)/0x; = 0 with unaltered measurement position x,, yields

x}r‘mx=,/ b exp(—@xz)’ 21)
Gar erfc (\/%xm)

where x‘;.’a" denotes the feedback location x; associated with
a maximum extractable work. We have verified the fact that
(W) Bx; > 0 for x; = x"™ and for any positive values of
G, a, and D. Therefore, Eq. (21) provides the best feedback
location to obtain a maximum extractable work in this limit.
The optimal choice of measurement and feedback ositions

that maximize — (W )max can be obtain by satlsfylng =0
and = d T = 0 simultaneously. The exact analytical condmon
in this limit reads
x*
xp = L and x = (22)

where x;, and x} denote the optimal value of measurement
and feedback positions, respectively. Plugging them both into
Eq. (21) results in a transcendental equation that can be
solved numerically. The solution yields x}, = 0.61c, where
o = 4/D/2Ga. Therefore, the observation agrees with the best
extractable work restrictions reported earlier [21-23].

Similarly, under entropic dominance (G/D < 1), the aver-
age extractable work can be calculated as

w(x —xf)
/; / Ly o (T)

= T1(xm» Xp) + T2 (s xp) + T3(X, Xy)

+T4(xmaxf)+T5(xm’xf)a (23)
where
X A)(x,— X/
T](xm,Xf) — E_f_ Am (xf + )(xr xf+xm) ’
: 4x2 2 (2x +xp— A)(Xp+ X5 — Xp)
1 2A(x, — ,
L (Xpu, xp) = —=1n (7 = xy) + Xy ,
’ 2 2x,2x, — A)
T3(xm7 Xf) = (xr_ Xm)(ZXf xr+xm) - 2A(Xf xr)]

f

a(xy —x,)* —2aA(x; —x,) — ¢

3

le
Ty(xp, xp) = Z; In

r

alxs —xy)* —c

1 x2 3 axg(2x, — xr)
T: ms = Am -z 1 1 —_—.
5(m, ) = (4x2 4) n‘ + c—axl

Here, |---| denotes the absolute value of the observable.
One can derive x7'** theoretically following a similar method
explained for the energy-dominated case. For a given x,,
the corresponding x7** will be the solution of the following
transcendental equation (with x; = x;‘}a"):

O1(xf) + O2(xs) + O3(xs) =0

axgla(x, — xp) + /ac]
(2y/ac — axp)la(x, — xp) — Jacl|

@1()Cf) = —XfXr In
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FIG. 5. Variation of average extractable work (—(W)) with the
scaled feedback position (%) for different values of scaled measure-
ment length (X,,). Orange solid diamond, black circle, and magenta
starred points are associated with %, = 0.5, 1.0, and 1.5, respec-
tively, in a low-G limit (G = 10*). Blue triangle, red square, and
green cross points are associated with x,, = 0.5, 1.0, and 1.5, respec-
tively, in an energy-dominated condition (G = 10). The parameter
set chosenis D = 1,a = 0.1, and ¢ = 1.6 for all cases.

1
®2()Cf) = E(xm — X)X + X + 2Xf),

2xpa/ac — ax}%
axk — 2axxy, + axj% —c|

O3(x/) = Tfln

(24)

From Eqgs. (23) and (24), one obtains the best extractable work
requirement as x;t = x;}‘axumzx;; and x;, = % The condition
yields

20 1 —ax, +c ol
x* In x" x, In —
" Axx (—axt + JJac) " -
1
+ E(x,‘;l —x.)(5x) 4+ x,) = 0. (25)

Solution of the transcendental equation (25) gives the best
recipe as x;, = 0.60" and x3 = 2x,,, where the standard devia-

tion in this limit reads o = /c/5a.

We find that for G = 10, the maximum extractable work
is obtained when x,, ~ 0.42 and x; ~ 0.84, and o ~ 0.71. In
the limit of G — 0, x,,, ~ 1.07 and x; ~ 2.14, with o =~ 1.79,
provide the optimal condition for maximum extractable work.
Therefore, despite the differences in dominance of G, the
recipe to obtain maximum extractable work remains the same
as x,, = 0.60 and x; = 2x,,. We revisit the variation of the
average extractable work per cycle —(W) as a function of
a scaled position of the shifted confinement X, for a differ-
ent scaled measurement distance X, and G. Here, we define a
scaled observable R as R = R/x} . Results are shown in Fig. 5.

Figure 5 clearly shows that — (W)« is maximum for
Xy = 2, irrespective of the values of G. We determine the xfmax
for a given x,, using Egs. (21) and (24) in respective limits
of G. In this context, we mention that one can verify the
aforementioned relation for any arbitrary values of G by es-
timating direct numerical integration of Egs. (11), (12), (17),
and (19). As mentioned earlier, Figs. 4 and 5 also show that

the geometric trap can have extractable work (—(W) > 0)
only up to a certain value of the feedback position. The re-
striction —(W) = 0 in Eq. (20) (under constant x,,) gives the
upper bound of the feedback location as x’f. Using Egs. (20)
and (23), one can show that x} = 2)6?“ invariant to the extent
of entropic dominance.

To shine more light on these observations and to examine
the differences of —(W)max between high and low values of
G, we investigate the amount of total information ({/)) and
unavailable information ({/,)) during the feedback protocol.
In the limit of G/D >> 1, the net information acquired by the
measurement can be estimated using Egs. (13) and (18):

1 Ga

Similarly, for the other extreme G/D < 1, the net information
has the form [using Eqgs. (14) and (18)]

5 /
(I) ~ 3 In (3 f) in the limit of A — 0. 27
c

For any arbitrary values of G, x,,, and x¢, using Egs. (11)—(14)
and Eqgs. (17) and (18), one can show that

DI — (L) = —(W). (28)

Equation (28) clearly shows that the available information
during the feedback cycles coincides with the net change
in the effective potential experienced by the particle during
the feedback step. Here, we recall that the useful informa-
tion ((I) — (I,)) has been calculated in terms of marginal
equilibrium probability distribution P.q(x). One can obtain
Peq(x) numerically from the underlying 2D Langevin dynam-
ics [Egs. (1) and (2)]. On the other hand, the average work has
been calculated using the effective potential energy change in
the reduced dimension. Therefore, the effective description of
system dynamics in reduced dimension can quantify the limit
of extractable energy (say, work) using the available informa-
tion associated with the feedback mechanism. In other words,
analyzing the condition for best achievable work is equivalent
to optimizing the utilization of available information.

Therefore, Eq. (28) signifies that for an instantaneous
(error-free) measurement and feedback process, available in-
formation acquired during the protocol can, in principle,
entirely be extracted as useful energy [21-23]. Popularly,
such types of engines are denoted as lossless information
engines [22]. Therefore, the GBIE can be considered as a
lossless engine in the sense that it converts all the avail-
able information ({(I) — (I,))) into extractable work. In a true
sense, however, it is not completely lossless. Because of the
irreversible nature of the protocol, a finite amount of acquired
information is lost during the relaxation phase. However, it is
worthwhile to mention that one may design and introduce a
reversible protocol in which the net acquired information is
equivalent to available information ({f,) = 0) [88,89].

In Fig. 6, we study the variation of average information
((I)) and unavailable information ({I,)) during the feedback
with the scaled position of the shifted confinement center X
for different values of X,,. Results show that the total acquired
information is independent of feedback position for a given
system parameter set. However, the amount of unavailable
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FIG. 6. Change in average information ({/)) and unavailable
information ((/,)) with increasing scaled feedback position X, for
different values of scaled measurement position (%,,). Parameter set
chosen: D = 1,a = 0.1, and ¢ = 1.6 for all cases. Part (a) represents
the variation in the entropy-dominated regime G = 107*. (b) The
same in an energy-controlled situation G = 10.

information ((/,)) varies nonmonotonically with increasing
x¢. In the limit of x; — 0, all the acquired information is
lost during the relaxation process as there is no change in the
effective potential of the system. Using Eqgs. (13) and (14),
one realizes () ~ (I) for x; — 0. With an increasing xy,
the distance between the measurement position and the feed-
back site decreases. Consequently, the number of singular
paths decreases during relaxation, and particles reach the new
potential minimum with less uncertainty. This results in a
decrease in unavailable information. As a result, the amount
of extractable work increases. At this stage, it is worthwhile to
mention that the loss of acquired information during measure-
ment happens because of the presence of unusual pathways
(singular) during the relaxation process. For the protocol with
error-free measurement, a measured outcome is greater (or
lesser) than x,, if and only if the particle resides in the x > x,,
(or x < x,,,) region. We then employ the feedback based on
the measurement outcome and allow the system to relax.
However, after the relaxation stage, particles can reside in the
X > X, (or x < Xx,,,) region even though the measured outcome
was greater (or lesser) than x,,. We denote these relaxation
pathways as singular paths; the measurement of such paths
contributes to information lost during the process. For a better
understanding of singular paths and their contribution in deter-
mining (I,), we refer to Szilard’s engine as discussed in [14].

Coming back to Fig. 6, for xy > x,,, (I,) > (I) as the con-
tribution of the second term of the right-hand side of Eq. (14)
dominates. The situation corresponds to a large shift in the
detention center (hence the effective potential). The distance
between x,, and x; becomes large again. Thus, the number
of singular paths during the relaxation processes increases
again, resulting in a decrease in the magnitude of (W) due
to the heavy information loss during relaxation. Therefore,
one optimum x, distance exists where the loss of information
is minimum, and the condition corresponds to the recipe of
maximum extractable work. For a given protocol, the (/) is in-
variant to the feedback position [see Egs. (13), (26), and (27)].

FIG. 7. Variation of the efficiency (n) with the measurement po-
sition (x,,) for a fixed feedback location (x; = 2x,,) and different G.
Parameter set chosen: D = 1, a = 0.1, and ¢ = 1.6 for all cases.

Therefore, the relation Eq. (28) suggests that the condition for
a minimum (/,,) is identical to the optimal recipe of maximum
achievable work.

The argument promotes the existence of a nonzero x; for
which total information levels the loss due to the relaxation
process. Beyond this point, the protocol results in refriger-
ation (—(W) < 0). Finally, Fig. 6 also shows that both the
information and unavailable information increase for decreas-
ing G. However, in the low-G limit, the rise in unavailable
information is relatively higher than the total information.
Consequently, one can witness that the amount of maximum
extractable —(W)nax at optimal measurement distance x};, is
higher in the energy-ruled region than that of the entropic
case.

Next, we calculate the efficiency of the information engine,
which can be defined as n = —(W)/D(I). In Fig. 7, we study
the variation of efficiency (1) with the measurement distance
(x,,) for the protocol with a feedback site twice as large as
the measurement distance (x; = 2x,,). Results show that the
engine efficiency varies nonmonotonically with the measure-
ment distance (x,). The variation depicts that the engine’s
efficiency is always less than unity, and it has a maximum at
the measurement distance ~0.60 (o is the standard deviation)
irrespective of the magnitude of the transverse force. As the
efficiency cannot reach unity, the engine is not a completely
lossless one. Also, the engine is most efficient when unavail-
able information is minimal during the employed feedback
process. Figure 7 shows that ny,,x decreases with higher en-
tropic control of the system. This reduction in 7y can be
attributed to the lower achievable work and the increase in the
available information in the low-G limit.

Finally, one can find that the present setup is consonant
with the integral fluctuation theorem [14]:

)

=/ deeq(x)+/ dx Peg(x)

—X

(A(x) —Alx — xf)>
X exp D

Peq(x)
Pog(x — xy)

=1. (29)
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FIG. 8. Variation of the average unidirectional step per cycle
({Ax)) observed during the feedback protocol with the measurement
position (x,,) for different values of downwards bias force (G). Pa-
rameter set chosen: x; = 2x,,, D=1, a = 0.1, and ¢ = 1.6 for all
cases. Green filled circles indicate the {(Ax) associated with the best
extractable work extraction condition (x}, ~ 0.60).

We estimated the dissipated energy as W; = A(x — xy)
—A(x).

C. Optimization of average displacement (Ax) and efficacy (y)

The average displacement per cycle ((Ax)) measures the
mean unidirectional motion of particles during the feedback
mechanism. Therefore, (Ax) quantifies unidirectional trans-
port induced by the information engine that operates in a
single heat bath. For an irrational choice of the transverse
bias force (G), we obtain (Ax) using Egs. (16), and (17).
The definition of (Ax) [Eq. (16)] clearly shows that it varies
linearly with respect to the feedback position (xy). Inspired
by the observation of the previous subsection, one can as-
sume that a good feedback location depends on the choice
of the measurement distance. Therefore, we consider a fixed
feedback distance, as a double of the measurement position
Xy = 2x,, and we examine the response of (Ax) for different
Xp. Figure 8 shows the variation of (Ax) as a function of
the measurement position (x,,) for different entropic control.
The variations depict a turnover in (Ax) with increasing x,,.
Equation (16) under the constraint of x; = 2x,, indicates a
tradeoff between the x,, and integrated marginal probability
[P(x, t)] of particles beyond x,, in determining (Ax). To ob-
tain a quantitative measure of the optimal control on (Ax), we
recall Egs. (16) and (18) and examine the limiting responses.
Under the restriction of x; = 2x,,, we find

|G G
(Ax) = xmerfc< Eaxm> for ) > 1
a’ G
_Z —3 , for ) < 1. 30)

Thus, in both ends of G, (Ax) varies nonmonotonically with
X This drives the manifestation of an optimum measurement

distance to accomplish the largest average displacement per
cycle.

Figure 8 also reveals that both the best average distance
(AXx)max and the concerned measurement distance increase by
introducing more entropic control to the process. One can
determine the optimum value of x,, for achieving maximum
(Ax) by maximizing Eq. (30). For a high G, AX = 0 yields

T —x2
xmzfoerfc<fo)exp (F) 3D

Numerical solution of this transcendental equation gives
Xn = 0.750, where 0 = 4/D/2Ga. For G — 0, the restriction

% = 0 results in

3 xm 2 x%
_ =0. 32
V50 Sﬁ o3 32

The solution of the cubic polynomial gives the measurement
position related to the best average displacement as 0.81c,
where the standard deviation o = /c/5a for this case. Fi-
nally, it is noteworthy that the requirement to have a maximum
(Ax) is not identical to the best extractable work condition.
Using these restrictions, we find the best average displacement
(Ax) ~ 0.24 and ~0.70 for G = 10 and 10~*, respectively.
Therefore, the maximum average displacement per cycle is
higher under an entropic control than in the energy-governed
setup. One can explain the enhanced value of (Ax)pn.x for
a purely entropic information engine in terms of the shape
of the equilibrium probability distribution. In the limit of
G — 0, the Poy(x) has an inverted parabola-like outline along
the feedback coordinate (Fig. 3). This increases the standard
deviation of the distribution in comparison to the Pq(x) with
high transverse bias. Consequently, the marginal probability
towards the confinement terminus (x, < x < x,) is higher
under entropic control. Therefore, the integrated probability
of particles crossing a high measurement distance is higher.
This results in high (Ax) in a purely entropic GBIE.

Finally, we study the hallmarks of the efficacy of the feed-
back controller of a GBIE using Eq. (15) under the condition
of x; = 2x,,. The results are shown in Fig. 9. The following
observations are evident. The efficacy (y) varies nonmono-
tonically with increasing measurement position. The efficacy
approaches unity, ¥ = 1, for both extremes of the measure-
ment distances, i.e., either x,, = 0 or x,, — x, for all three
different values of transverse force G. The magnitude of the
maximum efficacy y =~ 1.9 is higher for G = 10, whereas it
is less for G = 107*, y &~ 1.22. The corresponding measure-
ment position to maximum efficacy is obtained at x,, ~ 1.33,
invariant in G. Thus, the recipe to obtain yp,x differs from the
best extractable work prescription.

Using Eqgs. (15) and (18), the efficacy of the process under
energetic and entropic extremes takes the form
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FIG. 9. Variation of the efficacy of the feedback protocol (y)
with the measurement position (x,,) for different G. Parameter set
chosen: x; = 2x,,, D =1, a = 0.1, and ¢ = 1.6 for all cases. Green
filled circles indicate the efficacy associated with the best extractable
work condition (x}, ~ 0.60).

and

3 /d®
y=1+ Z gxf(xr — X )Xy + Xy — xf)’ (34)

respectively. In either case, the efficacy of the engine, under
the constraint x; = 2x,,, reduces to a univariate function of
Xp. In the limit of G/D > 1, Eq. (33) reduces to

1 |Ga 1 [Ga
Yy = E + erf( Fxm) + Eerf< E(Xr — 2xm)>. (35)

On the other hand, the restriction x; = 2x,, reduces Eq. (34)

to
3 (3
y=14- a—me(xr o (36)
4V ¢3

From, Egs. (35) and (36), it is obvious that y converges to
unity for either extreme of the measurement positions, x,, = 0
and x,, — x,, irrespective to the strength of the transverse
force. Also, as expressed in Egs. (35) and (36), y varies
nonmonotonically with x,,. We find that the best value of x,,
that generates maximum efficacy is 5 in either case and is
independent of G and any other geometric parameter. Finally,
using the condition x,, = 5 on Egs. (35) and (36), one can
find that ¥ — 2 in the limit of G/D > 1, whereas y = §
in the other extreme. As mentioned earlier, the spread of the
marginal probability distribution is broader in an entropy-
dominated situation, and hence the particles can relax in a
higher number of paths. Therefore, the protocol’s efficacy
reduces compared to an energetic system. To summarize the
subsection, we depict that both (Ax)yax and ymax show a
crossover response once the system is driven from an entropic
to an energetic-dominated regime, as shown in Fig. 10.

Before we conclude, we mention a few pertinent obser-
vations on the experimental feasibility of a GBIE. First, the
setup requires a Brownian diffusion inside a narrow channel
with irregular geometry and suitable measurement techniques
that can relate the underlying available information to the
thermodynamic outputs. A recent experiment on diffusion
through a corrugated channel by Yang et al. demonstrates

FE-588 - -6 oog - ] 3047
2F | - !
i By @d&l:?nergetic dos
| oy ] region ’
1.8F 1 [ 1
i aa L g dos
. e :
! rossover T .
e L region R Ho4 g
>~§ : &?: i 1 =z
14 ! o iR {0:3
- Entropic region i o0’ E i
12fpe-eee-—0--0000-_—_ | Sﬁ@ dos
N N
1 1
Ao} .
T ‘D‘ﬂs.gqim
IF P A ‘
1 1 1
MM I B il
10° 10" 10’ 10" 10°
G/D

FIG. 10. Variation of the best efficacy (ym.) and the best dis-
placement per cycle (Ax)max With transverse force (G/D). Parameter
set chosen: x; = 2x,, D=1, a=0.1, and ¢ = 1.6 for all cases.
Points are obtained by the numerical integration of the general
expressions of efficacy [Eq. (15)] and averaged distance per cy-
cle [Eq. (16)] under the restriction of x; = 2x,,. Dashed lines are
obtained from the theoretical expressions related to the limiting
behavior.

an entropy-driven transport [90]. They have fabricated irreg-
ular channels using a two-photon writing system followed
by the imaging procedure, and they studied the diffusion
of fluorescently labeled polystyrene colloidal particles inside
the cavity. Furthermore, the study also validates the Fick-
Jacobs approximation once the hydrodynamics effects are
considered. In another investigation, researchers studied the
entropic ratcheting effect due to channel asymmetry [91].
One can microfabricate a narrow channel using photolithog-
raphy [91]. The diffusion of colloids across a constrained
geometry has been studied using microfluidics and holo-
graphic optical tweezers [92,93]. On the other hand, recent
experimental developments illustrate the design principle of
different Brownian information engines [20,22-26]. These
studies display the interconversion between the information
and other thermodynamic outcomes. Therefore, one can map
the entropic constraints by designing a suitable narrow cavity
in the spirit of [90-93], and one can measure the thermo-
dynamic observable (from available information) introducing
feedback procedures employed in [20,22-26]. The outcome
of the current study, therefore, orchestrates a perfect standard
to devise such geometric information engines.

Second, the net change in the effective potential is equiv-
alent to the change in free energy of the particle during the
feedback process. However, it is tricky to demonstrate work
extraction physically. This is because the present GBIE setup
does not have a suitable force, in the 2D Langevin process,
along the feedback direction that defines a work. The presence
of such a force would be helpful to verify its crosstalk to
the effective entropic potential [A(x)] and hence to the infor-
mation ({/)). One way to verify the utilization of available
information is to consider a weak external force along the
negative feedback direction. One can now calculate the work
done in the presence of the applied force and compare the
same with the available information acquired. The difference
will be reflected in the change in the average step per cycle.
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Finally, the effect of the irregular boundaries and hence
the effective entropic potential in reduced dimension on the
stochastic energetic of the system can also be understood as
follows. Consider the motion of Brownian particles inside a
two-dimensional enclosure in the presence of a time-periodic
field that acts upon the particle along the longitudinal di-
rection. One can obtain the work done over a cycle and
its fluctuations from the original 2D Langevin description.
A finite nonzero work is obtained inside such constrained
geometry by appropriate manipulation of the external pe-
riodic driving frequency and noise strength. (W) shows a
maximum for optimal noise strength [96]. Therefore, (W)
is a suitable quantifier for an entropic stochastic resonance
(SR) phenomenon [44,64,94-96]. It is important to notice
that although there was no nonlinear potential (crucial criteria
for SR to be observed [94,95]) in the original dynamics, the
bistability in the effective entropic potential [A(x)] satisfies
the requirement [44,64,96]. Therefore, A(x) obtained from the
Fick-Jacobs approximation in reduced dimension is feasible
in describing the energetic of the system under the appropriate
setup.

IV. CONCLUSIONS

We explore the optimum operating condition of a GBIE
built of Brownian particles trapped in monostable confine-
ment and subjected to error-free feedback regulation. The
cycles utilize the information gathered for extractable work
and submit a unidirectional passage of the particle. The up-
shots of the measurement position x,, and the feedback site x
circumscribe the engine’s performance. We determine the op-
timal condition for maximizing the extractable work (—(W)),
the average displacement per cycle ((Ax)), and the effective-
ness of the protocol (y) under varying entropic authority.

Analogous to other Brownian information engines
[21-23], the GBIE under a feedback controller can
completely utilize the available information and hence
be regarded as a lossless information engine. We specify the
criteria for utilizing the available information in an output
extractable work and the optimum operating requisites for
the best extractable work. The maximum extractable work is
possible when x,, = 0.60 and x; = 2x,,. The observation is
consonant with the best extractable work restrictions reported
earlier [21-23] and showed the universality of requisites.
Nonetheless, the measurement distance and feedback site

positions alter upon remodeling of entropic dominance as
the standard deviation itself develops during such parameter
tuning. In an energy-dominated process, o depends on the
ratio of the thermal energy to the advective energy of the
process as ¢ = /D/2Ga. On the other hand, ¢ becomes
independent of G and depends only on the geometric aspect
ratio (x, = +/c/a) in a purely entropic control. The magnitude
of the extractable work grows with increasing transverse
force G. One can justify the lower benefits of achievable work
in an entropy-ruled scenario in terms of the elevated loss in
information during the relaxation process.

Next, we find the condition on x,, for maximum average
displacement per cycle ({(Ax)) with a restriction on the feed-
back site as x; = 2x,,. The measurement position that gives
the best average displacement varies with the extent of en-
tropic control. For high G values (>>1), we find x,, ~ 0.750,
and in the limit of G — 0, the x,, ~ 0.810 is responsible
for best unidirectional motion ({Ax)ma.x). Therefore, unlike
the extractable work, the mean unidirectional displacement of
particles is higher in the entropy-dominated regime than in
the energy-governed system. Upon decreasing G, the spread
of the equilibrium marginal probability distribution [Peq(x)]
becomes wider (higher o). Consequently, a bigger fraction
of particles can satisfy the measurement requirement, which
increases the (Ax)max value in an entropically driven system.

Finally, under a given feedback location x; = 2x,,, the
maximum efficacy (ymay) i invariant with the transverse force
strength G and achieved when x,, = x,/3. ¥max approaches the
universal upper bound 2 under firm energetic control. Upon
lowering down the energetic power, the upper bound becomes
tighter and shows a crossover to Ym.,x = % for a purely en-
tropic device. We trust that the outcomes of the present study
will help to design geometric information engines and will
result in new avenues for further theoretical and experimental
investigations.
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