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Precisely controlling heat transfer in a quantum mechanical system is particularly significant for designing
quantum thermodynamical devices. With the technology of experiment advances, circuit quantum electrody-
namics (circuit QED) has become a promising system due to controllable light-matter interactions as well as
flexible coupling strengths. In this paper, we design a thermal diode in terms of the two-photon Rabi model of
the circuit QED system. We find that the thermal diode can not only be realized in the resonant coupling but
also achieve better performance, especially for the detuned qubit-photon ultrastrong coupling. We also study the
photonic detection rates and their nonreciprocity, which indicate similar behaviors with the nonreciprocal heat
transport. This provides the potential to understand thermal diode behavior from the quantum optical perspective
and could shed new insight into the relevant research on thermodynamical devices.
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I. INTRODUCTION

Circuit quantum electrodynamics (circuit QED) [1,2],
which studies and controls light-matter interaction at the
quantum level, has become a fascinating topic for quan-
tum optics, quantum thermodynamics, and condensed matter
physics. For example, it has gradually been a toolbox of
quantum optics on-chip [1–4]. In particular, the circuit QED
has also provided a prominent platform to precisely control
and manipulate the heat to design quantum thermal machines
[5–10] and led to the development of quantum thermodynam-
ics [11,12]. Concerning the latter, substantial efforts in recent
years have been devoted to studying various quantum thermal
machines in order to achieve some particular functions such as
refrigerators and heat engines [5–7,13–18], heat switches [8],
thermal diodes [9,10], thermal transistors [19–23], and ther-
mometers [24,25]. Of particular interest for most functions
are thermal rectifiers, which play a critical role in the process
of quantum information such as qubit initialization [26]. The
thermal diode as a two-terminal device mediated with temper-
ature bias of two independent reservoirs can attain asymmetric
heat fluxes. Such rectification effect has also been found in
other systems [9,27–37]. Especially, in Ref. [9], the author
employs a qubit coupled to two superconducting resonators at
different frequencies to realize the magnetic flux-tunable pho-
tonic heat rectification; in Refs. [27,37], the Ising interaction
spins are employed to realize a good performance based on
the different excitation; and in Ref. [38], the author proposed
thermal rectification by utilizing the Dzyaloshinskii-Moriya
interaction. It is obvious that the rectification effect in these
models will vanish if one considers the resonant case and no
other asymmetry is included. A usual understanding is that
the rectification effect, or nonreciprocal heat transport, stems
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from some asymmetry of the total system such as asymmetry
of energy structure [27] or nonlinear interaction [30], or asym-
metry couplings of system-reservoir [9,10] and interactions
[29,39], or large anisotropy [31] or asymmetry of the effective
tunneling barrier [40]. Whether some other features of the
system induce (are closely related to) such nonreciprocal heat
transport is still ambiguous now. In addition, despite the rapid
advances in this field, it is still desirable that quantum thermal
devices could be designed in terms of some experimentally
friendly schemes.

Recently, circuit QED has a well-developed range from
weak internal coupling to strong coupling, even ultrastrong
coupling [41,42], with enormous design flexibility at mi-
crowave frequencies. More importantly, circuit QED as an
ideal experimental platform has been implemented to achieve
nonlinear ultrastrong coupling [49–51] between the qubit and
resonator. Also, the nonlinear interaction has some interesting
applications on the squeezing of light [52], spectral collapse
[53], and multiphoton resonance [54]. In addition, the gen-
eralized quantum Rabi model [54] is also the fundamental
form of cavity QED including one- and two-photon interac-
tion between the atom and cavity, which has been widely
revisited. In this sense, the circuit QED system could be an
appealing platform for experimentally friendly manipulation
and is worthy of further exploration on thermal rectifiers.

In this paper, we will employ the circuit QED system
to study the nonreciprocal heat transport and exploit quan-
tum thermal diodes. We mainly study the two-photon Rabi
model and reveal the steady-state nonreciprocal heat trans-
port behaviors under different coupling conditions. We first
find the perfect heat rectification in the quantum Rabi model
and seek for good parameter regions for the experimental
realization of thermal diodes. Most importantly, we compa-
rably investigate the relation between heat rectification and
photon detection rates in the dissipative compound system,
which demonstrates similar nonreciprocal behaviors and in-
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FIG. 1. The circuit QED architecture is modeled by the plasma
mode of its DC-SQUID detector (left-hand side) inductively Lr

(middle) coupled to a flux qubit [43] (right-hand side). DC-SQUID
consists of the outer loop with the two large junctions [44–46] biased
by current IB, and two Josephson junctions have the same Joseph-
son energy EL

J and capacitance CL
J . In general, a flux qubit is the

superconducting loop with three Josephson junctions [47] (shown
with crosses) controlled by an external flux �x, and two Josephson
junctions have the same Josephson energy ER

J and capacitance CR
J ,

and the other Josephson junction has a smaller Josephson energy
αER

J as well as capacitance αCR
J [48].

dicates their potential relation. It provides a quantum optical
perspective to understand quantum thermodynamic devices.
The paper is organized as follows: In Sec. II, the physical
model and the master equation we employed are introduced.
In Sec. III, we study the effects of quantum thermal diodes
and analyze the effects of different parameters. In Sec. IV,
we investigate the nonreciprocal photon detection rates. The
conclusion and discussion are given in Sec. V.

II. PHYSICAL MODEL AND DYNAMICS

We consider the two-photon quantum Rabi model includ-
ing a flux qubit coupling with a direct-current superconduct-
ing quantum interference device (DC-SQUID) via a small
inductance with the circuit scheme sketched in Fig. 1. We
would like to refer to the detailed derivation of the circuit
model as Appendix A in Ref. [50] and the references therein.
The quantization Hamiltonian of the whole system reads
[50,51] we assume h̄ = 1)

H̃S = ωLa†a − 1
2 (qσ z + εσ x ) + gσ x(a† + a)2, (1)

where a, a† are the creation and annihilation operators of
the SQUID, respectively, and σ z, σ x are the Pauli matrices.
The parameter ωL denotes the frequency of the SQUID, ε

and q are the tunnel splitting and the energy separation of
“persistent currents states” [48] induced by the external flux
�x around the qubit loop, and g denotes the coupling strength
between the qubit and resonator. Here q = 2Ip(�x − �0/2),
�0 = h/2e is the superconducting flux quantum, and Ip is
the persistent current along the qubit loop [47]. The system
inevitably dissipates due to the impedance Zω [2,55], which,
serving as the environment, is described by an ensemble of
harmonic oscillators [56,57] with the free Hamiltonian

HR =
∑

ν=L,R

H̃ν =
∑
νl

ωνl b
†
νl bνl . (2)

In Eq. (2), bνl , b†
νl denote the annihilation and creation op-

erators of the different reservoir mode with the frequency
ωνl . Since the different types of noises originated from the
fluctuations of distinct nature, the reservoirs we considered are
independent and uncorrelated, i.e., [bνl , b†

μ j] = δνμδl j [55].
Thus, the interaction between the system and the reservoirs
can be described by a Caldeira-Leggett-type [58] Hamiltonian
as

H̃SR =
∑
νl

S̃ν ⊗ (κνl b
†
νl + κ∗

νl bνl ), (3)

where

S̃L = a† + a, S̃R = σ− + σ+ (4)

denote the dissipative transition operators of the system due
to the coupling to the circuit environment [55,57,59] and the
parameter κνl reflects the interaction strength of the subsys-
tem ν with its corresponding environment. For more physical
insight [55,60], one can rewrite the Hamiltonian Eq. (1) in the
qubit eigenbasis by a rotation

U =
(

cos θ/2 −sinθ/2
sinθ/2 cos θ/2

)
(5)

as

HS = ωLa†a − 1
2ωRσz + g(a† + a)2(σzsinθ + σ xcosθ ), (6)

where tan θ = ε/q, σz = cos θσ z + sin θσ x and, σx =
− sin θσ z + cos θσ x. It is noted that ωR =

√
ε2 + q2 denotes

the transition frequency of the qubit. The corresponding
system-reservoir interaction Hamiltonian Eq. (3) will be
replaced by [55]

HSR =
∑
νl

[Sν ⊗ (κνl b
†
νl + κ∗

νl bνl )], (7)

with

SL = a† + a, SR = sin θσz + cos θσx. (8)

Hence, the Hamiltonian of the total composite system includ-
ing the reservoirs can be written as

H = HS + HR + HSR. (9)

In order to get the dynamical equation of the system, we
first write the Hamiltonian Eq. (6) in the spectrum decompo-
sition as

HS =
∑

i

Ei|Ei〉〈Ei|, (10)

where Ei denotes the eigenvalue and |Ei〉 is its corresponding
eigenstate. In the HS representation, the eigenoperators are
given by

Sνk (ωνk ) =
∑

Ej−Ei=ωνk

|Ei〉〈Ei|Sν |Ej〉〈Ej |, (11)

which satisfies the commutation relation

[HS, Sνk (ωνk )] = −νkSνk (ωνk ). (12)

For convenience, we would like to set Sνk = Sνk (ωνk ). With
these eigenoperators, one can follow the standard process
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[61–63] to write the master equation in the interaction picture
based on the Born-Markov-Secular approximation as

dρ

dt
=

∑
ν

Lν[ρ] =
∑
νk

Lνk (ρ), (13)

where the Lindblad dissipator L can be given as

Lνk[x] = �νk
+ [SνkρS†

νk − 1
2 {S†

νkSνk, ρ}]
+ �νk

− (ωνk )[SνkρS†
νk − 1

2 {S†
νkSνk, ρ}], (14)

where �νk
+ = �νk[n̄(ωνk ) + 1], �νk

− = �νkn̄(ωνk ), which de-
note the emission and absorption processes of an excitation,
respectively [64], and n̄(wνk ) = 1

e
ωνk
Tν −1

denotes the mean pho-

ton number of the mode ων,k at temperature Tν (kB = 1).
In addition, with the Ohmic spectral densities, we have the
relaxation coefficients �νk = γ ωνk

ω0
[55,65].

III. QUANTUM THERMAL DIODE

We first transform Eq. (13) into the Schrödinger picture

dρ

dt
= −i[HS, ρ] +

∑
ν

Lν[ρ]. (15)

A direct expansion of Eq. (15) can show that the diagonal
and off-diagonal entries of the density matrix are decoupled to
each other and especially the off diagonal entries will vanish
for steady state. Hence, we only address the evolution of the
diagonal entries of ρ as [15,27], i.e.,

ρ̇kk =
∑

ν=L,R

∑
l

�ν
kl (ρ), (16)

where �ν
i j (ρ) = (�νk

+ ρ j j − �νk
− ρii )|〈Ei|Sv|Ej〉|2 denote the net

decay rate from the state |Ej〉 to state |Ei〉 induced by inter-
acting with the ν reservoir. The diagonal steady-state density
matrix ρs of Eq. (16) can be obtained by solving ρ̇kk = 0, i.e.,∑

ν=L,R

∑
l

�ν
kl (ρ

s) = M|ρs〉 = 0, (17)

where |ρs〉 denotes the columns vector consisting of the di-
agonal entries of ρs and M is the corresponding coefficient
matrix obtained from Eq. (17). Thus, the steady state ρs can
be solved by the null space of the linear operator M.

Based on the steady state ρs, one can directly calculate the
steady-state heat current, which is defined by [61]

Q̇ν = Tr {HSLν[ρs]}. (18)

Q̇ν > 0 denotes heat flows from the reservoir to the system
and Q̇ν < 0 denotes heat flows from the system into the reser-
voir. With Eq. (16), the heat current Eq. (18) can be explicitly
written as

Q̇ν = −
∑

kl

�ν
kl (ρs)E ν

kl , (19)

where E ν
kl = El − Ek denotes the transition frequency. Sub-

stituting the heat currents (18) into Eq. (17), one can easily
check that the two heat currents fulfill the conservation rela-
tion Q̇L + Q̇R = 0. Due to the large dimension of our system,
the analytical computation is quite hard and we can only

TABLE I. Parameters of two-photon quantum Rabi system.

Simulation parameters

Symbol Parameter Value

ω0/2π Reference frequency 20 GHZ
ωL/2π Cavity frequency 20 GHZ
ωR/2π Qubit frequency −GHZ
g/2π Coupling strength −GHZ
γ /2π Dissipation rate 2 MHZ
TR (TL) Temperature 960 mK

approximately solve the question with truncating photon num-
bers N = 2 in the low-temperature regime as in Appendix B.
Therefore, to reveal the behaviors of heat transport in the
system, we will numerically [66] solve the steady state of the
master equation (15) as well as the steady-state heat currents.
At first, we mainly take two coupling regimes as examples:
one is the strong coupling with g = 0.015ω0, and the other
is the ultrastrong coupling with g = 0.45ω0. In the numerical
process, the dissipation rates are taken as γ = 10−4ω0 and the
resonator frequency takes ωL = ω0. The relevant parameters
are given in Table I [5,47,67–70] if not specified.

For clarity, we define Q̇ f /r as the forward (reverse) heat
currents since we need to exchange the temperatures of two
terminals for the demonstration of nonreciprocal heat trans-
ports. Q̇ f = Q̇R denotes heat current from the R reservoir
to the system when TR > TL, and vice verse. The intuitive
illustrations of the heat currents through the system for the
two coupling regimes are given in Figs. 2(a), 2(b), 2(d), and
2(e) and Figs. 3(a), 3(b), 3(d), and 3(e), respectively, where we

FIG. 2. Heat currents (a, b, d, e) and rectification coefficients (c,
f) versus the temperatures of reservoirs for qubit-resonator coupling
strength g = 0.015ω0. The top panel denotes the nonresonant case
with qubit frequency ωR = 0.1ω0 and the bottom panel denotes the
two-photon resonant case with qubit frequency ωR = 2ω0. The dissi-
pation rates are considered as γ = 10−4ω0 and resonator frequency
ωL = ω0. It is noted that in the forward (reverse) heat transport pro-
cess, we fix the temperature TR(TL ) = 0.5ω0 and the related realistic
parameters are shown in Table I.
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FIG. 3. Heat currents (a, b, d, e) and rectification coefficients
(c, f) versus the temperatures of reservoirs for qubit-resonator in-
teraction strength g = 0.45ω0. The top panel corresponds to the
off-resonance case for qubit frequency ωR = 0.1ω0 and the bottom
panel corresponds to the two-photon resonance case for qubit fre-
quency ωR = 2ω0. Other parameters are the same as those in Fig. 2.

keep TR = 0.5ω0 in subfigures (a) and (d) and TL = 0.5ω0 in
subfigures (b) and (e). One can find from the figures that the
heat current vanishes when the two terminals have the same
temperature 0.5ω0, which coincides with our intuitive un-
derstanding. In particular, these figures indicate the apparent
nonreciprocal heat transport. Namely, with one terminal tem-
perature fixed, the relatively large heat current can only appear
in a single direction. The subfigures (a) and (d) compared with
the corresponding subfigures (b) and (e) imply the exchange
of the temperatures of two terminals. Therefore, by comparing
the pair of subfigures (a) and (b) or (d) and (e) in both Figs. 2
and 3, one can find the nonreciprocal heat transport more
clearly in both resonant and nonresonant cases. This means
that the current system can be designed as a thermal diode.

A key index to characterize the performance of a thermal
diode is the rectification coefficient, which is defined by [35]

R =
∣∣Q̇ f + Q̇r

∣∣
|Q̇ f − Q̇r |

, (20)

where R=1 for a perfect diode, 0 < R < 1 for a good
diode, but R=0 for no rectification when Q̇r = −Q̇ f . In
Figs. 2(c), 2(f), 3(c), and 3(f), we plot the rectification coeffi-
cient depending on the temperature. The rectification effect is
gradually enhanced with the deviation from the equilibrium
temperature TR = TL = 0.5ω0. All the figures demonstrate
certain rectification effects, but the two-photon resonant weak
coupling allows quite weak rectification, and good perfor-
mance of the diode can be found for the nonresonant strong
coupling (ωR = 0.1ω0, g = 0.015ω0) and the (resonant and
nonresonant) ultrastrong coupling (g = 0.45ω0). In particular,
θ can obviously affect the heat currents, but it only slightly
affects the rectification coefficients. In the sense of a heat
diode, one can adjust heat currents by θ according to the prac-
tical requirement simultaneously without greatly disturbing
the rectification performance.

FIG. 4. Heat currents (a, b, d, e) and rectification coefficients (c,
f) as a function of the temperature TL/R for different qubit frequen-
cies. In the top panel, qubit-resonator coupling g = 0.015ω0; in the
bottom panel, g = 0.45ω0. The inset views (a) and (b) show the heat
currents as a function of temperature TL/R other than the two-photon
resonant case with qubit frequency ωR = 2ω0. Here θ = 0 and other
parameters are the same as those in Fig. 2.

As analyzed above, the rectification coefficients are rel-
atively small in the case of resonant strong coupling
g = 0.015ω0. A rough conclusion is that the ultrastrong cou-
pling or the nonresonant coupling could be beneficial to the
performance of a heat diode. However, a detailed investi-
gation reveals that for g = 0.015ω0 in Figs. 4(a)–4(c), the
heat currents are relatively large around the resonant cou-
pling and gradually decrease with deviating from resonant
coupling, but the rectification coefficients take the relatively
large values around ωR = 0.1ω0. For g = 0.45ω0, we find that
the heat currents increase from ωR = 0.05ω0 to ωR = 5ω0 in
Figs. 4(d)–4(f), but the best rectification coefficients appear
around ωR = 0.05ω0.

In addition, we also study the effect of the coupling
strength g = 0.015ω0, 0.05ω0, 0.15ω0, 0.3ω0, 0.45ω0 on the
performance of the heat diode with fixed ωL = ω0 shown in
Fig. 5. The results indicate that not only the heat currents
but also the rectification coefficients do not monotonically
depend on the coupling, but the best rectification coefficients
are achieved by the ultrastrong coupling g = 0.45ω0. In one
word, for a given ωL = ω0, the appropriately large red detun-
ing for ωR seems to be much better for a good heat diode in
both coupling regimes, and the ultrastrong coupling is more
conducive to the heat diode. Comparing Figs. 5(a) and 5(b)
with Figs. 5(d) and 5(e), we find that with the heat current
at g = 0.45ω0 both resonant and nonresonant cases are rela-
tively smaller and this system can behave as a well-performing
diode as shown in Figs. 5(c) and 5(f). Besides the interaction
strength, the coupling mechanism plays an important role. To
give a comparison, we also study the rectification effect of dif-
ferent coupling mechanisms with various coupling strengths
in Appendix A. It can be found that different coupling mech-
anisms can achieve a certain rectification of heat currents, but
the current Rabi model apparently has a better rectification
effect in the ultrastrong coupling regime than in other cases.
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FIG. 5. Heat currents (a, b, d, e) and rectification coefficients
(c, f) versus the temperatures for different qubit-resonator coupling
strengths. The top panel considers the nonresonant condition with
qubit frequency ωR = 0.1ω0; the bottom panel considers the two-
photon photon resonant condition with ωR = 2ω0. Here θ = 0 and
other parameters are taken as Fig. 2.

An intuitive understanding of the nonreciprocal heat trans-
port can be attributed to the asymmetric transition rates
induced by the asymmetric structure of the system. Of course,
it could be hard for a system with many energy levels to give
a brief and precise picture, but a rough picture can always be
found from the asymmetric coupling with the environments.
In Appendix B, we have drawn the allowed transition diagram
and plotted the corresponding transition rates. From the dia-
gram, one can easily see that the allowed transitions coupled
to different environments are quite different, which usually
produces large variations of transition rates if exchanging
two different temperatures. This can be further verified by
the figures for transition rates. The transition rates shown in
the figures are distributed along both sides of the x axis, the
summation of which forms the total heat current. Comparing
Figs. 11(a) and 11(b), it is clear that exchanging the tem-
peratures will greatly change the magnitude distributions of
transition rates, which further determines the different heat
currents, i.e., the nonreciprocal heat transport. As a compar-
ison, in the resonant coupling case given in Figs. 11(c) and
11(d), exchanging the temperature leads to slightly similar
magnitude distributions, which means weak nonreciprocity.
As for the ultrastrong coupling regime g = 0.45ω0, we only
consider the transitions of the four lowest states of the model
as shown in Fig. 12. From this figure, we find the transi-
tion cycles for resonant and nonresonant cases can produce
nonreciprocal heat transport. Such a picture should also be
applicable in other schemes of thermal diodes.

IV. NONRECIPROCAL PHOTON DETECTION RATES

The thermal diode is one result of the nonreciprocal behav-
ior of thermal transfer, which can usually be understood from
some asymmetric features of the system. On the contrary, such
an asymmetric feature could induce versatile nonreciprocal
behaviors of different perspectives, thus it forms a bridge

between different physical phenomena. In other words, one
could understand the thermal diode from a different angle.
Physically, the quantum thermal diode works by absorbing net
numbers of photons from one side and releasing to the other
side, so the first intuition is that the thermal diode could be
related to the nonreciprocity of the output photon numbers.
As we have analyzed, the asymmetric structure of the SQUID
qubit reservoir leads to the unidirectional heat transport and
it also reflects the asymmetry of photon detection rates. As
an important result, we would like to study the potential link
between thermal and optical behaviors. As we know, in the
strong coupling regime [71] the usual input-output relations
have to be generalized. Here we directly start with the input-
output relation [65]

bout (t ) = bin (t ) + √
γ Ṡ+

ν , (21)

where
√

γ = εc√
4πεov

, Ṡ+
ν = −i

∑
i, j>i ωνkSνk . bin denotes the

input field operator,

bin = 1√
2π

∑
l

√
ωνl e

−iωνl (t−t0 )bνl (t0), (22)

and bout (t ) correspond to the output field operator,

bout (t ) = 1√
2π

∑
l

√
ωνl e

−iωνl (t−t1 )bνl (t1). (23)

In addition, in the setting of Ref. [65], εc is a coupling pa-
rameter of the cavity field and the environment (waveguide
field outside the cavity), εo is a parameter describing the
dielectric properties of the output waveguide, and v is the
phase velocity. Thus, one can measure the output ac voltage in
circuit QED, which is proportional to the mean output photon
number 〈b†

out (t )bout (t )〉. In particular, if there is no input field,
the output field is proportional to Ṡ+

ν , namely, 〈Ṡ−
L Ṡ+

L 〉 can be
used to study the mean photon number.

Similarly, to describe the asymmetry of the mean photon
number subject to the forward and reverse directions, we
define the asymmetry coefficient in the long time limit as

Rn = |〈Ṡ−
L Ṡ+

L 〉 f − 〈Ṡ−
L Ṡ+

L 〉r |
|〈Ṡ−

L Ṡ+
L 〉 f + 〈Ṡ−

L Ṡ+
L 〉r |

, (24)

with the subscript f denoting the forward direction and r
representing the reverse direction. The coefficient Rn = 0
indicates the symmetry and the Rn = 1 shows the maximal
asymmetry. In Figs. 6–8, we plot the mean photon numbers
under different conditions and the corresponding asymmetry
coefficients. All the figures indicate the nonreciprocal be-
haviors of mean photon numbers if the two terminals are
exchanged. The mean photon numbers exhibit symmetric be-
haviors at the equilibrium temperature TL = 0.5ω0, while the
strong asymmetry emerges far away from the equilibrium
temperature, especially in the lower-temperature region of TL.
In particular, in the strong coupling regime, the behaviors of
asymmetric coefficients with the temperature TL are quite sim-
ilar to the asymmetric behaviors of the heat currents. Although
the ultrastrong coupling regime demonstrates a slight differ-
ence at the lower-temperature region from the heat currents,
the rough trends, i.e., asymmetry increasing with the decrease
of TL < 0.5ω0, are completely consistent with each other. It
is also interesting that similar to the heat currents, θ has a
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FIG. 6. Photon fluxes and asymmetry coefficients versus the
temperatures with different angles θ for nonresonant cases (a)–(c),
(g)–(i) and two-photon resonant cases (d)–(f), (i)–(l). (a)–(f) corre-
spond to g = 0.015ω0, and (g)–(l) correspond to g = 0.45ω0. Other
parameters are the same as Fig. 2.

great influence on the mean photon numbers, but the influence
on the asymmetric coefficients is not so apparent. Besides,
we also illustrate the nonreciprocal mean photon numbers

FIG. 7. Photon fluxes (a, b, d, e) and asymmetry coefficients (c,
f) for different coupling strengths. We consider the qubit frequency
with ωR = 0.1ω0 in the upper panels and ωR = 2ω0 in the lower
panels. The angle θ = 0 and other parameters are taken the same
as Fig. 2.

FIG. 8. Photon fluxes (a, b, d, e) and asymmetry coefficients (c,
f) as a function of temperatures for different qubit frequencies. The
inset view (b) shows the heat currents as a function of temperature
TR other than the two-photon resonant case ωR = 2ω0. We set the
qubit-resonator interaction strength g = 0.45ω0, and θ = 0. Other
parameters are taken the same as Fig. 2.

with different coupling strengths and frequencies taken into
account, and all show similar nonreciprocal behaviors to heat
currents. In this sense, the asymmetry of the mean photon
numbers in the current model could shed new light on the
thermal diode behaviors.

V. CONCLUSIONS AND DISCUSSION

Before the end, we would like to emphasize that the ther-
mal diode is designed completely based on the experimentally
friendly circuit QED platform and all the numerical process
are considered with the realistic parameters as shown in Ta-
ble I and those in Ref. [50], i.e., α = 0.8, EL

C = 2 × 10−3EL
J ,

Lr = 30EL
J , ER

J = 11.6EL
J , ER

C = ER
J /80.

In conclusion, we consider a two-photon quantum Rabi
model as a perfect rectifier and discuss its corresponding prop-
erties of photon detection rates. It is shown that the ultrastrong
coupling makes this model become a well-performing thermal
diode. In addition, the nonresonant coupling within a certain
range also plays an active role. Usually, the quantum thermal
diode phenomenon can be intuitively understood in terms of
the asymmetric structure of the system, which further induces
asymmetric transition rates. We also study the nonreciproc-
ity of the steady-state output photon detection rates, which
exhibit quite similar nonreciprocal behavior to heat currents.
Therefore, this paper could provide a perspective to under-
stand quantum thermal diodes. Simultaneously, it could also
pave the way for future research on the thermodynamical and
optical phenomena of the multiqubit two-photon Rabi model.
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FIG. 9. Rectification coefficients for different coupling strengths.
In the left panel, ωR = 0.1ω0 for the off-resonant case; in the right
panel, for the two-photon resonant case ωR = 2ω0 with Eq. (6), while
for the resonant case ωR = ω0 with Eqs. (A1)–(A3). Other parame-
ters are taken as ωL = ω0 and θ = 0 as well as TL = 0.1ω0 and TR =
0.5ω0 for the forward process and vice verse.

APPENDIX A: COMPARISON OF DIFFERENT
COUPLING MECHANISMS

Considering the heat rectification effects, many different
types of coupling mechanisms have been proposed. For ex-
ample, in Refs. [27,37], the Hamiltonian reads

HS = 1
2

(
ωLσ L

z + ωRσ R
z + gσ L

z σ R
z

)
, (A1)

and Ref. [28] takes the interaction as the following form:

HS = 1
2ωLσ L

z + 1
2ωRσ R

z + gσ L
z σ R

x . (A2)

In addition, two qubits are coupled with Dzyaloshinskii-
Moriya interaction as [38]

HS = 1
2ωLσ L

z + 1
2ωRσ R

z + g
(
σ L

x σ R
y − σ L

y σ R
x

)
. (A3)

The form of system-reservoir coupling about the above
Hamiltonian can be captured by

HS−R =
∑
νl

[Xν ⊗ (κνl b
†
νl + κ∗

νl bνl )], (A4)

where Xν = σ+
ν + σ−

ν are the system operators, and σ±
ν

denote the spin operators. We employ the global master
equation and reproduce the results of Refs. [27,28,37,38] for
resonant and nonresonant cases with the same parameter con-
ditions. In Fig. 9, we illustrate the rectification coefficients
versus coupling strength with different coupling mechanisms
taken into account. It can be found that different coupling
mechanisms have their own advantages under their particular
parameter conditions. The two-photon Rabi mechanism can
achieve good heat rectification effects in the ultrastrong cou-
pling regime and exhibit certain robustness on the frequency
matching.

APPENDIX B: TRANSITION RATES

In order to give a physical understanding, one will have
to analyze the energy level structure and the transition rates.
However, as the complexity of the system structure increases,
an integral and precise picture seems hard to obtain. So we
restrict the cavity truncation to two photons for the strong
coupling to present a simple picture. The diagram is given in
Fig. 10, which indicates the validity of our simplicity as well
as the allowed transitions subject to different environments.

（a） （b）

TL TR TRTL

（c） （d）

FIG. 10. Heat currents for the different truncations of photon
numbers. It is shown that the heat current for the cavity truncation
N = 2 is approximately accurate in the low temperature considering
the nonresonant (a) and two-photon resonant (b) cases. Here we
take g = 0.015ω0. The allowed transitions of the system subject to
the left and right baths are shown in (c) and (d). The left panels
are the nonresonant case with ωR = 0.1ω0 and the right panels are
the two-photon resonant case with ωR = 2ω0. Other parameters are
the same as those in Fig. 2.

One can find that allowed transitions subject to the left and
the right baths are quite different, which is the root of the
nonreciprocal heat transport. They directly lead to asymmetric
transition rates, which will be analyzed later.

The heat current for the left terminal in the nonresonant
case can be written in terms of Eq. (19) as

Q̇L = −
2∑

i=1

4∑
j=3

(
�L

i jEi j + �L
i+2, j+2Ei+2, j+2

)
, (B1)

where Ei j = Ej − Ei, and the forward heat current reads
Q̇ f = −Q̇L, defined as before.

Similarly, the heat current in the resonant case can be
expressed as

Q̇L = −
6∑

i=1
i �=2,5

(
�L

i2Ei2 + �L
i5Ei5

)
. (B2)

According to the above expressions, we can plot the corre-
sponding transition rates as a function of the temperature TL

as shown in Fig. 11. From the figures, one can see that the tran-
sition rates corresponding to the different allowed transitions
in Fig. 10 are distributed at the upper and lower sides along
the x axis. The contributions of the two sides are opposite,
and all the transition rates associated with the corresponding
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FIG. 11. The transition rates of the forward and reverse processes
versus the temperatures for the nonresonant case [(a) and (b)] (ωR =
0.1ω0) and resonant case [(c) and (d)] (ωR = 2ω0). It is noted that the
cavity mode is truncated with N = 2. The left panel corresponds to
the forward process and the right panel to the reverse process. Here
g = 0.015ω0 and other parameters are the same as Fig. 2.

transition energies together contribute to the given heat cur-
rent. Comparing Figs. 11(a) and 11(b), one can see a typical
characteristic that the magnitude distribution of the transition
rates is quite different. This can be regarded as the most direct
reason for the nonreciprocal heat transport. However, compar-
ing Figs. 11(c) and 11(d), one can find that the transition rates
are distributed a little bit similarly (neglecting the positive or
negative rates), which implies relatively weak nonreciprocity.
This has been clearly illustrated by Fig. 2. The diagram for the
ultrastrong coupling is given in Fig. 12, which only consider
the four lowest states of the model for nonresonant and res-

TRTR TLTL

（a） （b）

FIG. 12. The energy eigenvalues of the four lowest states of the
two-photon Rabi model for nonresonant (a) and resonant (b) cases.
Here we take g = 0.45ω0 and ωL = ω0. The allowed transitions of
the system subject to the left and right baths are shown in different
colored arrows. The qubit frequencies are ωR = 0.1ω0 for the non-
resonant case and ωR = 2ω0 for the two-photon resonant case.

onant cases. From this figure, it is clear that exchanging the
temperatures of the reservoirs can produce different transition
cycles for two cases, which induces nonreciprocity of heat
transport.

APPENDIX C: THE INPUT-OUTPUT FORMALISM

From Eq. (9), we follow the method of Refs. [65,72,73] and
derive the input-output relation. The total Hamiltonian of the
system and reservoir including their interaction is captured as

H = HS + HR + HSR, (C1)

HSR =
∑
νl

[Sν ⊗ (κνl b
†
νl + κ∗

νl bνl )], (C2)

SL = a† + a, SR = sin θσz + cos θσx. (C3)

The system internal interaction are strong, even ultrastrong,
while the system-reservoir couplings are weak. Hence, we can
express the jump operators [see Eq. (C3)] in the HS represen-
tation as

Sν =
∑

k

[Sνk (ωνk ) + S†
νk (ωνk )]. (C4)

This equation includes the positive and negative frequency
components of the system operator Sν . For simplification, we
set S+

ν = ∑
k Sνk (ωνk ), and S−

ν = ∑
k S

†
νk (ωνk ). The Heisen-

berg equation of motion for the reservoir modes is

dbνl (t )

dt
= i[H (t ), bνl (t )] = −iωνl bνl (t ) − iκνl S

+
ν . (C5)

The Heisenberg equation of motion for SQUID and flux qubit
is

dS+
ν (t )

dt
= i[H (t ), S+

ν (t )] = i[HS (t ),S+
ν (t )] − i

∑
l

κ∗
νl bνl (t ).

(C6)

The evolution of reservoir modes bνl (t ) is linear, and hence
Eq. (C5) can be solved as

bνl (t ) = bνl (t0)e−iωνl (t−t0 ) − iκνl

∫ t

t0

dt ′S+
ν (t ′)e−iωνl (t−t ′ ),

(C7)

where t0 < t denotes some initial time in the past. We substi-
tute Eq. (C7) into Eq. (C6) and obtain the following form:

dS+
ν (t )

dt
= i[HS (t ), S+

ν ] −
∫ t

t0

dt ′ ∑
l

|κνl |2e−iωνl (t−t ′ )S+
ν (t ′)

−
∑

l

iκ∗
νl e

−iωνl (t−t0 )bνl (t0). (C8)

In order to solve this equation, we follow the method of
Ref. [73] and we make the Markov approximation and con-
sider the Ohmic spectral function J (ω) = ∑

k |gk|2δ(ω − ωk )
with gk ∝ √

ωk [62,74],∑
l

|κνl |2e−iωνl (t−t ′ )

=
∫ ∞

−∞
dω

[∑
l

|κνl |2δ(ω − ωνl )

]
e−iωνl (t−t ′ )

= γωδ(t − t ′). (C9)
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Employing
∫ x0

−∞ δ(x − x0) = 1
2 , Eq. (C8) can be resolved as

dS+
ν

dt
= i[HS (t ), S+

ν (t )] − γω

2
S+

ν −
∑
νl

iκ∗
νl e

−iωνl (t−t0 )bνl (t0).

(C10)

We now define the input field as

bin = 1√
2π

∑
l

√
ωνl e

−iωνl (t−t0 )bνl (t0). (C11)

Hence

Ṡ+
ν = i[HS (t ),S+

ν (t )] − γω

2
S+

ν − i
√

γ bin(t ). (C12)

To analyze a relation between the output field and input field,
one can employ an alternative solution to Eq. (C5) with t1 > t

for the future time,

bνl (t ) = bνl (t1)e−iωνl (t−t1 ) − iκ∗
νl

∫ t1

t
dt ′S+

ν (t ′)e−iωνl (t−t ′ ).

(C13)

Defining the output field as

bout (t ) = 1√
2π

∑
l

√
ωνl e

−iωνl (t−t1 )bνl (t1), (C14)

we follow the same procedure as before and obtain

Ṡ+
ν = i[HS (t ), S+

ν (t )] + γω

2
S+

ν − i
√

γ bout (t ). (C15)

Combining Eqs. (C11) and (C14), we can obtain the input-
output relation as follows:

bout (t ) = bin(t ) − i
√

γωS+
ν . (C16)

So this relation can also expressed as

bout (t ) = bin(t ) + √
γ Ṡ+

ν . (C17)
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