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Hydrodynamic effects in kinetics of phase separation in binary fluids:
Critical versus off-critical compositions
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Via hydrodynamics-preserving molecular dynamics simulations we study growth phenomena in a phase-
separating symmetric binary mixture model. We quench high-temperature homogeneous configurations to state
points inside the miscibility gap, for various mixture compositions. For compositions at the symmetric or critical
value we capture the rapid linear viscous hydrodynamic growth due to advective transport of material through
tubelike interconnected domains. For state points very close to any of the branches of the coexistence curve,
the growth in the system, following nucleation of disconnected droplets of the minority species, occurs via
a coalescence mechanism. Using state-of-the-art techniques, we have identified that these droplets, between
collisions, exhibit diffusive motion. The value of the exponent for the power-law growth, related to this diffusive
coalescence mechanism, has been estimated. While the exponent nicely agrees with that for the growth via
the well-known Lifshitz-Slyozov particle diffusion mechanism, the amplitude is stronger. For the intermediate
compositions we observe initial rapid growth that matches the expectations for viscous or inertial hydrodynamic
pictures. However, at later times these types of growth cross over to the exponent that is decided by the diffusive

coalescence mechanism.

DOI: 10.1103/PhysRevE.107.044116

I. INTRODUCTION

When quenched inside the coexistence region, a homoge-
neously mixed binary (A + B) system separates into phases
that are rich in A and B particles [1-10]. This transformation
occurs via formation and growth of domains of like parti-
cles. Such an evolution process is complex, during which the
evolving structure exhibits interesting self-similar properties
[2,4-7]. The latter implies that the structures at two different
times are the same, except for the difference in size. As a
consequence, one observes the scaling behavior [2,6]

C(r,t)=C(r/e)) (D
of the two-point equal-time correlation function [2,6]

Clrt) = (P, 0P P, 1) — (Y FL )Y (R, 1), (2)

C(x) being a master function that is independent of time. In
Egs. (1) and (2), r = |F; — 72|, £(t) represents the average size
of domains at time ¢, and v is a space- and time-dependent
order parameter, that can be defined as the local concentra-
tion difference between the two species [10—12]. Typically, £
grows in a power-law fashion as [2,4-7]

£ ~1°. 3)

The growth exponent o depends upon several parameters
[2,7]. In a nonhydrodynamic environment, one expects o =
1/3. This is referred to as the Lifshitz-Slyozov (LS) growth
law [8,13—-19] and is a result of diffusive transport of particles,
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via a chemical potential gradient. The LS picture applies to
phase-separating solid mixtures and remains valid for critical
as well as off-critical compositions [8], for the entire growth
period. In fluids, however, hydrodynamics is important. There
the mechanisms and exponents are different for the above
two situations that give rise, respectively, to bicontinuous and
disconnected droplet morphologies [20—43]. This is true for
vapor-liquid as well as liquid-liquid transitions, in the former
case density playing the role of composition. Please note that
the LS mechanism not only is applicable to solid solutions but
also applies to liquids. For example, irrespective of the com-
position in a phase-separating liquid mixture, the early-time
dynamics can be dominated by this mechanism. Below we
briefly describe the hydrodynamic picture in the liquid-liquid
context.

Consider a composition close to the critical value, say, a
50 : 50 proportion of A and B particles for a symmetric model
of a mixture. In this case [6,7,10,22-24] the systems become
unstable owing to small fluctuations, and the phase separa-
tion occurs via formation of elongated percolating domains
of both the species. Fast advective transport of material, in
the presence of hydrodynamics, is expected to occur through
these tubelike channels, having undulating domain bound-
aries, due to the pressure gradient related to the interfacial
tension [22-24]. Overall growth in this situation is not de-
scribed by a single exponent. At very early times the LS
picture remains valid [6,7]. Following this hydrodynamics
becomes important, leading to a crossover of the exponent to
o = 1, in space dimension d = 3, which is referred to as the
viscous hydrodynamic growth [6,7,10,22,35,38]. At an even
later time a further crossover occurs to a smaller value, viz.,
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o = 2/3, known as the inertial hydrodynamic exponent [6,7].
These two growth exponents can be obtained by balancing the
interfacial free energy density with viscous stress and kinetic
energy density, respectively.

For a composition very close to any of the branches of
the coexistence curve, on the other hand, the growth, in a
hydrodynamic environment, may occur via coalescence of
disconnected droplets that consist primarily of particles of
the minority phase [20-22,29-31,33,38,43]. Such a picture
was proposed by Binder and Stauffer [20], Binder [21], and
Siggia [22] (herein referred to as the BS mechanism). For
diffusive motion of the droplets, between collisions, which is
a possibility for liquid mixtures, because of the high-density
background phase, solution of the dynamical equation [22]

dn 2
Z = —D¢n”, 4)

for droplet density n (o< 1/£¢), provides o = 1/d. In Eq. (4),
D is a diffusion constant, having dependence upon £. It is
expected that D¢ will remain a constant, during the growth
period, in accordance with the generalized Stokes-Einstein-
Sutherland [44-46] relation. In d = 3, the BS value is the
same as the LS exponent. The difference in the mechanisms is
expected to be captured in the amplitudes of growth, the latter
being larger for the BS case. The ratio of the amplitudes for
the two mechanisms is supposed to follow the relation [33]

A
5 = Kg'?, 5)
Ars

where K is a constant (=~ 6) and ¢ is the volume fraction of the
minority species in the mixture. Note here that other types of
droplet motions, viz., subdiffusive and superdiffusive, cannot
be straightaway discarded.

In this paper, we present results for a wide range of
compositions. We report how the growth law depends upon
the overall composition in a hydrodynamic environment.
Our results were obtained via molecular dynamics (MD)
[47,48] simulations. Even though the above-discussed picture
is for binary fluids [6,20-24], morphology-dependent sys-
tematic simulations of atomistic models exist only for the
vapor-liquid transition [49]. In our canonical ensemble sim-
ulations the temperature is controlled via the Nosé-Hoover
thermostat (NHT) [47,50-52]. The latter is known to preserve
hydrodynamics. The obtained results were analyzed via ap-
propriate methods to arrive at conclusions as to the growth and
mechanism.

The rest of the paper has been arranged as follows. We
describe the model and methods in Sec. II. Section III contains
the results. We conclude the paper in Sec. IV with a brief
summary.

II. MODEL AND METHODS

In our model system, two particles, located at 7; and 7;,
with r = |F; — 7;], interact via the potential [48]

av(r)
dr }_ ©

Ur)=V(r)=V(r)—(r— rc)[

for r < r., the latter being a cutoff distance. In Eq. (6), V (r)
is the standard Lennard-Jones (LJ) potential [48]

vome| 2] o

The term V (r.), on the right-hand side of Eq. (6), cuts and
shifts the potential (to zero) at » = r.. While this is beneficial
for computation, the procedure leaves the force discontinuous
at r.. The other additional term, viz., (r — r.)dV (r)/dr|;=r,,
removes this discontinuity [48]. In Eq. (7), €xp and oy,
o, B € [A, B], represent the interaction strengths and diam-
eters, respectively, for various combinations of particles.

Here, 0,4 and €, among the like particles are taken to be
the same; namely, we have oqq = opg = 0 and €44 = €pp =
€. We also choose o453 = o. In that case, to facilitate phase
separation, one must fix €4p in such a way that like particles
tend to gather; that is, one should have €45 < €. We consider
€ap = €/2. Thus we have [53]

0AA = OB = OAB = O @)
and
€aa = €pp = 2€ap = €. )

We have also set the mass m of all the particles to be equal.
Thus our model is perfectly symmetric. This provides an
Ising-like situation that has been very useful in studying the
kinetics of phase separation.

Due to the established utility of the model for studies of
phase separation in fluid systems, as well as to exploit the
previous results [10,53,54] as good references, we choose
this model for the present study. This is also meaningful
by considering that we do not expect any model-dependent
hydrodynamic behavior as far as scaling aspects in growth and
structure are concerned. For this symmetric model, the phase
diagram, in d = 3, is accurately known for (number) density
of particles p = 1. It is, of course, expected [53,54] that the
critical concentration, for any of the species, will be x;, = 1/2.
Note that the concentration of a species within the mixture
is defined as x, = N, /N, N, being the number of particles
of type o and N = Ny + Np. The critical temperature 7, was
estimated to be >~ 1.421¢/kg, where kg is the Boltzmann con-
stant [53,54]. The coexistence curve is shown in Fig. 1. In this
diagram the results for a finite number of particles (N = 7200)
[53,54] were obtained via Monte Carlo simulations [55] in a
semi-grand-canonical ensemble.

In the following we set o, €, m, and kg to unity. In this
paper we study the kinetics via MD by quenching homoge-
neous configurations, prepared at a high temperature, to the
temperature 7 = 1. The compositions are chosen in such a
way that the final-state points fall inside the miscibility gap
[53,54]. Those state points are marked inside the coexistence
curve of Fig. 1.

We have performed MD simulations [47] in periodic cubic
boxes of linear dimension L, the latter being measured in units
of 0. As already stated, the temperature was controlled via the
application of a NHT [47,50-52] that is known to preserve
hydrodynamics well. Note that the hydrodynamics is well
satisfied during MD simulation in a microcanonical ensemble.
However, during phase separation, such a constant-energy
method is not advisable. This will lead to shift in temperature
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FIG. 1. Phase coexistence curve for the symmetric L] binary
mixture with overall density 1 in the 7 vs x4 (= N4/N) plane.
These simulation data, represented by the triangles, were obtained
via Monte Carlo simulations in a semi-grand-canonical ensemble
with 7200 particles. The asterisk represents the critical point of the
system that was obtained earlier [53,54] via appropriate analysis.
The crosses correspond to the state points to which the systems were
quenched.

to values above the coexistence curve where A and B compo-
nents will be mixed. Thus constant-temperature methods are
necessary. For the latter purpose, all available thermostats do
not satisfy the requirements of hydrodynamics. For example,
hydrodynamics is ignored in the Andersen thermostat (AT)
[47,56], which operates via a stochastic mechanism.

Many works report results [10,11,38], by using an NHT,
that produce key expectations for hydrodynamic behavior in
the kinetics of phase separation. In this connection, we draw
attention to Ref. [57]. In that work, in the equilibrium context,
results for various transport properties in fluids were com-
pared from the calculations in canonical (with an NHT) and
microcanonical ensembles. Recall that in the latter ensemble
the hydrodynamics is perfectly satisfied. It was observed that
except for bulk viscosity, results for other transport coeffi-
cients were in good agreement from the two ensembles. Given
that we are dealing with a nearly incompressible fluid, bulk
viscosity is less relevant. Thus application of the NHT is rather
safe here.

It is worth mentioning here that MD simulations for the
kinetics of phase separation in binary fluids are difficult. Here,
to avoid the effects of a vapor-liquid transition, one needs to
deal with high overall density. This restricts the system size
and, thus, access to large length scales. The problem becomes
significantly more severe for compositions close to the coexis-
tence curve. Because of this, the droplet growth aspect, though
important, did not receive attention.

In our MD method we have used the Verlet velocity in-
tegration scheme [47,48], with time discretization step At =
0.0017. Here, t (= /mo2/e) is our LJ unit of time, which
is unity because of the abovementioned choices of €, o, and

m. All our quantitative results are presented after averaging
over runs with a minimum of 50 independent initial configu-
rations. Unless otherwise mentioned, all the simulations were
performed with L = 64.

We have calculated lengths from the decay of the correla-
tion function as

Cr=1¢01)=c, (10)

by fixing ¢ to the first zero of the correlation function. It
is worth mentioning here that for conserved order-parameter
dynamics, the class to which the present problem belongs,
C exhibits damped oscillations around zero. This we will see
in the next section. For the calculation of C(r,t) we have
mapped the continuum configurations to the ones on a simple
cubic lattice [8]. Details on this and the estimation of local
order parameter are provided later. The length was also ob-
tained by direct identification of the droplets [58] and counting
numbers of particles within those [49]. The latter, of course,
provides a quantity proportional to volume, from which the
average length can be trivially obtained following calculation
of the average volume via the first moment of a distribution.
Results from different methods are essentially proportional to
each other, differing by constant factors.

For a disconnected morphology, the droplet identification
[58] is important for the purpose of confirmation of the
mechanism as well, e.g., via the calculation of mean-square
displacement (MSD) of the centers of mass (CMs) of the
droplets. Note that for N, particles belonging to a particular
droplet the center of mass is calculated as [44]

Ny

~ 1
Row() = = > (). (1)

Pi=1
The MSD is then obtained from the formula [44]
MSD = ((Rem(t) — Rem(0))?). (12)

Here, ¢’ is a time that is shifted with respect to the time at the
beginning of an observation.

II1. RESULTS

In Fig. 2 we show snapshots taken during the evolutions
of two typical homogeneously mixed configurations towards
respective equilibriums, following quenches inside the coexis-
tence curve. For the 50 : 50 composition, it is appreciable that
the morphology consists of interconnected tubelike domains.
For the asymmetric composition, disconnected droplet mor-
phology is clearly identifiable. While the spherical structure
can be appreciated from the snapshots, we have confirmed it
via the calculation of radius of gyration as a function of mass.
In the disconnected case the growth seems to be much slower.
Our objective here is to provide a composition-dependent
quantitative picture.

In Fig. 3 we show scaling exercises [6] for the correlation
function. There, C(r, t) is plotted versus r/¢. Results from a
few different times, for two compositions, have been included.
Figure 3(a) contains results for the symmetric composition,
and the results for the 90 : 10 composition are included in
Fig. 3(b). The nice collapse of the data sets implies self-
similarity of growth in both of the cases. For conserved
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FIG. 2. Snapshots, which were recorded during the molecular
dynamics simulations, following quenches of high-temperature ho-
mogeneous configurations to 7 = 1, are shown for 50 : 50 (top)
and 90 : 10 (bottom) compositions of A and B particles. Only the
locations of the B particles are marked. For each of the compositions,
frames from two different times are included.

order-parameter dynamics, one expects damped oscillations
of C(r, t) around zero. This is clearly visible here. In the asym-
metric composition case the minimum is expectedly much
shallower compared with the symmetric or critical (50 : 50)
composition case [59].

In the insets of Fig. 3 we show the scaling plots of S(k, t),
the structure factor, a quantity that is of direct experimental
relevance [6]. This is the Fourier transform of C(r,t). The
expected scaling form for this quantity is [6]

S(k, 1) = €%3(ke), (13)

where S(y) is another time-independent master function.
Clearly, good collapse of data from different times is visible.
The small-k behavior is consistent with k* [10,59], for the
symmetric case, referred to as the Yeung’s law [60]. The result
for the asymmetric case, however, is at deviation [59] with
the Yeung’s law. This possibly is an artifact of off-critical
composition. It may as well be true that the k* behavior [60]
will be realized in the asymptotically large droplet size limit.
This, however, is difficult to confirm via simulations and is
not our objective here. The large-k behavior is consistent with
a power law having an exponent —4, in both of the cases.
This is the expected Porod law [61-63] in d = 3, for a scalar
order parameter, and is an outcome of scattering from sharp
interfaces. The deviations that are observed can be due to
the interfacial roughness that is appreciable from the noise
that is noticed in the snapshots of Fig. 2. Such noise can be
gotten rid of via choices of lower quench temperatures. This
may, however, lead to undesirable situations. For example,
crystallization is a possibility. In this paper, for the purpose

Ot = 25000

08% 90 : 10 A = 50000 -

= a & = 100000 |
Eosl
O |
0.4
02k
0
01

FIG. 3. (a) Two-point equal-time correlation functions, C(r, 1),
are shown, from a few different times, vs the scaled distance r/£(t),
for a 50 : 50 composition. In the inset we show the analogous scaling
plots for the structure factor, S(k, t), k being the wave number. The
solid lines in the inset represent power laws. (b) Same as (a), but here
the composition is 90 : 10.

of analysis, this noise was largely eliminated via the applica-
tion of a majority rule [8]. In this method, at the location of
each particle we have calculated the concentration difference
between the two species, by considering a neighborhood of
radius o. If it is positive, we have assigned a value of +1,
otherwise —1, to the order parameter as in the Ising model.
Prior to this calculation we have appropriately mapped each
continuum configuration to a lattice one with lattice constant
o. Before moving to the discussion on growth, we mention
that £ can be estimated from the first moment of S(k, ) as
well [6].
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FIG. 4. (a) Average domain lengths, £(¢), are shown with the
variation of time, for quenched systems having different composi-
tions of A and B particles. The solid lines represent power laws
with the given exponents. (b) Instantaneous exponents are shown as
a function of 1/¢, for the compositions 50 : 50 and 90 : 10. The long
arrows there are guides to the eye.

In Fig. 4(a) we show £ versus ¢ plots for several different
compositions. For compositions at or close to the symmetric
value, the intermediate-time behavior, over long periods, is
linear, consistent with the expectation for viscous hydrody-
namic growth. The saturations at late times are due to the
finite size of the systems. Note that the maximum domain
length is less than the system size. This is because two phases
occupy the box. The late-time behavior, for compositions far
away from the critical value, is consistent with @ = 1/3. This
is expected for the BS [20-22] mechanism, in d = 3. For a
more convincing confirmation of the values of the exponents,
we have calculated the time-dependent or instantaneous ex-
ponent [8,16,17] «; (= d1nf/d Int). This quantity is shown
in Fig. 4(b) for 50 : 50 and 90 : 10 compositions, with the
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FIG. 5. (a) Here we have plotted the number of droplets, con-
sisting primarily of the particles of the minority phase, as a function
of time, on a semilog scale, for 90 : 10 composition. (b) A plot of
—dN, /dt vs N;2, on a log-log scale, corresponding to the plot in (a).
The solid line is a power law with exponent 1.

variation of 1/£. If £ is written as £ = £y + At%, £ being the
length at the beginning of scaling and A being the growth
amplitude, then «; should follow [8,17]

ai = afl — €/0].

When plotted versus 1/¢, it appears from the above equation
that the data for o; will exhibit a linear behavior with slope
—afy and ordinate intercept «. For both the compositions the
simulation data in Fig. 4(b) are consistent with this picture,
implying « = 1 and 1/3, for the respective compositions.
Having identified the exponent for the power-law growth for
the off-critical case, we present results that will ascertain
that the growth indeed occurs via the diffusive coalescence
mechanism.

In Fig. 5(a) we present a plot for the number of droplets
(Ng) as a function of time. The early part is dominated by
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FIG. 6. Numbers of particles, N, in a few droplets, are shown as
a function of the translated time ' =t — #o, f, being the beginning
of an observation. These results are for the composition 90 : 10 and
L = 48. During the presented periods the considered droplets did not
undergo collision with other droplets. The inset shows a similar plot
for a droplet from the early nucleation period.

nucleation. The late-time decay is due to growth. In Fig. 5(b)
we show a plot of —dN,/dt versus N,*. There the focus
is on the late-time growth part. Thus we have shown data
from ¢ = 5000 onward. The linear behavior on a double-log
scale indicates a power law. We expect [38] an exponent 1
for diffusive coalescence; see Eq. (4) and related discussion.
That indeed is observed. This also indirectly validates the
Stokes-Einstein-Sutherland [44—46] relation in this extended
context.

In Fig. 6 we show numbers of particles (N,) in several
droplets, with the variation of time ¢’ that is calculated from
the beginning of an observation. During the presented periods
these droplets did not collide with any other droplets. In each
of the cases the value of N, remains practically constant. This
again suggests that the LS-like particle diffusion mechanism
[13] is playing a negligible role in the growth. The number of
droplets is decreasing, as seen in Fig. 5, due to coalescence.
This should be compared with the nucleation regime; see the
inset of Fig. 6. During this initial stage the number of particles
in a nucleus increases, via deposition of particles from the
neighborhood. Due to the complex environment, occasionally
particles can get detached from the droplets. Thus fluctuations
can occur (as seen in the inset of Fig. 6), which may appear
prominent at early times. A steady rise from the very begin-
ning should be expected only as an average behavior.

In Fig. 7 we show results related to the motion of the
centers of mass of the droplets. In Fig. 7(a) a trajectory of the
CM of a typical droplet is seen. Random motion of the droplet
is visible. In Fig. 7(b) we show an MSD versus time plot for
such a droplet. Clearly, diffusive displacement is visible, at
late times.

The above results suggest that the growth is occurring
via the diffusive coalescence mechanism. We have obtained
further information about this by simulating asymmetric com-
positions with an AT. Both the NHT and the AT provide o =

10

(b)

T T 11111

MSD
R |
vl

0.1

0.01

10 100", 1000

5000

FIG. 7. (a) Here we show a trajectory of the center of mass of
a typical droplet. (b) Log-log plot of the mean-square displacement
(MSD) of a droplet, as a function of the shifted time ¢'. During this
period the droplet did not encounter any collision with other droplets.
The solid line represents the diffusive displacement. These results are
for the composition 90 : 10.

1/3, in this dimension, for off-critical composition, but for
different mechanisms, the LS mechanism being the case for
the latter. The hydrodynamic effect is not expected for the AT.
Thus the NHT should provide faster evolution, even though
the exponent in both of the cases should be the same. We have
checked this for an 80 : 20 composition. It indeed appears that
Aps/Avrs is > 1. See Eq. (5) and related discussion. However, a
proper match of this amplitude ratio with the theoretically ex-
pected number is not obtained [33]. This is due to the fact that
even though the NHT provides the hydrodynamics, a perfect
match of transport with natural systems cannot be expected,
unless various thermostat parameters are appropriately tuned.
Furthermore, with NHT there exists faster early growth, if
the composition is not too asymmetric. On the other hand,
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FIG. 8. Growth exponent « vs xgz. These values are obtained via
extrapolations of ¢; to the £ = 0o limit. The dashed lines correspond
to two theoretically expected values.

simulations with the AT, for extreme off-critical compositions,
are very demanding. In the following we will present more
results to elucidate the abovementioned fast early growth with
the NHT.

We state again that the AT was not designed to produce
hydrodynamic behavior. Thus the results from this thermostat
are expected to be analogous to those from the Kawasaki
exchange Monte Carlo [55] simulations of the Ising model or
numerical solutions of the Cahn-Hilliard (CH) equation [55],
which is a continuum dynamical model. In the latter case,
the order parameter remains conserved, and growth occurs
via diffusive transport of material. When the CH equation is
appropriately combined with the Navier-Stokes equations [6],
one expects hydrodynamic behavior with faster growth. Such
results have relevance in the context of outcomes from
MD simulations of phase separation with NHT or other
hydrodynamics-preserving thermostats.

In Fig. 8 we show a plot of « as a function of xp, the
concentration of B particles. It appears that there exist two
possibilities: « = 1 for compositions that are nearly 50 : 50
and o = 1/3 when x3 is close to the coexistence curve, except
for a very small window in the intermediate range of x,. This
window provides the impression that one is observing the iner-
tial hydrodynamic growth here. However, we believe that this
somewhat stronger than 1/3 exponent will disappear if large
systems are examined over longer periods. Here note that an
inertial hydrodynamic growth is expected for interconnected
morphology at very late times, past the viscous hydrodynamic
evolution. See further discussion below.

In Fig. 9 we show ¢ versus ¢ plots for quenches to all
the considered state points inside the coexistence curve (see
Fig. 1), on a log-log scale. For most of the compositions the
early growth is faster than that provided by o = 1/3. This
may be for the following reason. During the initial period,
following a quench, the domains possess an interconnected
structure. Depending upon the degree of interconnectedness,
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v 80: 20
©85:15
A90:10
10
i oD
i o
i oody.
On VZO
gti %X A
o0 3%

10000
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FIG. 9. Plots of £(¢) vs time, for different compositions of A and
B particles, in a double-log scale. The solid lines represent power
laws with the given exponents.

this may lead to various different exponents. For compositions
up to 75 : 25, crossovers from stronger exponents to smaller
values are clearly visible. This can be understood from the
corresponding snapshots that are shown in Fig. 10. Only at
late times is the disconnected structure prominent. Such a
crossover will eventually happen for compositions even closer
to the critical one. To realize that, we need more computa-
tional efforts.

IV. CONCLUSION

We have studied the kinetics of phase separation in a high-
density symmetric binary (A + B) fluid model [48,53,54]
with the variation of mixture composition. While at the sym-
metric composition a bicontinuous nonequilibrium domain
morphology is obtained, for compositions close to a coexis-
tence curve the domain morphology consists of disconnected
droplets of the minority phase in the background of a sea
consisting of particles of the majority species.

The case of a perfectly symmetric composition is much
studied. In agreement with previous studies [10,22-24] we

75 :25

t = 500 t = 8000

FIG. 10. Snapshots, which were recorded during the molecular
dynamics simulations, following quenches of high-temperature ho-
mogeneous configurations to 7' = 1, are shown for a typical run with
75 : 25 composition of A and B particles. Only the locations of the
B particles are marked.
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observe a linear viscous hydrodynamic evolution within the
accessible simulation length and time scales.

We have performed molecular dynamics (MD) simulations
for this study. To capture the hydrodynamics, in our canon-
ical ensemble simulations, we have used the Nosé-Hoover
thermostat that is known for its capability of conservation of
local momentum [47], etc. A focus of our study is on the dis-
connected droplet morphology. These results were discussed
in the background of those obtained via the application of a
stochastic Andersen thermostat [47]. Note that to study the
kinetics of phase separation via MD simulation, it is necessary
to use a thermostat to keep the temperature at the desired
value. An alternative approach is to consider model H [6,64],
which is a combination of the Cahn-Hilliard equation and
the Navier-Stokes equation. This model is numerically solved
on a lattice. Here our interest was in the continuum
system.

We observe that the droplets are not static in the hydro-
dynamic environment. Via the calculation of mean-square
displacements of the centers of mass, we show that these
exhibit diffusive motion. Due to sticky collisions among these
droplets, the number density of these objects in the system de-
creases, and thereby the characteristic length scale increases.
For this diffusive coalescence mechanism we have accurately
estimated the exponent for the power-law growth. This is in
good agreement with theoretical expectations [20-22].

The picture described above is different from that obtained
in a stochastic situation. In this case the droplets are prac-
tically static, and growth occurs via particle diffusion, as
in solid mixtures [8,13,16,17]. The hydrodynamic growth is
faster, even though the exponents in the two cases are the
same.

We believe that the droplet coalescence picture is true
for compositions quite close to the critical one. However,
there can be faster growth until the domain structure gets
disconnected through the process of saturation of domain
magnetization. In this connection it may be of interest to
identify the spinodal line. However, the existence of such a
boundary is predicted via mean-field calculations which we do
not expect to apply to the model considered here [65]. Such an
exercise can be carried out for large molecular systems, such
as polymers, for which the mean field is a reasonably accurate
description [65,60].
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