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Stochastic dynamics of a nonlinear thermal circuit with bistability

Qinli Ruan (���) and Lei Wang (��) *

Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-Nano Devices,
Renmin University of China, Beijing 100872, People’s Republic of China

(Received 30 January 2023; accepted 2 April 2023; published 24 April 2023)

Stochastic dynamics of a nonlinear thermal circuit is studied. Due to the existence of negative differential
thermal resistance, there exist two stable steady states that satisfy both the continuity and stability conditions.
The dynamics of such a system is governed by a stochastic equation which describes originally an overdamped
Brownian particle that undergoes a double-well potential. Correspondingly, the finite time temperature distribu-
tion takes a double-peak profile and each peak is approximately Gaussian. Owing to the thermal fluctuation, the
system is able to jump occasionally from one stable steady state to the other. The probability density distribution
of the lifetime τ for each stable steady state follows a power-law decay τ−3/2 in the short-τ regime and an
exponential decay e−τ/τ0 in the long-τ regime. All these observations can be well explained analytically.
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I. INTRODUCTION

Due to the fundamental importance in statistical physics,
studies on heat conduction in low-dimensional systems have
led to impressive theoretical and experimental developments
in recent years [1]. In particular, the field of phononics, which
aims to control the directional flow of heat current by ma-
nipulating phonons, has attracted rapidly increasing interest
[2] for its apparent value in practice. The model of a thermal
diode [3], which rectifies heat current, presents the first step
toward controlling the direction of heat flow. A model of
a thermal transistor with efficient control of heat flows by
means of temperature was then successfully designed [4].
It can be viewed as the “nerve cell” of the thermal circuit
because it allows us to switch and modulate heat current, just
like what we have been able to do for electric current. On
this basis, thermal analogs of many other electronic devices,
such as thermal logic gates [5] and thermal memory [6],
were then worked out. The underlying mechanism of these
models is match or mismatch of the phonon power spectra,
which greatly controls the heat current that flows through an
interface. This mechanism attracted extensive studies [7] and
other mechanisms that realize the functions of thermal diode
[8], thermal transistor [9], and thermal memory [10] were also
proposed shortly. Recently some of them have already been
experimentally implemented [11]. The idea of phononics, i.e.,
to control heat by heat, has also been extended to control
sound by sound [12].

In all these devices, a nonlinear component must be nec-
essary. It is well known that in a simple electric resistance
circuit in which all the resistances are linear, i.e., the electric
current flowing through is proportional to the voltage drop
applied, i.e., U = RI , then the steady state satisfying all the
Kirchhoff laws must be unique and this state must be sta-
ble. Whereas, if nonlinear resistance exists, there may exist
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multiple steady states, some of which are stable. The system
finally falls into which one of the stable steady states depends
on the initial conditions [13]. Those facts are also true for
a thermal circuit, i.e., in a linear thermal circuit in which
each component satisfies J = �T/R, where J denotes the heat
current and �T denotes the temperature drop, the steady state
of the circuit is also unique and stable. However, in contrast
with the electric cases, for a nonlinear thermal circuit with
multiple stable steady states, due to the thermal fluctuation,
the system might jump randomly from one stable steady state
to another. Such jumps present much richer physical pictures
and thus give the system more practical significance, although
they are detrimental for a thermal memory [6].

The existing studies on the thermal circuits basically fo-
cused on the statistical properties of those stable steady states
themselves, but the crucial role of thermal fluctuation was
commonly overlooked. In this paper, we go one step further
and concentrate on the stochastic dynamics that induces the
above-mentioned random jumps between the stable steady
states. We present a one-dimensional (1D) Langevin equa-
tion that can describe the dynamics quite well.

The rest of this paper is arranged as follows: Section II is
devoted to the introduction of the model of negative differen-
tial thermal resistance. In Sec. III we present our numerical
findings, including the multiple steady states, probability dis-
tributions of the finite time temperature TO, and the lifetime
of stable steady states, as well as the autocorrelation of TO.
In Sec. IV, theoretical analyses are presented. All the findings
can be well explained by the aforementioned Langevin equa-
tion. Discussion and conclusions are presented in Sec. V.

II. MODEL OF NONLINEAR THERMAL CIRCUIT

The key factor of a thermal transistor that can realize the
functions of a thermal switch and a thermal modulator [4] is
the so-called negative differential thermal resistance (NDTR),
i.e., the lower the temperature drop, the higher the induced
heat current. Compared with many later proposed models [14]
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FIG. 1. (a) The setup of the model with NDTR. The positive di-
rections of the heat currents JL and JR are illustrated. (b) Fundamental
diagram of the system, i.e., the heat currents JL , JR, and the net heat
current �J ≡ JL − JR versus temperature TO. At three points TO =
Toff , TSO, and Ton, JL = JR thus �J (TO) = 0. (c) The corresponding
potential V (TO ) which satisfies dV (TO)/dTO = �J (TO).

that realize NDTR, the original one which consists of two
weakly coupled 1D Frenkel-Kontorova (FK) [15] segments is
still one of the most effective. In this paper, a similar setup
is still applied, see Fig. 1(a). The two FK segments, left and
right, are with particle numbers NL and NR, respectively. Each
segment is subjected to a periodic onsite potential with height
VL and VR, respectively, and particles in each segment are
coupled to their nearest neighbors by a linear spring with
strength kL and kR, respectively. The two segments are coupled
with a weak linear spring with strength kint . The whole system
can be described by the following Hamiltonian:

H = HL + HR + Hint

=
NL∑
i=1

1

2
ẋ2

L,i + 1

2
kL(xL,i − xL,i−1)2 − VL

(2π )2 cos 2πxL,i

+
NR∑
i=1

1

2
ẋ2

R,i + 1

2
kR(xR,i − xR,i−1)2 − VR

(2π )2 cos 2πxR,i

+ 1

2
kint (xL,NL − xR,NR )2, (1)

where xL,i and xR,i indicate the particles’ displacements rel-
ative to their equilibrium positions in the segments L and
R, respectively. Fixed boundary conditions are applied, i.e.,
xL,0 = xR,0 = 0. The following parameters are applied: NL =
NR = 200, kL = 0.83, kR = 0.1, kint = 0.038, VL = 5.0, VR =
0. They are different from those we applied in all our previous
studies [4,6,16]. Such choices clearly display the physical
phenomena of interest, however, they do not affect the gen-
erality of the results. Two Langevin-type heat baths with
temperatures TL = 0.04 and TR = 0.2 are always coupled to
the ends of the two segments.

III. NUMERICAL RESULTS

In this section, various numerical simulations will be pre-
sented and all of the results are explained in the next section.

A. Fundamental diagram and macroscopic dynamics
of the system

For the given fixed values of TL and TR, the stationary-state
heat currents JL and JR illustrated in Fig. 1(a) are determined
by the temperature TO. We call such a dependence the fun-
damental diagram of the system [16]. It is the key feature
of this device. To observe it, a third heat bath is attached
to the particle O (particle NL of the left segment) so as to
fix its temperature to a desired value TO, and the so-induced
stationary-state heat currents JL and JR are measured. To do so,
all the particles are initially set to their equilibrium positions
and their velocities are set to random values which correspond
to a temperature uniformly distributed within [TL, TR]. Each
average is then taken over typically 5 × 107 time units, after
a transient of 3 × 107 time units. The observed fundamental
diagram is plotted in Fig. 1(b). In a wide regime of TO, the heat
current JR can increase with TO, which indicates NDTR, i.e.,
the lower the temperature drop TR − TO the higher the induced
heat current JR. It is possible because the power spectrum
of particle O depends sensitively on TO. When TO increases,
it shifts leftwards and its match with that of the particle at
the other side of the interface is largely enhanced [4], the
heat current JR is therefore enhanced, too, in despite of the
decreasing temperature drop TR − TO. Due to the NDTR, the
curves for JL and JR cross at three different points, which
have been previously named the “on,” “semi-on” (SO), and
“off” states [4]. Ton = 0.153, Toff = 0.043, and TSO = 0.073.
In these three states, JL = JR, so the third heat bath does not
need to provide or absorb any heat current.

When the heat bath attached to the particle O is absent, the
dynamics of the temperature TO follows

CO
dTO

dt
= −Jl (TO) + Jr (TO) = −�J (TO) ≡ −dV (TO)

dTO
, (2)

where CO denotes the heat capacity of particle O. Note that
Jl and Jr , i.e., those with lowercase subscripts, denote the
instantaneous heat currents. From the macroscopic point of
view, in which thermal fluctuations are not considered, Jl and
Jr should depend on the instantaneous temperature TO only
(for the given fixed TL and TR), i.e., they do not explicitly de-
pend on time t . We suppose that this dependence still follows
the fundamental diagram, which describes the dependence
of JL and JR on the time-independent temperature TO. Such
a dynamics is equivalent to that of an overdamped particle
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undergoing a potential V (TO), which has been illustrated in
Fig. 1(c). According to the fundamental diagram shown in
Fig. 1(b), V (TO) takes a double-well form, with two wells lo-
cated at Ton and Toff . Any asymptotic solution of Eq. (2) must
be a steady state that satisfies both the continuity condition

�J (TO) = 0, (3)

and the stable condition

�J ′(TO) ≡ ∂�J (TO)

∂TO
> 0. (4)

The continuity condition is satisfied in all the three key states:
on, off, and semi-on. One can easily confirm that �J ′(Ton)
and �J ′(Toff ) are both positive, so these two states are stable
steady states (SSSs). The system falls into one of them and
stays there forever. In contrast, �J ′(TSO) is negative, so the
semi-on state is a unstable steady state (USS). The system will
not stay there and will tend to one of the SSSs.

B. Microscopic dynamics and finite-time temperature

In the microscopic point of view, thermal fluctuations
must be considered. Therefore, Jl and Jr do not simply
equal JL(TO) and JR(TO) any longer. Noise terms should
be added, i.e., Jl (TO, t ) = JL(TO) + ξL(t ) and Jr (TO, t ) =
JR(TO) + ξR(t ). Consequently,

CO
dTO

dt
= −dV (TO)

dTO
+ ξL(t ) + ξR(t ). (5)

Due to these noise terms, the system can possibly be kicked
out of one SSS and then jumps to the other.

To observe such a process, a time-dependent temperature
should be defined. It is well known that a global kinetic tem-
perature can be defined as T ≡ 〈ξ∂ξ H〉 in an equilibrium state
of a Hamiltonian system provided that ergodicity is satisfied,
where ξ is any canonical coordinate of the system (pi or
qi). The bracket denotes the long-time average. The simple
choice of ξ = pi yields a definition of local kinetic tempera-
ture, i.e., Ti ≡ 〈pi∂H/∂ pi〉 = 1

mi
〈p2

i 〉, provided that the local
equilibrium is satisfied [17,18]. By removing the bracket,
we may naturally define an instantaneous local temperature.
However, since the dynamics of the system is governed by the
Hamiltonian (1), each particle is basically vibrating around its
equilibrium position, the so defined instantaneous temperature
must be largely oscillating, so little useful information can be
obtained. To solve this problem, we defined a finite-time tem-
perature (of particle O), i.e., the average kinetic temperature
in a finite time window δt [6,16],

TO(t ) ≡ 1

δt

∫ t+ δt
2

t− δt
2

v2
O(t ′)dt ′. (6)

The same as applied in our previous studies [6,16], δt is fixed
to 104 time units throughout this paper, which covers about
2000 oscillations of this particle.

In Fig. 2(a), a typical evolution of the finite-time temper-
ature TO(t ) is plotted. As expected, the system commonly
stays around one SSS for quite a long period of time and then
jumps to the other. The picture described by Eq. (5) is clearly
confirmed.

To further understand the dynamics of TO(t ) quantitatively,
the probability density function (PDF) [6,16] of the finite-time

FIG. 2. (a) A typical evolution of the finite-time temperature
TO(t ). The long time stays around each SSS and also the random
jumps between the two SSSs can be observed directly. (b) PDF
of the finite-time temperature TO(t ). Insets show blowups of the
PDF around the three steady states in a single logarithmic plot. The
symbols show the numerical data and curves show the local Gaussian
fits described by the Eqs. (7)–(9). Those around the two SSSs take
a Gaussian form, while the one around the USS takes an inverted
Gaussian form.

temperature TO(t ) is calculated, see Fig. 2(b). Since we study
only the PDF of the finite-time temperature of this particle,
the term “PDF” always refers to P(TO(t )) hereafter. Not sur-
prisingly, two peaks locate at Toff and Ton and a well located in
between are clearly observed. Such an observation agrees well
with the picture that the system stays around one SSS and then
jumps occasionally to the other SSS. It is worth mentioning
that, although it is expected that the local minimum of the
PDF [in Fig. 2(b)] should locate at TSO [in Fig. 1(b)], this is
not exactly the case. The reason is that the simulations in the
two figures are for different conditions, one with the third heat
bath but the other without. However, such a slight difference
does not affect the understanding of the physical picture, so
we ignore it hereafter.

More exactly, we see that, around the three key points, Ton,
Toff , and TSO, the PDF satisfies the following fits quite well:

P(TO) = P(Ton)e
− (TO−Ton )2

2σ2
on , TO ≈ Ton, (7)

P(TO) = P(Toff )e
− (TO−Toff )2

2σ2
off , TO ≈ Toff , (8)

P(TO) = P(TSO)e
(TO−TSO )2

2σ2
SO , TO ≈ TSO, (9)
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FIG. 3. The lifetime distribution P(τ ) for on (upper row) and off
(lower row) states. (a), (c) In the short-τ regime, the decay follows
a power law with the power exponents both very close to −1.5. (b),
(d) In the long-τ regime, the decay changes to exponential.

where the variances σ 2
on = 5 × 10−4, σ 2

off = 3 × 10−5, and
σ 2

SO = 3 × 10−4 are positive constants. Namely, in a single
logarithmic plot there are two Gaussian distributions and one
inverted Gaussian distribution, see the insets of Fig. 2(b). All
these observations are explained in Sec. IV.

C. Lifetime and its distribution of the stable steady states

Besides the PDF that presents the probability density of
TO(t ) that visits a temperature regime, we are also interested
in how often the jumps happen, which measures quantitatively
the stability of the SSS. It is crucial in making a thermal
memory [6]. To study it, we define that the system is in the
on (off) state if the finite-time temperature TO(t ) is higher
(lower) than a critical temperature Tc = 0.085. The duration
time (lifetime) τ of each stay in a SSS, the probability density
distribution of the lifetime P(τ ), and the mean lifetime τMEAN

can be then defined accordingly. The value of Tc is chosen so
as to maximize the mean lifetime of the SSS. It is also the
value where the PDF gets its local minimum. As mentioned
above, Tc is close to but not exactly equal to TSO.

In Fig. 3, P(τ ) for the two SSSs is plotted. It behaves quite
differently in the short- and long-τ regimes. In the short-τ
regime, the decay of P(τ ) satisfies a power law, and the power
exponents are both very close to −1.5, i.e.,

Pshort (τ ) = 16 τ−1.5, for the on state, (10)

Pshort (τ ) = 13 τ−1.5, for the off state, (11)

see Figs. 3(a) and 3(c), respectively. Whereas, in the long-τ
regime, P(τ ) decays exponentially, i.e.,

Plong(τ ) = 4.0 × 10−7 e−τ/τ0 , for the on state, (12)

Plong(τ ) = 5.0 × 10−7 e−τ/τ0 , for the off state, (13)

with τ0 = 1.15 × 106 and 1.01 × 106 for the on and off states,
respectively, see Figs. 3(b) and 3(d). The two very different

FIG. 4. Autocorrelation of the finite-time temperature in the (a)
on and (b) off states. Dashed lines correspond to exponential decays,
which are analytically expected.

ways of decay are induced by two entirely different underly-
ing mechanisms, which are explained in Sec. IV.

D. Autocorrelation of the finite-time temperature TO(t )

The correlation functions are quite valuable to determine
the type of stochastic process and evaluate quantitatively the
magnitude of fluctuations and return the strength of a stochas-
tic system. Here we have calculated the autocorrelation of the
finite temperature TO(t ), i.e.,

CT T (τ ) = 〈�TO(t )�TO(t + τ )〉t , (14)

where �TO(t ) ≡ TO(t ) − T̄O(t ), i.e., the value relative to its
mean value. To clearly present the properties of the system,
CT T (τ ) is calculated in the on and off states separately. There-
fore, T̄O(t ), the mean value of TO(t ), equals Ton and Toff for the
on and off states, respectively.

Numerical results are depicted in Fig. 4. We see that the
correlations decay very rapidly and thus their values drop to an
undetectable level shortly. Two straight lines that correspond
to exponential decays are also plotted for reference.

IV. THEORETICAL ANALYSES: OVERDAMPED
BROWNIAN PARTICLE IN A DOUBLE-WELL POTENTIAL

To understand quantitatively the above observations, the
properties of the noise terms in the Eq. (5) are crucial. Since
little detail about these fluctuation terms is known and the
correlation timescales of the fluctuation are much shorter than
the timescales that we shall study, we simply suppose that
they form Gaussian white noise, i.e., ξJ (t ) ≡ ξL(t ) + ξR(t ) =
γ ξ (t ), where ξ (t ) denotes a standard Gaussian white noise
which satisfies 〈ξ (t )〉 = 0 and 〈ξ (t1)ξ (t2)〉 = δ(t1 − t2), where
γ is the noise strength. The dynamics of the system is then
governed by the following Langevin equation:

CO
dTO

dt
= −dV (TO)

dTO
+ γ ξ (t ). (15)

V (TO) takes the double-well form illustrated in Fig. 1(c). The
two wells and the peak in between are at Ton, Toff , and TSO,
respectively. In the absence of the noise term, they are the
two stable fixed points and one unstable fixed point of the
deterministic dynamics.

A. TO dependence of the heat capacity CO

Generally speaking, the parameters CO and γ can depend
on TO, which makes the dynamics quite complicated. To cal-
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FIG. 5. Calorie curve of particle O. The running slope
∂EO(TO)/∂TO presents the heat capacity CO(TO), which equals 1.34,
1.38, and 1.72 for TO = Ton, Toff , and TSO, respectively. Around each
state, CO(TO ) is roughly independent of TO.

culate the temperature dependence of CO, we calculated the
calorie curve of particle O and plotted it in Fig. 5. ∂EO/∂TO,
the running slope of the curves, has the value of CO. We
see that, around each steady state, CO is basically a constant.
CO = 1.34, 1.38, and 1.72 around the on, off, and semi-on
states, respectively. In the following analyses, we study the
dynamics around the three key states separately, so CO can be
treated as a constant in each case.

As for the noise strength γ , theoretically speaking, it can
be determined by the variances of the noise terms, which
unfortunately cannot be calculated directly in the numerical
simulations. Here we suppose similarly that it also is basically
constant around each steady state. In future studies, this term
will be studied in more detail.

B. Around the unstable steady state TSO

1. PDF of finite-time temperature TO(t )

Around the unstable steady state TSO, the first-order ap-
proximation of Eq. (15) reads

dx∗

dt
= θ∗

CO
x∗ + γ

CO
ξ (t ), (16)

whose dynamics of the probability density function P(x∗, t ) is
governed by a Fokker-Planck equation (FPE):

dP

dt
= − θ∗

CO

∂

∂x∗ (x∗P) + γ 2

2C2
O

∂2P

∂x∗2
, (17)

where x∗ ≡ TO − TSO and

θ∗ ≡ −d2V (x∗)

dx∗2

∣∣∣∣
x∗=0

= −�J ′(TSO) > 0.

The stationary-state distribution of Eq. (17) follows

P(x∗) ∼ e
COθ∗x∗2

γ 2 , (18)

which takes an inverted Gaussian form with variance σ 2
SO =

γ 2

2COθ∗ in a single logarithmic plot. This explains well the

inverted Gaussian distribution observed in Fig. 2(b) and de-
scribed in Eq. (9).

2. Lifetime distribution in short-τ regime

Furthermore, since around the unstable steady state,
dV (x∗)/dx∗ ≈ 0, the above process roughly reduces to simple
Brownian motion. Suppose at time t = 0, x∗ = 0, the first-
return time (FRT) τ , i.e., the first time that x∗ returns to
zero, can be regarded as the lifetime of a short-time stay in
a SSS. Its probability density distribution, according to the
Sparre-Andersen theorem [19], decays as

Pshort (τ ) ∼ τ− 3
2 . (19)

This −3/2 power exponent agrees exactly with the power-law
decay of the lifetime probability density in the short-τ regime
observed in Figs. 3(a) and 3(c) and described in Eqs. (10) and
(11).

C. Around a stable steady state Ton or Toff

1. PDF of finite-time temperature TO(t )

On the other hand, around a stable steady state on or off,
Eq. (15) reduces to a 1D Ornstein-Uhlenbeck (OU) process:

dx

dt
= − θ

CO
x + γ

CO
ξ (t ), (20)

where x denotes T − Ton or T − Toff and

θ ≡ d2V (x)

dx2

∣∣∣∣
x=0

= �J ′(Ton/off ),

which takes positive values. The corresponding FPE reads

dP

dt
= θ

CO

∂

∂x
(xP) + γ 2

2C2
O

∂2P

∂x2
. (21)

The stationary solution follows:

P(x) =
√

COθ

πγ 2
e
− COθx2

γ 2 , (22)

which takes a Gaussian form with variance

σ 2 = γ 2

2COθ
. (23)

This explains well the Gaussian distributions observed in
Figs. 3(a) and 3(c) and described in Eqs. (7) and (8).

2. Lifetime distribution in long-τ regime

Suppose a Brownian particle has already been far away
from the unstable steady state, it would oscillate around one
of the two SSSs for a long time, then the role of its prehistory
vanishes, so the event that it returns again (by a rare chance)
to the unstable fixed point with distance S follows a Poisson
process. Consequently, the time interval between consecutive
returns satisfies an exponential decay,

Plong(τ ) = 1

τ0
e−τ/τ0 , (24)
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where τ0 denotes the average duration time of these long-time
stays. Such an exponential decay explains well the findings
observed in Figs. 3(b) and 3(d) and described in Eqs. (12) and
(13).

Consider a Brownian particle in a harmonic potential with
height h and width 2S. Suppose it is initially put at the bottom
of the potential, then the mean first time that the particle
reaches one end of the potential is expected to be

τ0 ∼ (1 + √
π )CO

θ

∫ S
√

COθ

γ

0
et2

dt . (25)

A detailed derivation of Eq. (25) can be found in Ref. [20]. In
this case, S corresponds to Ton − Tc = 0.153 − 0.085 = 0.068
and Tc − Toff = 0.085 − 0.043 = 0.042 for the on and off
states, respectively. However, since this theoretical expecta-
tion depends too sensitively on the upper limit of the integral,
it is very hard to obtain a good agreement with the numerically
measured values of τ0.

3. Mean lifetime

Due to the existence of the short-time stays, the tail part of
the overall lifetime distribution follows

P(τ ) = Ae−τ/τ0 , (26)

with the coefficient A < 1/τ0. The overall mean lifetime
τMEAN is the average over both the short- and long-time stays,
i.e.,

τMEAN ≡
∑

i τi

N
, (27)

where τi denotes the lifetime of the ith stay and N denotes
the total number of stays. Since the numerator is mainly con-
tributed to by the long-time stays, we have

τMEAN ≈
∫ ∞

0
Aτe−τ/τ0 dτ = Aτ 2

0 . (28)

τMEAN for the on and off states calculated bases on the fit-
tings in Figs. 3(b) and 3(d) are 4.0 × 10−7 × (1.15 × 106)2 =
5.29 × 105 and 5.0 × 10−7 × (1.01 × 106)2 = 5.10 × 105,
respectively, which agree with the directly calculated values
5.32 × 105 and 5.10 × 105 very well. If this τMEAN is too
short, then it is hard to study the properties of the two SSSs
separately. Whereas, if τMEAN is too long, then the jumps from
one SSS to the other SSS can hardly be observed by numerical
simulations. The case in our previous study on thermal mem-
ory [6] belongs to the latter case. Although it works very well
as a thermal memory, the mean lifetime (roughly 109) is too
long for the present studies. That is why we designed another
set of parameters in this paper.

4. Autocorrelation of temperature TO

In such a stable steady state the autocorrelation of x is
expected to be [21]

Cxx(t ) ≡ 〈x(t0)x(t0 + t )〉t0 = γ 2

2COθ
e− θ

CO
|t |

, (29)

which indicates an exponential decay. Here x corresponds to
the relative finite-time temperature �TO(t ) shown in Eq. (14).

Its autocorrelations for the on and off states are plotted in
Figs. 4(a) and 4(b), respectively. The decay is so rapid that
it is quite hard to fit an exponent with satisfying accuracy, but
the expected exponential type seems reasonable.

V. SUMMARY AND DISCUSSION

To summarize, the stochastic dynamics of a nonlinear ther-
mal device with NDTR is studied. Due to the NDTR, there
exist three steady states satisfying the continuity condition,
two of which are stable and the other one in between is unsta-
ble. The system mostly walks around one SSS but thermal
fluctuations can drive it occasionally from this SSS to the
other SSS. In this work, such rare jumps have been directly
observed by numerical simulations, and the probability den-
sity distribution of the finite-time temperature TO of the key
particle O, which well describes the state of the system, is
also presented. It is observed that the PDF of TO displays
two peaks that locate at the two SSSs and a well that locates
at the USS in between. Superior to existing studies [6,16],
more details of the PDF, i.e., the scaling properties around
each steady state, are quantitatively studied. We see around
each SSS that the PDF displays a Gaussian distribution, while
around the USS the distribution follows an inverted Gaussian
form. Furthermore, the distribution P(τ ) for the lifetime τ of
each SSS is studied. P(τ ) follows two completely different
scaling laws in short- and long-τ regimes. A power-law decay
τ−1.5 is observed in the short-τ regime, whereas in the long-τ
regime the decay becomes exponential. Finally, the autocor-
relation CT T of TO around each SSS has been calculated and
exponential decays are observed.

By considering the thermal fluctuation of the heat cur-
rents, we propose a Langevin equation, which originally
describes an overdamped Brownian particle that undergoes
a double-well potential, and found that it describes suitably
the stochastic dynamics of the system. The two wells corre-
spond to the two above-mentioned SSSs and the local peak in
between corresponds to the USS. All the aforementioned find-
ings can then be explained. Around each well, the dynamics
reduces to a 1D OU process and the corresponding linearized
FPE expects a Gaussian asymptotic distribution, which ex-
plains the Gaussian-type PDF profile observed around each
SSS. Meanwhile, around the local peak, the linearized FPE
expects an inverted Gaussian distribution, which agrees again
with the numerical observation around the USS. On the other
hand, around the local peak of the potential the dynamics
reduces to that of a simple Brownian particle, whose prob-
ability of the first return time P(τ ) decays with τ as τ−1.5.
While, for a particle initially placed in a SSS, the escape
from the SSS follows a Poisson process and the probability
of the first-passage time decays exponentially with τ . These
facts are entirely consistent with the observed decays of P(τ )
in the short- and long-τ regimes, respectively. Finally, the
dynamics expects an exponentially decaying autocorrelations
of the position of particle around each well, which explains
the observed exponential decay of CT T .

As a conclusion, all the observations of the thermal device
with bistability agree very well with the theoretical expec-
tations. The present study may deepen our understanding of
the dynamics of a multiple-stable-steady-state system, thus
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it is helpful in improving the performance of various ther-
mal control devices such as thermal memory. The underlying
mechanisms for NDTR may vary, but we believe that this
study is also applicable to a number of other mechanisms that
induce NDTR and bistability, not limited to the match and
mismatch of phonon spectra. To describe the thermal systems
more precisely, the detailed properties of thermal fluctuations
might also be necessary. Further studies may be extended to
it. Thermal multistability systems, which are even more com-
plicated, may also be considered. Very recently, an approach
of designing macroscopic bistability and multistability, which

applies to arbitrary diffusive systems, has been proposed [22].
The practical merits of the related studies can be naturally
expected.
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