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We study the mean first-passage time of a one-dimensional active fluctuating membrane that is stochastically
returned to the same flat initial condition at a finite rate. We start with a Fokker-Planck equation to describe
the evolution of the membrane coupled with an Ornstein-Uhlenbeck type of active noise. Using the method of
characteristics, we solve the equation and obtain the joint distribution of the membrane height and active noise.
In order to obtain the mean first-passage time (MFPT), we further obtain a relation between the MFPT and a
propagator that includes stochastic resetting. The derived relation is then used to calculate it analytically. Our
studies show that the MFPT increases with a larger resetting rate and decreases with a smaller rate, i.e., there is
an optimal resetting rate. We compare the results in terms of MFPT of the membrane with active and thermal
noises for different membrane properties. The optimal resetting rate is much smaller with active noise compared
to thermal. When the resetting rate is much lower than the optimal rate, we demonstrate how the MFPT scales
with resetting rates, distance to the target, and the properties of the membranes.
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I. INTRODUCTION

A biological membrane is composed of a variety of pro-
teins and ion channels that interact with the intra- and
extracellular environments. The proteins and ion channels
consume energy via the hydrolysis of adenosine triphosphate
(ATP) and exert force on the membrane [1]. On average,
the exerted active force could be either zero or nonzero, de-
pending on the exact problem. The interplay of the force and
the mechanical properties of the membrane, such as bending
rigidity and tension, determines the shape of the membrane
and the movement of a cell.

In order to perform a specific function, a cell often needs
to reach a certain target. When it moves with an average ve-
locity, calculating the time it will take to reach a target seems
straightforward. We consider a scenario in which a cell finds
its static single target only through membrane fluctuations. In
this case, it is interesting to understand the time a membrane
takes to reach its target for the first time. As the membrane
fluctuates either toward or away from the target, the reaching
time is a stochastic variable, and in a statistical sense, the
mean first-passage time may be a sensible measure for the
process.

The mean first-passage time (MFPT) is relevant in a variety
of physical, chemical, and biological processes ranging from
species extinctions in ecology [2,3] to molecular processes. A
simple example of MFPT is the average time a forager takes
to find food or other resources for the first time [4]. In biology,
the immune cells search for cells with antigens. Therefore, it
is relevant in a range of length scales and becomes more im-
portant as the need to understand complex systems increases.

Because the underlying stochastic dynamics of a fluctuat-
ing system can cause MFPT to be infinitely long, depending
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on the system details, several search strategies have been
proposed over the past two decades [5—7]. One of the most im-
portant strategies is stochastic resetting, in which the searcher
is returned to its initial state at a fixed rate. This may enhance
the likelihood of finding the target because the searcher may
explore the surroundings, that may reduce the likelihood of
wandering away from the target. Stochastic resetting was first
proposed for a single Brownian particle [8—10], subsequently,
numerous problems have also been studied in other fields,
such as population expansion in fluctuating environments [11]
and search algorithms in computer science [12]. Several vari-
ations of resetting [13] have also been investigated, including
resetting with finite velocity [14], which may be useful in real
life.

A passive membrane driven by thermal noise satisfies the
fluctuation-dissipation theorem. A biological membrane, on
the other hand, transports ions through its embedded ion
pumps, which consume ATP and cause local force (or active
noise) on the membrane. Together with thermal noise, this ac-
tive noise enhances the amplitude of membrane fluctuations,
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FIG. 1. Schematic diagram of fluctuating active (curvy solid
black line) and passive (curvy dashed blue line) membranes and their
target (shown by a solid green circle). The membrane is reset to its
initial height 7 = hy (shown by a straight-dashed red line) at a finite
rate.
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which can be experimentally quantified by the effective tem-
perature [1,15]. Unlike the passive membrane, the membrane,
which actively participates in biological processes, does not
satisfy the fluctuation-dissipation theorem.

Though the passive surface growth with stochastic reset-
ting has been studied [16], the dynamics of a membrane with
active fluctuations have yet to be investigated. Importantly,
the MFPT, which is fascinating in the context of searching,
remains elusive. In this work, we answer the question: How
long does it take for a membrane to reach its single point
target when a membrane is reset to its flat initial height with a
finite rate? We illustrate the scenario in the schematic diagram
shown in Fig. 1.

To this end, we first derive the propagator for the coupled
dynamical equations for an active membrane. Further, we
derive a general relation between the MFPT and a propagator
under resetting. Using the relation and the derived propagator
for the height, we obtain the MFPT. Our studies reveal that
there exists an optimal resetting rate at which MFPT becomes
minimum. We demonstrate how, for different membrane prop-
erties, MFPT scales with resetting rates and target heights and
how an optimal resetting rate arises. Finally, we compare the
MFPT for active and passive membranes.

The resetting of a membrane may be related to the type of
motility in which a part of the cell membrane gets detached
from its cortex and fluctuates, known as a bleb. After that,
the cortical actin filaments reach the detached membrane and
bring the membrane back to its initial position [17,18]. The
membrane may grow again and find its target; however, the
underlying dynamics remain unclear.

This work is structured as follows: The model is presented
in Sec. II. The derivation of the single-height distribution
is described in Sec. III. Section IV depicts the connection
between the mean first-passage time and the propagator. In the
following section, we calculate the height-height correlations
for different cases. Section VI presents the MFPT for a variety
of cases in one spatial dimension. Finally, Sec. VII presents
discussion and conclusions.

II. MODEL

We are interested in understanding how the symmetric
membrane fluctuations eventually drive the membrane to
reach a target. We consider a membrane with the symmetric
distribution of all membrane components (such as lipids and
proteins) and the same environment on both sides of the mem-
brane that may ensure symmetric membrane fluctuations and
thereby zero spontaneous curvature. Here we first consider the
free energy for a symmetric membrane [19] expressed as

Fh] = /dx{g(Vh)z-f- %(vzhf}, )

where v and « are the tension and the bending rigidity of the
membrane, respectively. We study a simple dynamical equa-
tion for height field h(x, t) in one spatial dimension written
as 'oh/dot = —8F[h]/Sh+ n(x,t) + av(x,t), where n(x,t)
is the thermal noise with zero average and (n(x, t)n(x’,t')) =
2D8(x — x')8(t —t'). The coefficient D is the strength of the
thermal noise. From here onwards, we scale time ¢ with I" and
keep it as ¢. The last term v(x, ¢) arises from the fluctuating

force of ion pumps or channels and the proteins which affect
the membrane dynamics. Considering v(x, ¢) as an Ornstein-
Uhlenbeck type of field, we write

du(x, 1) v
T - _'L'a +/’L(-x7t)’ (2)

where w(x,t) is the Gaussian noise with zero average and
((x, Hu', 1)) = 2D,8(x — x')8(t — t'), and 7, is the relax-
ation time of an active noise field v. The strength of the active
fluctuations D, depends on the available ATP concentration,
and the density of the protein pumps [20] which are taken to be
constant in space and time. As there are no spatial derivatives
or other functions of space in Eq. (2), v; acts locally on the
membrane /;. In contrast to thermal noise, active noise v; has
a temporal correlation with a correlation time 7, resulting in
membrane height h; being kicked for a much longer period
of time than that of thermal noise. To put it another way,
the active noise correlation effectively takes the form of the
thermal noise correlation in the limit t, — 0.

When a membrane is surrounded by fluid, the motion at
one point of the membrane affects the motion at the other
point via the fluid medium, which is known as hydrodynamic
interaction. However, in one spatial dimension, the effect of
the hydrodynamic interactions on the relaxation dynamics
is marginal [21,22]. We therefore neglect the hydrodynamic
interactions and write the dynamical equation for membrane
height as

dh(x,tr)  9*h  ¥*h
o Vg < m tavEmnaen. O

In the above equation, bending rigidity « and tension v
determine a length scale £, = i/« /v. As a result, when £ >
£., v dominates membrane dynamics; otherwise, x domi-
nates. We study the two limits of the membrane properties,
namely tension-less active membrane (TLAM) (v = 0) in
which dynamics are governed by bending rigidity « and
tension-dominated active membrane (TDAM) (x =0) in
which dynamics are governed by tension v. To study active
dynamics, we neglect the thermal noise n compared with ac-
tive noise v, and we study the membrane dynamics separately
with thermal noise.

The growth of the height fluctuations may vary over time.
For instance, the initial height fluctuation dynamics differ
from the late-time dynamics. The mean-squared width, which
is a statistical measure of height fluctuations, grows with ¢# for
t K L%, where 8 and z are the growth and the dynamic expo-
nents, respectively, and L represents the size of the system. For
t > L%, the system reaches its steady state, and mean-squared
width no longer depends on time ¢, rather on LX, where y is
the roughness exponent of the membrane [23]. The dynamic
exponent z is determined by the properties of the membrane;
for example, when tension dominates membrane relaxation
(v # 0 and « = 0) the dynamic exponent z =2 and when
bending rigidity dominates membrane relaxation (x # 0 and
v = 0), z = 4. For the active system, the timescale of interest
is expressed as t < 17, < L? for L — oo.
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III. HEIGHT DISTRIBUTION

We first aim to derive the propagator for the coupled equa-
tions given in Eqgs. (2) and (3). The discretized versions of
Egs. (2) and (3) are written as

o Th S A A A
A _[- A5 a T, [n0]
ot | vi(t) 0 —A' [ vi®) i)
where A;; = —(VA;; —KA?J.), AN =1/, and Zj in the
above equation includes the nearest neighbors. Further, we
write the Fokker-Planck equation for the joint distribution
W({h}, (v}, 11h°, v°, 1) as
oW [ AR al

0 /
o1 — Z a—hi(—Aijhj +a5,»j Uj) + Z E(Aijvj)

ij= ij=1""

9 5 _
% _p, % pe | W v.1),
+Zl Ohidh ’+”2=:1 v, ”} (0.1
(5)

where N is the total number of sites. The initial conditions
read W(h, v, to|h°, v°, 1) = 8(h — h°) §(v — ©°), where h =
{h;} and © = {v;}. Using the method of characteristics, we
solve the above equation (as detailed in Appendix A). Fur-
ther, we integrate the distribution of initial noise field ©° as
[ dv® 8(8°) W(h, t]y°). We also integrate out the active noise
field ¥ and then obtain a marginal distribution for 7 which
reads as

exp[ — 3A"M[ k]
QL2 /detM;
where covariance matrix M is expressed as
M; = 2D f(2A) + a?[f2A") = 2f (A + AD1IS;  (7)

in which f(@)=(—-e")/0, Dy =D+a?/2, and
a? =2a’D,/(A — A)>. The above matrix is obtained
with the nonstationary active noise. Considering
a=0 in Eq. (6), we obtain the propagator for
the passive system expressed as Wpassive(ﬁ, t10,0) =
«/# det [m] exp [—% hTmh], which s
consistent with the propagator for the Ornstein-Uhlenbeck
type of particle in a harmonic potential [24].

As we define the position of the target as being at 0, we
integrate out heights from all the sites except x = 0 because
a single height at that point may only reach the target as
overhangs are not considered. For a homogeneous system, we
obtain the marginal distribution

W (h,t]0,0) = (6)

1 1 n
————exp| 575, | @
V2 (B2(1)) 2 (1))

The obtained propagator in the above equation describes how

a single height distribution evolves with time starting from a
reference height Ay.

W(0,1]ho, 0) =

IV. MEAN FIRST-PASSAGE TIME WITH RESETTING

We next present a relation between the first-passage time
and survival probability, and then investigate how the mean
first-passage time is related to a propagator.

A. Survival probability

Let us consider a particle driven by stochastic noise starts
at position h = hy and reaches the target (h = 0) for the
first time at time 7', known as first-passage time. The sur-
vival probability, S(hg, T'), can be related to the first-passage
time distribution, F(hy, T'), which is defined as the like-
lihood that the searcher has not reached the target up to
time 7. With this, F(hg, T) can be expressed by the differ-
ence between the survival probabilities at two consecutive
discrete times as F(hy, T) = S(hy, T — 1) — S(hy, T) [25].
In the continuum limit AT — 0, F(hy, T)AT = S(hy, T —
AT) — S(hy, T) yields

9S(ho, T)
T

We next study the MFPT of a stochastic variable in one spatial
dimension under stochastic resetting.

F(hy, T) = 9)

B. MFPT with resetting

We consider that the initial separation between a point
on the membrane and a target is /o and that the membrane
takes time 7T to reach the target for the first time (see Fig. 1).
Resetting is the immediate return of the membrane to its
starting flat initial height &g at a rate r. The survival probability
with resetting is denoted as S, (ho, T) and the corresponding
first-passage distribution as F;(hg, T). The first-passage dis-
tribution and the survival probability with resetting are related
in the following way [26]:

0S8,(ho, T)
T

Therefore, the mean first-passage time with resetting is de-
fined as (T) = fooo dT TF,(hy, T). Using Eq. (10) in the
definition of the MFPT, we get

Fy(ho, T) = (10)

(T) = /OOdT S, (ho, T). (11)
0

Now, we consider the Laplace transform (LT) of survival
probability, which reads as

o0
S, (ho, $) =/ dT e*T S, (hy, T). (12)
0

When T — oo, we consider that the searcher finds the target
with probability 1, which results in S, (g, 00) = 0. Substitut-
ing s = 0 in Eq. (12) and equating with Eq. (11), we obtain

(T) = S,(ho, 0), (13)

where S, (hy, o0) = 0 is considered. Following the backward
Kolmogorov equation for first-passage time distribution, we
write

Fy(hy, T) = e ""F(hy, T)
T
+/ dt'S,(ho, T —t"yre " F(ho,t'), (14)
0

where F,(hg, T) is the first-passage time distribution with
resetting. The first term on the right-hand side of the above
equation indicates that there has been no resetting in time
T, while the second term denotes that the last resetting took
place at a time ¢'.
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Using Eq. (10), we multiply e =7 on both sides of the above

equation and finally integrate over 7. This leads to

~ 1 — F (ho,

5 (hy,5) = ~— L0 rt8) (15)

s+ rF(hy, r+s)

where F(hg, r +s) is the LT of the first-passage distribu-
tion time without resetting. In the above equation, we use
S,(hy, 0) =1, i.e., initially (¢ = 0) the survival probability
is 1. Substituting s = 0 in the above equation, and using
Eq. (13), we obtain

1 1
(T) = ;[m - 1}. (16)

Following the renewal equation, we write the relation between
the first-passage time distribution and the propagator as [3,27]

T
W(O,T|h0):/ dt'F (ho, t YW (0, T —¢'|0)dt’
0

+ 80,1)0(T), (17

where W (0, T |hg) is the propagator at 4 = 0 at time 7 given
that the initial coordinate was at & = hy. The Laplace trans-
form of the above equation leads to

~ W (0, s|h

F(ho, s) = w (18)

w(0, s0)

where hy # 0 and s is the Laplace conjugate to time 7. Sub-
stituting the above equation in Eq. (16), we obtain

1 W(,r|0
YO0 ) (19)
r\W(, rlho)

Despite the fact that we discuss the case of a point on the

membrane, the obtained relation is valid for any stochastic
variable.

V. HEIGHT-HEIGHT CORRELATION
The autocorrelation of active proteins from Eq. (2) can be
written as

(i) = e MO f ds f ds' ) (i) (5)

(20)

where (v;(¢)) = 0 and 1y is the initial time. We consider that
the active proteins have already reached their steady state as
they relax faster than the membrane, which is achieved by
setting #y) — —oo. Carrying out the integration in the above
equation, we obtain

—A|t—t'|

(vit);(t")) = Da e

The derivation of M; [given in Eq. (7)] from the Fokker-
Planck equation and (h;(t)h;(t)) from the coupled Langevin
equations [given in Egs. (2) and (3)] are found to be the same

(hi(®h;(t)) =

The above relation is obtained with the nonstationary and
stationary state active noise. With nonstationary state active

8ij. @21)

MY ;. (22)

noise, the relation is shown in Appendix A, and with station-
ary state, the height correlation is obtained as

(R7()) =2(D + D,)f(2A) —2D), f(A+A), (23)

where D/, = A(A—, When A is considered as the spring
constant of a harmonic well, the above equation is consistent
with the displacement correlation of a particle in a harmonic
well with an Ornstein-Uhlenbeck type of active noise [28].
For A — 0, Eq. (23) becomes equivalent to the displacement
correlation of the active Ornstein-Uhlenbeck type of noise.
Further, considering A’ = 1/t,, the above correlation can be
obtained as follows: limp_,o(h?(t)) = 2t{D + (at,)*D,[1 —
(1l — e "/%)]} which agrees with Ref. [29]. In the passive
case (a = 0), the above correlation becomes 2Dt, which is
the mean-square displacement of a Brownian particle in one
dimension.

In order to investigate the MFPT of fluctuating membranes,
we first employ the relation between the MFPT and the prop-
agator given in Eq. (19). We next aim to obtain the propagator
with active or thermal noise [as given in Eq. (8)], which
requires the single point height-height correlation. To this end,
we begin with the Fourier transform of Eq. (3) which reads as

oh(q,t) 1
T = ——h(g.D (g0 +avig. D). 24

t 7,
where 7, = (vg* 4 kgq*)™! is the membrane relaxation. Using

the flat initial condition, we get

t
h(g,t) = e /™ / dt' e’ [n(q,1") +av(g,t)]. (25)
0

We also obtain the autocorrelation of the stationary state active
noises as

(W(g, (g, 1)) = Duta Q1)8(qg + ¢ e "~Vw  (26)

The inverse Fourier transform of the height-height correlation
can be written as

o _ [T da
thix, £) _/_oo @)

= d_q’ i(q+q')x /
. on) e (h(g,)h(q', 1))
27

in which the correlation can be calculated either with active or
thermal noises.

A. Tension-dominated membrane (¢ = 0)
1. Active

Using the active noise correlation given in Eq. (26) and
considering the Fourier transform of the height given in
Eq. (25), we write the height-height correlation as

[ee] d t t
(h(x, t)z)active = a2 D, 1, / _qe_zqu / d’/l/ du'
—0 (27) 0 0

eu(u+u’)q2 gf\ufu’\/ru . (28)
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We perform integration over ¢ and obtain

D
(h(xat)2>aclive =a fa / du/ du

e~/

V2t — (u+u)
(29)

Next, we carry out the integration over u and 1’ which results

in
azDars/2 12tt, 1,4 Erf t
—— —_—— — I‘ —
Jv i 2 V 7,
+ |:Erﬁ</ )—Erﬁ 2 ”
2 Ta Tu

(30)

(h(x, t)2>active =

In this study, we are interested in the regime in which active
noise drives the membrane. As we see above, depending on
time ¢ and 7,, the active noise correlation given in Eq. (30)
has two distinct regimes. For # <« t,, the above equation is
simplified to

(ﬁ — e

aTa
(h(x, f)2 Yactive \/— 32 3D

and for t > 1,

2t
(h(x, 1)) active == a* D, T2 —. (32)

2. Passive

Similarly, we next derive the autocorrelation with thermal
noise (see Appendix B) which reads as

2t

<h(x t) >passwe =D (33)
7'[1)

In the limit ¢ > t,, the autocorrelation of active noise exhibits
passivelike behavior. Because the active noise becomes uncor-
related when the interval between two successive observations
is larger than the correlation time t,. As a result, the effect of
several changes in the uncorrelated noise v; changes the mem-
brane height 4; in a random manner. Thus, in the long time
limit, this uncorrelated active noise becomes additive to the
thermal noises, and according to the central limit theorem, the
distribution of these uncorrelated noises leads to a Gaussian
distribution with increased variance.

Since we study the passive case separately, for active noise,
we limit ourselves only when ¢ < 7,,.

B. Tension-less membrane (v = 0)
1. Active

When the membrane tension is very low compared to the
bending rigidity, the dynamics of membrane relaxation are
dominated by k. We investigate how the height-height correla-
tions scale in time for TLAM. We begin with the height-height
correlation expressed as

o0 t
(h(x, 1)) aciive = a@* Dy ra/ d—q/ du
—00 (27[) 0

/ di'e i (utu' =2t )g* —\u—u'\/n,. (34)
0

: : : e —
10*F® v#0andk=0 A 4® xz0amdv=-0
12 F g
: a'D, 12 =1 10 aD, s rmym =1~
8 of 1 A% 3
2710 Aok 3
Ni ) - 3) 2" v, -3221 "™
101 - T,=50 i 107 -1, =50
17 =500 T, =500
L L L 1 5 S )
w10’ 10 10 10 10 10 10 10
FIG. 2. (a) The integration given in Eq. (28) for tension-

dominated membrane fluctuations is numerically solved for 7, =
50 and 500 (shown by the dotted-black and dashed-green lines,
respectively), and the results are compared to the analytical find-
ings given in Eq. (31) (shown by the solid-red line). (b) Similarly,
the integration given in Eq. (34) for rigidity-dominated membrane
fluctuations is numerically solved (shown by the dotted-black and
dashed-green lines, respectively), and the results are then compared
with Eq. (36) (shown by the dashed-red line).

Integrating over g, we obtain

a’D, 1,
(h(x t) )actlve— F( ) ]TK1/4 / du/ du

o~ lu—1/%
X — (35)
2t — (u+u)]=

Next, integrating over u and u’ and considering t K t,, we
obtain

8T () a* Dy 1,
(hx 1 haeie = @4 = 1) 2(14)%%4. (36)
TK

We now carry out numerical integrations given in Eqs. (28)
and (34) and compare the numerical results with the obtained
analytical results given in Eqgs. (31) and (36), respectively for
t < 1, (shown in Fig. 2).

2. Passive

We also obtain the height-height correlation for the passive
membrane as

31/4
(h(x, t)2>passive L |:(2t) :| . (37)

= 3734 | 7k

With active noise, the height-height correlation (~¢7/4)
grows much faster than the thermal noise (~3/%), on the other
hand, the scaling of « remains the same (~«~'#) for both
the noises. We obtain similar results for tension-dominant
membranes in which the correlation (h%) ~ v~!/2 for both the
noises, whereas the time dependence of the correlation gets
significantly affected by the active noise as given in Egs. (31)
and (33).

VI. RESULTS

In this section, we derive the MFPT for TDAM via the LT
of the propagator.
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A. MFPT: Tension-dominated active membrane

As the diagonal matrix M; is the exactly same as (hiz(t)),
we substitute Eq. (31) in Eq. (8), and obtain

1 1 h(z,
Wactive (ho, 1) = ﬁ o exp 2 ) (38)
t

t

where o' =37 /[V8a®D,1,(v2 — 1) /4. The

Laplace transform of Eq. (38) yields

~

W 11 © df ool 39
acuve(ua’r)—ﬁm 0 meXP _t_g ’ ( )

where @ = «, /t34,f = rt, and u, = r¥* hy/a. We substitute
the above equation in Eq. (19) and obtain

(T e = }[ ;“((Z)) - 1}, (40)
where
Ia(ua)zfooo;—/iexp (—f— ;/22> (41)
Foru, — 0,
Io(ug) 2 1,0)(1 = bolug| ' + byua " + bolug|*),  (42)
where I,(0) =T'(1/4) and by =4T(5/6)/T(1/4), b, =

2/3
3371“ —3),and by = £ T(— I ().
We are interested in reducing the MFPT which indeed

occurs for a smaller resetting rate r. Thus, the MFPT is sim-

plified as
bo B\ /3 o \¥3
(1)) active = rg%(f) for r € (l’l—0> . 43)
The above scaling suggests that (7)active ™~ (@D,
T,/ V)" VS.

B. MFPT: Tension-less active membrane
We next investigate the MFPT in which the membrane
relaxation is dominated by «. We first write the propagator
as

Wactive (h09 1) = (44)

| 2
N (‘,3‘,2)’

where g, = 175 and B = VIV — DT(1/4) 225,
consider LT of the above equation, which is expressed as

We

W IR Y ] _ )
actwe(ya’r)—ﬁm o ﬁexp - _t__% ’

T T T T

. b 1

(@) Active _\( ) Passive 3
v#0 andk=0 ~ ]

. v#0 andk=0 |
> I
1
f

£
n
£y

=

T
—_
=]

~

L

£y
/

/

%
/
1

4/3
<T,>/(hy/0)
>, S
:
.

4
<T>/(h/o)
S
T
/

—_
=1
T
=
x
T
/
/

10° 1070 100 10 10 10 o' 10
u

®
)

FIG. 3. The variation of mean first-passage time (7)) with
resetting rate r for a tension-dominated membrane (v # 0 and
k =0) and fixed target height hy. (a) For an active membrane,
we plot the MFPT, which is analytically obtained in Eq. (40),
where u, = r¥/*hg \/(3\/5)/[8% D,7,(+/2 — 1)]. (b) For passive
membrane, we plot MFPT obtained in Eq. (B6) where u, =
r4ho/[2D~/2](mv)]'/? as the effective coupling variables for active
(a) and passive (b) systems, respectively. In contrast to the passive
membrane, where the effective coupling rate u, > 1, the active mem-
brane has an optimal resetting rate for u, < 1.

where y, =" ho/B and Weeine(0, r) = ZT(1/8)/r'/%.
Substituting the above equation in Eq. (19), we obtain

~ 1[Ja<0) - 1}
S ’

Ty [T f_ v
W(Va) = ; =i exp (1= ).

where J,(0) = I'(1/8). For x < 1, J,(y,) can be expressed as
JaUa) = Ja(O)(1 = colyal 7 + c1lya”” = e2lyal®),  (48)

where cp = 1.111, ¢; = 0.294, and ¢, = 0.310. Keeping only
the leading order, we obtain

17 8/7
co (ho B
(Toe) active = }’7_(/8<F> for r K (/’T()) .

Our study suggests that the MFPT is lowest at an inter-
mediate value of r for all cases as shown in Figs. 3 and 4.
As r deviates from this value, the MFPT increases. Because,

(7;{ )aclive (46)

where

(47)

(49)

. l -
10 @ Active E 0T (v Passive
5 Oandv=0 b K#0andv=0 f
= xk#0andv= ~
2 210
A < .. I
“ A ~
— 2 of S~ /]
) ~ /
" =10 ;
, . .
10° 10?0t 1

FIG. 4. Variation of mean first-passage time (7') with resetting
rate r for a tension-less membrane (k # 0 and v = 0) and fixed
target height /. (a) For active membrane, we plot the MFPT via nu-
merical integration which is analytically obtained in Eq. (46) where
Yo = 1"/ /(16/21)(23/* — I'(1/4)a2 Dyt /7 /4. (b) For pas-
sive membrane, we plot MFPT obtained in Eq. (B14) where y, =
r38hy\/3K1/4/(27/4D) as the effective coupling variables for active
(a) and passive (b) systems, respectively. The optimal resetting rate is
obtained for y, < 1 for active system, whereas for passive membrane

vy > L.
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TABLEI Single point height-height correlation and mean first-passage times with active and passive noises. For tension-dominated passive
membrane (v # 0), MFPT has the largest power /2, whereas tension-less active membrane has the lowest power h(l)/ 7. We show the dependence
of MFPT on the membrane properties v, k, target height /,, and resetting rate r for » — 0. Our study reveals that active noise, compared with
the thermal, significantly reduces the dependence on the membrane properties.

Membranes (h*(x, 1)) ~ Eqgs. lim,_,o(T) ~ Egs.
Tension-dominated active D, v71/2 132 31) 34 h(l)/3 pl/12 p-1/6 (43)
Tension-less active D, VA4 (36) r T8 g7 k1% piie (49)
Tension-dominated passive Dvy~'/2 172 (33) rm12 g2 y1/2 ! (B9)
Tension-less passive D14 g34 (37) ro38 B 54 pS/e (B15)

when r is very large, the membrane moves too slowly to
reach the target due to frequent resetting, and when r is
very small, stochastic fluctuations may cause the membrane
to move far away from the target, resulting in a significantly
longer MFPT.

The MFPT scales as (T)acive ~ k'/°¢ for a rigidity-
dominated active membrane, whereas it scales as (7),)active ~
/12 for a tension-dominated active membrane, indicating
that the effect of v on MFPT is much stronger than the
rigidity k.

On the other hand, active noise significantly reduces the ef-
fect of k (or v) on MFPT compared with the thermal noise. For
rigidity-dominated membrane, MFPT with active noise scales
as (T )active ~ k'/°°, whereas with thermal noise it scales
as (T ) passive ™~ K3/, Similarly, for tension-dominated mem-
brane, MFPT with active noise scales as (T} )active ~ V'/12,
whereas with thermal noise it scales as (T, passive ~ V'/%.

VII. DISCUSSION AND CONCLUSIONS

We study the MFPT for one-dimensional membranes under
stochastic resetting with active and passive noises. Starting
with the coupled equations for membrane heights and active
noises, we write a Fokker-Planck equation for the joint distri-
bution and then solve it using the method of characteristics.
The explicit solution of the Fokker-Planck equation for joint
distribution describes how a single height distribution depends
on the single point height-height correlation ({h?)).

Our study shows that the height-height correlation with
active noise grows much faster than that with thermal noise
for both the tension-dominated and tension-less membranes
(Table I). Across the membrane properties, the tension-less
membrane shows a larger exponent of time than the tension-
dominated membranes shown in Table .

We derive a general relation between MFPT and a prop-
agator with resetting [given in Eq. (19)]. Using the relation
and the obtained propagators for heights, we next analytically
obtain the MFPT under stochastic resetting with active (or
thermal) noise.

Finally, we demonstrate how (T') scales with resetting rate
r and target height sy and how it differs between active and
passive systems. Our study reveals that, starting with a very
small resetting rate, (T') decreases with increasing r, whereas
starting with a very high resetting rate, MFPT decreases with
decreasing r. Since (T') decreases when r increases to inter-
mediate ranges from both the extrema of r, this indicates that
there is an optimal resetting rate at which MFPT is minimized
(shown in Figs. 4 and 3). This is explained in the following

way: In the absence of resetting, the fluctuating membrane
may move so far away from the target that the first-passage
time may be infinitely long. With a smaller resetting rate,
the interface is reset to its initial height, which may reduce
the possibility of moving the membrane far away from the
target, as resetting brings it back to its initial level. With very
high r, on the other hand, the membrane is reset so frequently
that it moves too little to reach the target, causing the MFPT
to grow. This indicates that at the intermediate resetting rate
(the optimal resetting rate), MFPT becomes minimal.

With active dynamics, the optimal resetting rate occurs at
a smaller resetting rate than that of passive systems shown
in Figs. 4 and 3. In terms of scaling of the target height
hy, a tension-dominated passive membrane has the largest
value of the exponent of A (Nh(z)), whereas a tension-less
active membrane has the lowest value of exponent as h(l)/ 7
(see Table-I). Our work reveals that with active noise, the
scaling exponents of (T') on v or x are smaller by an order
of magnitude compared with the passive system (Table I).

This work may serve as a benchmark for future studies
that may have real-life applications, such as the fluctuating
membrane for a finite system, the nonzero resetting time,
resetting with a finite velocity, etc. Within this framework, the
MFPT of a fluctuating membrane in higher dimensions can be
easily generalized.
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APPENDIX A: DERIVATION OF THE PROPAGATOR

1. Fokker-Planck equation
We consider p” = {p;} and q" = {¢;}, which are the
Fourier variables corresponding to 4 = {h;} and ¥ = {v;}, re-
spectively. Let us write the Fourier transform in the following
way:

W' oy = [[di [ av e O IOWG 1100,

(AD)
where (p")ix, (q")1xz, and (A)r,; and (v)..; matrices.
Taking into account the initial conditions, we obtain W

@, ", 01y0) = [dhfdve i@ " D5 — 10)s(5 — 1°)
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in0770_: 0750 . . .
= ¢~'P" —=i4" V" We now obtain a Fokker-Planck equation in

Fourier space as

—_ZAszl
_ZA”%__

+ a Z pzM
ZDijpiij - Z D?,-WIJW
ij ij

2. Method of characteristics

We employ the method of characteristics and get

dW W IWdp; OW dg;:
N i — . A2
dt ot +Z(3p, dz+8q,- dt) (A2)
Along the characteristic line, we have
dp,
Z Aijpj, (A3)
dqi ’
@ LA e (a9
J ij
Solving the above equations, we obtain
p(r) = e (A5)
and
At At
_ A 0 e —e¢ 0

In the above equations, p(¢) and () evolve along the charac-
teristic line. The total time derivative of FPE is obtained as

dW

— Zzb,, pip;W — ZzD,, 4iq;W.

ij

(AT)

d(log W) _

—l(pTZDp +4q"2D,p)
dt 2 ars

(A8)
Let us calculate the argument in the above equation as
p’2Dp + q"2D,p in terms of p° and q°. Using q from
Eq. (A6), we obtain

q'D.q = P 01p° + (¢*)" 02q° +2(p*)" 03¢,

(A9)
where
2
At At
g =d |2, [ A10
Q1)L =a A , (A10)
LxL
(Q2)ixr = (2Dg € pxr, (Al1)
and
5 eAt _ eA’z v AL
X = Du - .
(Q3)ixL =a oA )¢ . (A12)

Similarly Eq. (AS) leads to

p’2Dp = p*’ (22D p. (A13)
Adding Eqgs. (A9) and (A13), we obtain
@) @1+ 0P’ + (@) 0’
+20")7 03 ¢’ (A14)

We now substitute Eq. (A14) in Eq. (A8), and obtain

p 2Dp+q"2D,p =

W 1
log| = | === R p° + (") Roq’ + 2(p°) R3 ¢°1.
Wo 2
(A15)

where Wo is the Fourier transform of the initial height config-
uration and velocity profiles. In Eq. (A15), we have

R = / dt' [0\ (F) + O, (1], (A16)
0
_ / dr' 0s(t)), (A7)
0
2/ dt/Q3(t,). (A18)
0

Using Wg (as shown above) and Eq. (A15), we obtain
W= exp < - %[pOTRlp0 + qOTR2q0 + 2p0TR3q0]>
x exp [—i(p" 7° + ¢*" 7)1 (A19)
Below, we express p° , q°", p°, and q° in terms of p and q .
Therefore, we write the arguments in the above equations as

poTRlpo — pT (e—AlRle—At) P, and

T oA/ _ ’
q0 quo =qT(e ZAtRz)q+pTa2€ 2(A +A)ZR2f2p

—2p" (ae™ MRy fe M ). (A20)
The other term can be obtained as
T _ ’
2p" Riq” = 2p"[e" """ R3]q
+2p" [—ae” *M AR 1. (A21)

Combining the above terms, we get
1 o7 T T
exp [—z(p" Rip’ +4q" Roq” +2p° Rm")}
7 T T
=exp|—-(p" Mip+q'Mxq +2p Msq) | (A22)
The contribution to p”p also comes from q°’ ¢° and p®’ p.
Therefore, we have three terms in My,
M] — (e—AtRle—At + a2 e—2(1\+/\’)f fz(t)Rz

—2ae MY £ Ry - (A23)

044117-8



MEAN FIRST-PASSAGE TIME OF AN ACTIVE ...

PHYSICAL REVIEW E 107, 044117 (2023)

Let us now evaluate the integrations for Ry, R, and R3 which
are given in Eq. (A18). Thus, we now have

R — |2+ 24D, P |
= (A — A)? 2A
24D,

3 eZA’t -1
- A)2< 28 )

aZDa [e(AJrA’)t _ 1]

, A24
(A —A? A+A (a2
eZA’r -1
Ry, =2D,| —— |, A25
2 ( X ) (A25)
and

2D, e(A+A’)t -1 eZA’t -1

Ry =a — . (A26)
A — (A +A) 2N

Substituting the expressions for R, R,, and R3 in Eq. (A23),
we obtain

1— —2At 22D 2 —(A+AY _ 1
M, 8 = 2Dt —- 2,2 )
J (

2A —A)? (A +AN)
LU= A27
) (2D
where Dyoy = D + i A °D, TN Similarly, we obtain
1— e—2A’t
M2 8” = 2Da T (A28)
and
2D, [ — o—(A+AY | _ =2
M3 Sij =a — . (A29)
(N —AN)| A+rA 2N

3. Propagator
Let us write W[p, q, t|1//‘0] in terms of M, M5, and M3 as

WIp, q, 1190] = exp [—i (pT e i + @7 e 2"5%)]

x exp (~i[~ap’ f(1)e” 0
x exp[ — 3(p" Mip +q"Myq

+2p"Msq)]. (A30)

We now consider the inverse Fourier transform and integrate
over p and ¢g. Thus, we obtain

- dp dq i pTidTs)
Wik 0. thinl = | 555 | Gy €0 Wik 4.1y
1/@2m)- | .

(A31)

where Al =h —e ™ h® and AD = v — e~ 2" 10, Integrating
over ¥, we obtain the marginal distribution

W(h, t|hy) = /dﬁ/dvo W(h, v, 1Y)

_exp[ = 3(h— e MR M (h — e MR
B (2 )L/2/det M '
(A32)

4. Height-height correlation in terms of operator

Let us start with the nonstationary active noise. Setting fo =
0, we obtain

t t
(vi(t)vj(t’)) ZefA’(tH')/ dS/ ds/eA’(s+s’)(Fi(S)Fj(S/)>
o I
, , eZA’I -1
=8;;Dye M —— ) when ¢/ > 1.
A/
(A33)

Taking into account the other part, i.e., # > ', we obtain

[ —Nt—t'| _ —A’(t+t/)]

(vit)v; (")) = (A34)

and
(ni(H)n; (")) = 2D8;;5(t —1).

We first study the height-height correlation when the velocity-
velocity correlation is nonstationary (i.e., fp = 0). We obtain

|:/(; dl‘/ At' / dt” At" (Th(t’)nj(t”))
+612 / dt/eAr’/ //eAt <U,(t )v (IN)>:|
0 0

1— 672At
= 8;j Dot A

(A35)

(hi()h;(1)) =

s 2a°D, [2(e” A — 1)
T =R A+
N (1 _ 672A’t) A36
T | (A3
(A37)

= Z(Ml)ij 8ij.
ij

The covariance matrix from the Fokker-Planck equation and
the height-height correlation from the coupled Langevin equa-
tions are found to be the same. The relation in the above
equation is obtained with the nonstationary active noise,
which also holds for the stationary-state active noise.

APPENDIX B

1. MFPT: Tension-dominated passive membrane

The height-height correlation can be written as

T (n(g, Dh(g', 1)).
(B1)

(h(x t) passive —

/ (2m) (277)
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In the above equation, we consider the membrane fluctuations
driven by spatially and temporally uncorrelated thermal noise.
The Fourier transform of the correlation can be expressed as
(n(q,n(q’, 1)) = 2D2r)8(q + ¢')3(t —t’). Using this, we
obtain

*© d

t
(h(x, t)2)Passive =2D / (2_73) / dr' e >4 (B2)
—00 0

We carry out the integration over g and ¢’ in the above equa-

tion and obtain
| 2t
(h(x, t)2>passive =D,/ —.
TV

(B3)
Substituting the above equation in Eq. (8), we obtain
_n
Wpassive(hOv r) = e (B4)

1
Jwak) 7

where o2.(t) = 2D % We consider the LT of the propagator

for passive membrane dynamics with thermal noise. The LT
of the above equation can be obtained as

ot r= L [ (5

assive (Up, V') = —F/—— 7 -5 SXpl—f——F%=,

p P \/jr“%rsm , T4 Vi
(BS)

where f = rt, o = 2D/2/(mv) and u, = r'/*hy/ar. There-

fore, our MFPT can be written as

1717
(T )passive = — [ Ip”(i)) — 1}, (B6)
where
© dF u?
1,(uy,) = /0 =173 P (—f — 7’;) (B7)

We carry out the integration for u, = 0 and obtain 1,(0) =
F(%). From the above equation, we obtain
] (B8)

)
)

1y(up) > 1,,(0)[1 — luyl?

for u, < 1. A simpler form for the MFPT can be expressed as

1

r(}) 1 (h\’
:Fé)m <£> for r < (ar/ho)*. (B9)

( v >passive

The expression of the MFPT (T,,) passive — 00 When u, — o0.
The MFPT of a passive membrane scales as (T, ) passive ™~ V172,

2. MFPT: Tensionless passive membrane

Similarly, with the thermal noise, we derive the height-
height correlation for the rigidity-dominated membrane as

D [(2t)3

2 . —
(h(x, 1) )passwe T 3734 | gk

1/4
] , (B10)

where we consider v = 0. Substituting the above equation in
Eq. (8), we write the propagator as

Wpassive (ho,t) =

11 2
ﬁﬁr(t)eXp[_ﬁr(t)z} G1

where  Br(t) = Br /% with Br = /3% [2]"/8. The
Laplace transform of the above propagator can be written as

~ 1 1
Wpassive(ypa r)= ﬁm‘]p())p)’ (B12)

where y, = r*/8hy/Br, and

0 JF . y2
Jp(yp)=/0 =75 € " exp (—#). (B13)

Uvsing the definition of the Gamma function, we obtain
Whassive (0, 1) = \/LEF(%)/(,BT r5/8) and

~ 1[Jp(0) 1}
r Jp(yp) .
Considering y, < 1, we obtain (T,) >~ 1 [(1 — coly,]”* +

c1ly,I*)~" — 1] where ¢y = 4.656, and ¢| = 6.077. For r <
(Br/ho)3/?, we obtain

co hO 5/3
(TK>passive a }’37 E .

The above equation suggests that for the passive system,

the MFPT strongly depends on the rigidity « as (7, )passive ™~
5124

(TK ) passive (B 1 4)

(B15)
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